Vivian Choong
History of Math ($640: 437: 01$)
Home work 1
(1) if $f(x)=(0,0)$, then x is divisible by n_{1} and u_{2}. $\left(n_{1}, n_{2}\right)=1$
x would be a multiple of $n_{1} n_{2}$ because x is les than $n_{1} n_{2}$.
If $\left(x_{1}\right)=\left(x_{2}\right)$ then $f\left(x_{1}-x_{2}\right)=0$, theretire $x_{1}-x_{2}=0$ and $x_{1}=x_{2}$. This proved that the function is one-t-one. Sine t is one t are, there are the sums number of elements form $\left[0, n_{1}-1\right]$ and $\left[0, n_{2}-1\right]$. so it mut k onto and have an inverse
(2)

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{3}+\frac{1}{5}=\frac{1(3)(5)}{30}+\frac{1(2)(5)}{30}+\frac{1(2)(3)}{30}=\frac{31}{30} \\
& E F\left(\frac{31}{30}\right) \quad x=\frac{31}{30} \quad \frac{1}{x}=\frac{30}{31} \quad \text { ceil }\left(\frac{30}{31}\right)=1 \\
& E F\left(\frac{31}{30}\right)=1+\frac{1}{30}
\end{aligned}
$$

We are able to divide it equally into $30^{\text {th }}$ slices. It would be more simple to we the set of $1 / 2+1 / 3+1 / 5$ because it would be more simple despite it not being as equal as the Y_{30} th slices
(3) (a) $x \equiv 2(\bmod 3)$
$x \equiv 6(\operatorname{mid} 7)$
(b)

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 4(\bmod 7) .
\end{aligned}
$$

$$
14=2(7)
$$

$$
14+6=20
$$

$$
20 \equiv 6(\bmod 7)
$$

$$
20 \equiv 2(\bmod 3)
$$

$20,20+21$
20,41
(c) $x \equiv 0(\bmod 3)$
$x \equiv 2(\bmod 7)$
$9 \equiv 0$ (mu dd)
$9 \equiv 2$ ($\operatorname{mon} 77$)
2, $2+21$
2, 23

