NAME: Tianyi He E-MAIL ADDRESS: th586@scarletmail.rutgers.edu It is OK to post the homework in your web-site

1. Suppose there are finitely many primes, n of them, put
them in order,
$$p_1, p_2, p_3, \dots, p_n$$

Let $P = P_1P_2P_3 \dots P_n + 1$
Since P leaves remainder 1 when divided by each of P_1, \dots, P_n ,
then P is either prime (larger than P_n), or is divisible by
a prime larger than P_n , a contradiction.
2. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 137, 139
3. 3003 = 3 × 1001 = 3 × 11 × 91 = 3 × 11 × 7 × 13
4. $P_n \approx n \ln n$
 $n \ln n \leq e^{100} \Rightarrow n^n \leq e^{e^{100}}$
1 did not figure out how to Simplify it, so 2 use a

calculator to calculate that $N \leq 2.81 \times 10^{41}$, so 2 though the answer should be 2×10^{41} .