1) How the Chinese Remainder Method works

If both functions of x are divisible by n_1 and by n_2 and relatively prime, x is a multiple of n_1 , n_2 We create a table with $f(x) = (x \pmod{n_1}, x \pmod{n_2})$. This allows us to have a table of values where we find $a_1, a_2, \dots a_n$ and look at the table constructed by the given size (should be no bigger than $n_1 * n_2$) where $f(x) = (a_1, a_2)$

2) $\frac{1}{2} + \frac{1}{3} + \frac{1}{5} = \frac{31}{30}$ The inverse of $\frac{31}{30}$ is $\frac{30}{31}$ and the smallest integer larger than that fraction is 1 so you obtain

$$\frac{31}{30} = 1 + EGF\left(\frac{31}{30} - 1\right)$$
$$= 1 + \frac{1}{30}$$

In this way, each child gets 1 pie each, then $\frac{1}{30}$ of the last pie is split. This is compared to the previous breakdown of $\frac{31}{30} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5}$ where each child gets $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{5}$ of a pie making the splitting of 30 pies easier and bigger pieces. The greedy algorithm is not a good way to divide the pizza as the last pie is cut so small, it makes it impractical to accomplish.

a) (2, mod 3), (6 mod 7)

	-			
f(1) = (1,1)	f(2) = (2,2)	f(3) = (0,3)	f(4) = (1,4)	f(5) = (2,5)
f(6) = (0,6)	f(7) = (1,0)	f(8) = (2,1)	f(9) = (0,2)	f(10) = (1,3)
f(11) = (2,4)	f(12) = (0,5)	f(13) = (1,6)	f(14) = (2,0)	f(15) = (0,1)
f(16) = (1,2)	f(17) = (2,3)	f(18) = (0,4)	f(19) = (1,5)	f(20) = (2,6)

$$x_2 = x_1 + 3 * 7$$

2 lowest integers are 20, 41

b) (1, mod 3), (4, mod 7) Using the table above we see that 4 and 25 have this property

c) (0, mod 3), (2, mod 7) Using the table above, we see that 9 and 30 have the properties described.