Vivian Choong History of Math (640:437:01) Home work 1

(1) if f(x) = (0,0), then x is divisible by n, and $n_2 \cdot (n_1, n_2) = 1$ x would be a multiple of $n_1 n_2$ because x is less than $n_1 n_2$. If $(x_1) = (x_2)$ then $f(x_1 - \pi_2) = 0$, therefore $\pi_1 - \pi_2 = 0$ and $x_1 = \pi_2$. This proves that the function is one-to-one. Since f is one to one, there are the same number of elements from [0, $n_1 - 1$] and [0, $n_2 - 1$], so it must be onto and have an inverse (2) 1, 1, 1 = 1(3)(5) + 1(2)(5) + 1(2)(3) = 31

We are able to divide it equality into 30th stiles. It would be more simple to we the cet of $\frac{1}{2} + \frac{1}{3} + \frac{1}{5}$ because it would be more simple despite it not being as equal as the $\frac{730^{th}}{30^{th}}$ stiles (3) (a) $\pi \equiv 2 \pmod{3}$ (b) $\pi \equiv 1 \pmod{32}$ (c) $\pi \equiv 0 \pmod{33}$ $\pi \equiv 6 \pmod{3}$ (b) $\pi \equiv 1 \pmod{32}$ (c) $\pi \equiv 0 \pmod{33}$ $\pi \equiv 2 (27)$ $\pi \equiv 4 \pmod{32}$ $\pi \equiv 2 \pmod{32}$ 14 = 2(7) $4 \equiv 1 \pmod{32}$ $9 \equiv 0 \pmod{33}$ 14 + 6 = 20 $4 \equiv 4 \pmod{7}$ $9 \equiv 2 \pmod{7}$ $20 \equiv 6 \pmod{7}$ 4, 4 + 21 2, 2 + 21 $20 \equiv 2 \pmod{33}$ 4, 26 2/23