1) How the Chinese Remainder Method works If both functions of x are divisible by n_{1} and by n_{2} and relatively prime, x is a multiple of n_{1}, n_{2} We create a table with $f(x)=\left(x\left(\bmod n_{1}\right), x\left(\bmod n_{2}\right)\right)$. This allows us to have a table of values where we find $a_{1}, a_{2}, \ldots a_{n}$ and look at the table constructed by the given size (should be no bigger than $\left.n_{1} * n_{2}\right)$ where $f(x)=\left(a_{1}, a_{2}\right)$
2) $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}=\frac{31}{30}$

The inverse of $\frac{31}{30}$ is $\frac{30}{31}$ and the smallest integer larger than that fraction is 1 so you obtain

$$
\begin{aligned}
& \frac{31}{30}=1+E G F\left(\frac{31}{30}-1\right) \\
& =1+\frac{1}{30}
\end{aligned}
$$

In this way, each child gets 1 pie each, then $\frac{1}{30}$ of the last pie is split. This is compared to the previous breakdown of $\frac{31}{30}=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}$ where each child gets $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{5}$ of a pie making the splitting of 30 pies easier and bigger pieces. The greedy algorithm is not a good way to divide the pizza as the last pie is cut so small, it makes it impractical to accomplish.
3)
a) $(2, \bmod 3),(6 \bmod 7)$

$$
\begin{array}{ccccc}
f(1)=(1,1) & f(2)=(2,2) & f(3)=(0,3) & f(4)=(1,4) & f(5)=(2,5) \\
f(6)=(0,6) & f(7)=(1,0) & f(8)=(2,1) & f(9)=(0,2) & f(10)=(1,3) \\
f(11)=(2,4) & f(12)=(0,5) & f(13)=(1,6) & f(14)=(2,0) & f(15)=(0,1) \\
f(16)=(1,2) & f(17)=(2,3) & f(18)=(0,4) & f(19)=(1,5) & f(20)=(2,6) \\
& & & \\
& & x_{2}=x_{1}+3 * 7 & &
\end{array}
$$

2 lowest integers are 20, 41
b) $(1, \bmod 3),(4, \bmod 7)$

Using the table above we see that 4 and 25 have this property
c) $(0, \bmod 3),(2, \bmod 7)$

Using the table above, we see that 9 and 30 have the properties described.

