2.2)i)

ii)

ii)

Not isomorphic because we cannot find a bijection between the edges: the graph on the left has edges going from the inner square to the outer square on opposite sides, the graph on the right has these edges on adjacent sides.
24)i) True: two graphs are 'somophic \Rightarrow we have a bijection between their edges and vertices \Rightarrow for some vertex v, $F(v)$ has same number of edges \Rightarrow the two graphs have the same degree sequence
ii) False: see 2.3 part (ii) for two graphs with the same degree sequence which are not isomorphic
27) $\underset{\text { degree sequence }=}{ }(1,1,2,2)$; $\#$ of edges $=3 ; 1+1+2+2=2.3$

deg see $=(1,2,2,3)$; \# of edges $=4 ; 1+2+2+3=2 \cdot 4$.
deg seq $=(2,2,2,2) ; \#$ of edges $=4,2+2+2+2=2.4$
deg see $=(2,2,3,3) ; \#$ of edges $=5 ; 2+2+3+3=2.5 \mathrm{~J}$
deg seq $=(3,3,3,3) ; \#$ of edges $=6 ; 3+3+3+3=2.6$
2.9) Suppose G is a simple graph with af least two veffices.

Case 1: No vertex has degree θ.
\Rightarrow The degree sequence is $1 \leqslant d_{1} \leqslant \ldots \leqslant d_{n} \leqslant n-1$.
if there are n vertices.
By the pigeonhole principle, at lear two vertices have the same degree.
Case 2: ore vertex has degree 0 .
Consider the graph G' which is G without this ore vertex. Then af least two vertices have the same degree in G^{\prime} by case 1.
Case 3: At least two vertices have degree I (ak. a have
same degree we are done)
2.12) Adjarency Marrix:

$$
\begin{array}{l|lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 0 & 1 \\
3 & 0 & 1 & 0 & 2 & 0 \\
4 & 0 & 0 & 2 & 0 & 1 \\
5 & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
$$

2.13 i)

ii)

