Farrah Rahman
Can publish on site

1. Suppose there are finitely many primes, $p_{1}, p_{2}, p_{3}, \cdots, p_{n}$.

Consider the number $p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{n-1} \cdot p_{n}+1+1$. Since p_{1} divides $p_{1} \cdot p_{2} \cdots p_{n}$, it follows that $\left(p_{1} \cdot p_{2} \cdots p_{n}+1\right) \% p_{1}=1$. The same logic can be extended to show that the remainder of $\left(p_{1} \cdot\right.$ $\left.p_{2} \cdots p_{n}+1\right) \% p_{1}=1$ divided by each of the primes p_{1} through p_{n} is 1 . So $p_{1} \cdot p_{2} \cdots p_{n}+1$ isn't divisible by any of the known primes. Every composite number has a prime factorization involving prime(s) other than itself. If $p_{1} \cdot p_{2} \cdots p_{n}+1$ is composite, since no primes of its prime factorization have been found it must be that there must exist at least another prime outside of the known primes of the list. If $p_{1} \cdot p_{2} \cdots p_{n}+1$ is prime, then it itself is a prime existing outside of the list. Therefore any finite list of primes is incomplete. In other words, there are infinitely many primes.
2. Not exactly the prompt but I'm studying for an interview and really don't want to do this by hand and this probably demonstrates my understanding anyway
Output:
2357111317192329313741434753596167717379838997101103107109113127131137139

```
public List<Integer> computePrimes(int n) \{
    List<Integer> retVal = new ArrayList<>();
    int currPrime = 2;
    int[] nums = new int[n+1]; //use indices 2 through n
    int maxPrime = (int)Math.sqrt(n);
    while(currPrime <= maxPrime) \{
        for(int \(\mathbf{i}=\) currPrime*2; \(i<=n\); \(i+=\) currPrime)
        nums[i] = -1;
        currPrime++;
        while((currPrime <= maxPrime) \&\& (nums[currPrime] == -1))
            currPrime++;
    \}
    for(int \(i=2 ; i<=n ; i++\) )
        if(nums[i] == 0)
            retVal.add(i);
    return retVal;
```

3. Output:
$3^{1} 7^{1} 11^{1} 13^{1}$
```
public List<String> computePrimePowers(int n) {
    List<Integer> possiblePrimes = computePrimes((int)Math.sqrt(n));
    List<String> retVal = new ArrayList<>();
    int remainingNum = n;
    while(remainingNum > 1) {
        int oldRemaining = remainingNum;
        for(Integer prime: possiblePrimes) {
            if(remainingNum % prime == 0) {
            int currPrimePower = 1;
            int power = 0;
            while(remainingNum % (currPrimePower*prime) == 0) {
            currPrimePower *= prime;
                    power++;
            }
            retVal.add(prime+"^"+power);
            remainingNum /= currPrimePower;
            }
        }
        if(oldRemaining == remainingNum) { //n is prime
            retVal.add(n+"^"+1);
            return retVal;
        }
    }
    return retVal;
}
```

4. Number of Primes:
$e^{100} / 100=268,811,714,181,610,000,000,000,000,000,000,000,000,000$
