1. Suppose $f(x)=(0,0)$. Then $x \bmod n_{1}$ and $x \bmod n_{2}$ both equal zero, meaning that n_{1} divides x and n_{2} divides x. Because n_{1} and n_{2} are relatively prime, they have entirely distinct factorizations; in other words, a factorization of x, which both n_{1} and n_{2} divide, must include the product of n_{1} and n_{2}. In simpler terms, x is a multiple of $n_{1} n_{2}$.

It's known by the domain of the mapping that $0<=x<n_{1} n_{2}$. So x is known to be a nonnegative multiple of $n_{1} n_{2}$ that is less than $n_{1} n_{2}$. This is only possible when $x=0$.

To prove by contrapositive, assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $x_{1} \bmod n_{1}=x_{2} \bmod n_{1}$ and x_{1} $\bmod n_{2}=x_{2} \bmod n_{2}$. So $\left(x_{2}-x_{1}\right) \bmod n_{1}=0$ and $\left(x_{2}-x_{1}\right) \bmod n_{2}=0$. Therefore, $f\left(x_{2}-x_{1}\right)=$ $(0,0)$, which is known to only be possible when the term passed to the function is 0 . So $x_{2}-x_{1}=0$, or $x_{2}=x_{1}$. Thus the function is one-to-one.

The domain of the function has $n_{1} n_{2}$ elements and the range has $n_{1} \times n_{2}$ elements, or also $n_{1} n_{2}$ elements. Because the domain and codomain have the same cardinality, and no elements of the codomain can be mapped to by more than one element of the domain by the definition of one-to-one, (and no element of the domain can map to more than one element of the codomain by the definition of function,) the function must be onto as well as one-to-one. Thus by definition the function is bijective.
2.

$$
\begin{gathered}
\frac{1}{2}+\frac{1}{3}+\frac{1}{5}=\frac{31}{30} \\
\left\lceil\frac{30}{31}\right\rceil=1 \\
\frac{1}{1}+\frac{31}{30}-\frac{1}{1} \\
=\frac{1}{1}+\frac{1}{30}
\end{gathered}
$$

In the given way, 31 pizzas are divided amongst 30 people by giving each $1 / 2$ of one pizza, $1 / 3$ of another, and $1 / 5$ of another. This is a much easier way to divide pizza than by dividing them per the result of the greedy algorithm, which would have each person get 1 pizza as well as $1 / 30$ of another. While people hypothetically get the same amount of pizza with either method, in actuality it is near impossible to divide a pizza into 30 slices, and much more feasible to divide one into halves, thirds, or fifths.
3. (a) 20, 41
(b) 25,46
(c) 9,30

