Vivian choong

$$
640: 437: 01
$$

Howe work 16
(c) Consider the alternating group called A_{4} on $\{1,2,3,4\}$ i.e. The group of all permutations with an even number of inversions
(a) list them all (in lexigrapuical order of lotion live)

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

A4 hus 4 members in the subgroup.
(b) Consider the fillowing set H.

$$
H=\left\{\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right)\right\}
$$

Snow H is a sur group of A_{4}
$H \leq A$ and ha the same propertied as $A 4$.
(c) Find all the left cosets of H in Au. How many are there? two cossets. There would be 3 cosets.
(d) Explain why this example illustrates the famous Lagrange theorem that for any finite group G and any of its subgroup $H,|G| / / H$ is always an integer.
Since $H \subseteq G,|G| / H \mid$ would always be an integer.
(2) If H is a subgroup of G, then $G=u|H|$ for $\exists u \in \mathbb{N}$.

Proof, take any $r_{1} \in G$. Note $\left|H_{r_{1}}\right|=|H|$. If $H r_{1} \neq G$, then take any $r_{2} \in G \backslash H_{r_{1}}$. H_{1} and H_{2} are disjoint so $\left|H_{r_{1}} \cup H_{r_{2}}\right|=2|H|$. By continuing this, we have some $n \in \mathbb{N}$ st. $|G|=n|H|$ and $G=H_{r_{1}} \cup \cdots \cup H_{r_{n}}$.

