
Holen Yee
Graph Theory Homework #5

5.1)

(i) 1 → 2 → 3 → 4 → 5 → 10

(ii) 1 → 2 → 3 → 4 → 5 → 10 → 7 → 9 → 6 → 8

(iii) 1 → 2 → 3 → 4 → 5 → 1

1 → 2 → 3 → 4 → 9 → 6 → 1

1 → 2 → 3 → 4 → 5 → 10 → 8 → 6 → 1

1 → 6 → 9 → 7 → 10 → 8 → 3 → 4 → 5 → 1

(iv) {{1, 2} , {1, 5} , {1, 6}}
{{1, 2} , {1, 5} , {6, 8} , {6, 9}}
{{1, 6} , {2, 3} , {2, 7} , {4, 5} , {5, 10}}

5.2)

(i) 3

(ii) 4

(iii) 8

(iv) 3

(v) 4

(vi) 5

(vii) 5
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5.3)
Lemma: If there is an odd length closed walk in a graph, then there is an odd length closed cycle.

Proof:
We will perform induction on the number of edges k of the odd length closed walk.
The base case k = 1, when the closed walk is a loop, holds trivially.
Assume that, for some positive integer r > 1, the lemma is true for all odd numbers k ≤ 2r − 1.
Let W = w1 → · · · → w2r+1 → w1 be a closed walk of 2r + 1 edges.
If there exists two identical vertices wi = wj for 1 < i < j ≤ 2r + 1, then W can be written as
w1 → · · · → wi → · · · → wj → · · · → w1.
Thus, we now have two closed walks W1 = wi → wi+1 → · · · → wj and W2 = wj → wj+1 → · · · →
wi.
The summation of the length of W1 and W2 is equal to the length of W . Since W is of odd length,
one of W1 or W2 must be of odd length ≤ 2r − 1.
By our assumption, there must be an odd cycle in W1 or W2, and thus in W .

Proof of converse of Theorem 5.1:
Let G be an arbitrary graph whose cycles are all of even length.
Assume without loss of generality that G is connected. (If G was disconnected, then we would just
perform the procedure described below for each connected component of G)
Choose an arbitrary vertex of G, which we will call v0.
Partition the set of vertices of G, V , into two sets A and B defined by the following:
A = {v ∈ V : the shortest path from v0 to v is even in length}
B = {v ∈ V : the shortest path from v0 to v is odd in length}
We must show that there are no edges between any two vertices in A or B.
Suppose for contradiction that there exists an edge {x, y} ∈ E such that x, y ∈ A or x, y ∈ B.
Then, we can construct the closed walk v0 → · · · → x → y → · · · → v0, which is of odd length.
By the lemma, G contains an odd cycle, which is a contradiction.
Therefore, G is a bipartite graph between A and B.

5.5)

(i) κ(G) = 2, λ(G) = 2

(ii) κ(G) = 3, λ(G) = 3

(iii) κ(G) = 4, λ(G) = 4

(iv) κ(G) = 4, λ(G) = 4

5.7)

(i) =⇒ direction:

We will prove this using induction on the length of the shortest walk between two arbitrary
vertices u, v in the graph.

Base case:
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Let u, v be adjacent vertices.

Let z be any vertex in G distinct from u and v.

Since G is 2-connected, the removal of u or v does not disconnect G.

So, there exists a path from v to z that does not use v, which we will call P1, and a path
from z to u that does not use u, which we will call P2.

So, the cycle containing u, v consists of u → v → P1 → P2.

Inductive step:

Assume that the proposition is true for all pairs of vertices with distance less than or equal
to k, where k ≥ 1.

Let the distance between u and v, d(u, v) be k + 1.

Let w be the vertex adjacent to v on the shortest path from u to v.

Since d(u,w) = k, there is a cycle containing u and w, which consists of two paths, one from
u to w, which we will call P1, and a path from w to u, which we will call P2.

Since G is 2-connected, there is a path from u to v that does not contain w, which we will
call P3.

If P3 shares vertices with P1 or P2 (assume without loss of generality that it is P1) let z be
the shared vertex closest to v. Then, the cycle containing u and v consists of: the portion of
P1 that goes from u to z → the portion of P3 that goes from z to v → w → P2.

If P3 does not share vertices with P1 and does not share vertices with P2, then the cycle
containing u and v consists of: P3 → w → P2.

In both cases, we were able to construct a cycle containing u and v.

⇐= direction:

If every pair of vertices u, v is in a cycle u → · · · → w → · · · → v → · · · → u, with w being
some other vertex, if w is removed, the path v → · · · → u still exists, since the cycle is a path
which does not repeat vertices.

So, the removal of any one vertex does not disconnect G.

So, G is 2-connected.

(ii) A graph is 2-edge-connected if and only if each pair of edges is contained in a closed trail.

5.8)

(i) A =

A11 . . . A1n
...

. . .
...

An1 . . . Ann


A2

ij = Ai1A1j + · · ·+AinAnj

The kth term of this summation is equal to the number of walks of length 2 from vi to vj via
vk. So, A

2
ij is equal to the number of 2-length walks from vi to vj .
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(ii) A2
ii = the number of 2-length walks from vi to vi. In other words, this is counting the number

of edges incident to vi or the degree of vi. So,
∑n

i=1A
2
ii = the sum of the degrees of the

vertices= 2m

(iii) A3
ij = A2

i1A1j + · · ·+A2
inAnj

The kth term of this summation is equal to the number of 3-length walks from vi to vj , via
a 2-length walk from vi to vk then crossing the edge between vk and vj .

So, the entire sum is the number of 3-length walks from vi to vj .

A3
ii = 2 ·# of 3-length walks from vi to vi (i.e. triangles with vi) in them. There is a factor

of 2 because both directions of the triangle are counted. For example, vi → vj → vk → vi
and vi → vk → vj → vi are both counted, for some i, j, k.∑n

i=1A
3
ii = 6t. The factor of 6 is there because each triangle is counted 3 times for each

vertex in the triangle, and for each of those times, it is counted twice for both directions.

5.9)

(i) Let the shortest path from v to w be v → · · · → z → · · · → w, where z is some vertex distinct
from v and w.

Call the fragment of the path we just described from v to z P and the fragment from z to w
Q.

The sum of the lengths of P and Q is d(v, w).

We claim that P and Q are the shortest paths from v to z and z to w, respectively.

Suppose for contradiction that P is not the shortest path from v to z. Call the shortest path
from v to z R. Then, the path R → Q is a shorter path from v to w. This is a contradiction,
so P must be the shortest path from v to z.

We can use a similar proof to show the same for Q.

So, d(v, z) + d(z, w) = d(v, w).

(ii) Choose an arbitrary vertex x. Since the Petersen graph is regular of degree 3, x has 3
neighbors, call them u, v, w. Since the Petersen-graph is 3-regular, u, v, w each have exactly 2
other neighbors besides x. Since the Petersen graph has no triangles, none of the vertices in
{u, v, w} are adjacent to each other. So, the six other neighbors are distinct from x, u, v, w.

| {x} | ∪ | {u, v, w} | ∪ | {six other neighbors|} = 1 + 3 + 6 = 10.

The Petersen graph has 10 vertices, so all vertices are exhausted.

Every vertex distinct from x is either one of its neighbors (distance 1) or one of the six vertices
at distance 2 from x.

So, for every pair of vertices in the Petersen graph v, w, d(v, w) = 1 or 2
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