1)

Solid	Vertices	Edges	Faces
Tetrahedron	4	6	4
Cube	8	12	6
Octahedron	6	12	8
Dodecahedron	20	30	12
Icosahedron	12	30	20

2)

We say that

$$
\begin{aligned}
& e^{\prime}=e-1, f^{\prime}=f-1, v^{\prime}=v \\
& v-e+f=v^{\prime}-e^{\prime}+f^{\prime}
\end{aligned}
$$

F cannot be 0 , thus must me at least 1 vertex.

$$
v-e-1+f-1+v-e+f=1
$$

3)

a)

If we have a cube with $\mathrm{V}=8, \mathrm{E}=12, \mathrm{~F}=4$, and using a and b for vertices connected by edges and edges around each face, we can determine a relation for V and F using E, a, and b .

Since this is a perfect platonic solid, we can see that each vertex has 3 edges(a) and each face has 4 edges adjacent(b). The total amount of vertexes can then be equated by the amount total of edges and the number of edges per vertex, and since each edge connects 2 vertexes, we can say that $2^{*} \mathrm{E} /$ a to get the total amount of vertexes on the solid, netting us 8 vertexes. Using the same logic, if we know the total amount of edges touching each face and the total amount of edges, and since each edge will be touching 2 different faces, $2 * E / b$ will net us 6 faces.
b)
by using the equations above, and the formula $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$, we can combine and make this equation in terms of E :

$$
\begin{aligned}
& \frac{2 E}{a}-E+\frac{2 E}{b}=2 \\
& E\left(\frac{2}{a}-1+\frac{2}{b}\right)=2 \\
& E\left(\frac{2 b+2 a-a b}{a b}\right)=2 \\
& E=\frac{2 a b}{2 b+2 a-a b}
\end{aligned}
$$

c)
for $a=3, b=5,4,3$ the corresponding shapes are dodecahedron, cube, and the tetrahedron.

For $a=4, b=3$, we have a octahedron.
For $a=5, b=3$, we have a icosahedron.
4) a soccer ball is truncated which meants it is not the full shape, where it is partly cut off to make a ball.
$V=60, F=32, E=90$
$60-90+32=2$

