Vivian Choong

$$
640: 437=01
$$

Howe work 10
(1) Fully understand and be able to vepoduce the poof that there are infinitely many primes
We will pane by contradiction. Suppose there are only finitely many primer We can label there finitely many primes $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ for some $n \in \mathbb{N}$. Next let w consider the pritue $p=p_{1} p_{2} p_{3} \cdots p_{n}+1$. This prime has a remainder 1 when divided by any pvilie form P, \cdots, p_{n}. Hence we can sumy that p is a larger prime or P is divisible by a pine larger than $p u$. This contradicts our initial assumption that p_{n} is the largest prime.
(2) Compute from scratch all the prini) $\leq 140^{\circ}$
x (2) (3) \& (5) i (7) $\& i$ is (11) $i=$ (13) ix

(3) Write 3003 as a product of prime powers.

$$
\begin{aligned}
& 3(1001) \\
& 3(11)(91) \\
& 3(11)(7)(13) \\
& 3(7)(11)(13)
\end{aligned}
$$

(4) How many primes, roughly are there $\leq e^{100}$? (I am not sure how to paced).

2, 3, 5, 7, 11, 13, 17, $19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83$, $89,87,101,103,107,109,113$, $127,131,137,139$

