NAME: Tianyi He
E-MAIL ADDRESS: th586@scarletmail.rutgers.edu
It is OK to post the homework in your web-site

1. Suppose there are finitely many primes, n of them, put them in order, $p_{1}, p_{2}, p_{3}, \cdots p_{n}$
Let $P=p_{1} p_{2} p_{3} \cdots p_{n}+1$
Since P leaves remainder 1 when divided by each of p_{1}, \cdots, p_{n}, then P is either prime (larger than P_{n}), or is divisible by a prime larger than P_{n}, a contradiction.
2.

$$
\begin{array}{r}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59 \\
61,67,71,73,79,83,89,97,101,103,107,109,113,137,139
\end{array}
$$

3. $3003=3 \times 1001=3 \times 11 \times 91=3 \times 11 \times 7 \times 13$
4. $\quad P_{n} \approx n \ln n$

$$
n \ln n \leq e^{100} \Rightarrow n^{n} \leq e^{e^{100}}
$$

I did not figure out how to simplify it, so 2 use a calculator to calculate that $n \leq 2.81 \times 10^{41}$, So 2 thong the answer should be 2×10^{41}.

