
Maple Computation of the Ollivier-Ricci
Curvature of Graphs

Kaylee Weatherspoon

Experimental Math 2025

1 Background

Ricci curvature, originally defined in the setting of differential geome-
try, has recently attracted significant attention in the areas of graph theory,
network science, and machine learning[4]. Departing from the original set-
ting of Ricci Curvature, the Ollivier-Ricci Curvature on Graphs adapts the
concept to discrete spaces, enabling the analysis of geometric and structural
properties of networks.

Whereas the original definition of Ricci curvature refers to the inherent
geometric properties of a Riemannian manifold, the Ollivier-Ricci Curvature
on Graphs assigns a probability distribution to each vertex and takes the
Wasserstein/Earth Mover’s metric as its notion of distance ([3]). Put simply,
the probability distribution assigned to a vertex v encodes the likelihood of
moving to any one of the neighbors of v. In the context of “earth-moving,”
it represents the fraction of the total mass of the neighbors of v which is
assigned to each of the individual neighbors. (Note: From this point forward,
Ollivier-Ricci Curvature refers to the Ollivier-Ricci Curvature on Graphs.)
In addition to this, we permit edge weights, which often represent cost or
distance. Following [2], the Ollivier-Ricci curvature of an edge xy is

κ(x, y) := 1− W1(µx, µy)

d(x, y)
,

where W1(µx, µy) is the Wasserstein-1 metric taking the probability distri-
butions on µx and µy as its inputs and d(x, y) is the weight of the edge
xy.

1



1.1 Examples:

1.1.1 Cycles:

The Ollivier-Ricci curvature of C5: Assuming each vertex is assigned a uni-
form distribution, it suffices to compute the Ollivier-Ricci Curvature of an
arbitrary edge, say {v1, v2}.

1. Establishing the Distributions: We chose to use a uniform distribu-
tion. Each vertex of C5 has exactly two neighbors, so the distribution
vector assigned to each vertex is (1/2, 1/2).

2. Cost Matrix: The cost matrix represents the graph distance from the
neighbors of v1, which are v2 and v5, to the neighbors of v2, which are
v1 and v3.

to v1 to v3
from v2 1 1
from v5 1 2

Table 1: Cost Matrix for the edge {v1, v2} in C5

3. Finding the Wasserstein Distance: This amounts to solving an
LP. We want to move mass from µ1, the distribution vector of v1, to
µ2, the distribution vector of v2.

to v1 to v3 Total Supply
from v2 a b 1/2
from v5 c d 1/2

Total Demand 1/2 1/2

Table 2: Transport Plan for {v1, v2} in C5

We seek to minimize C = 1 ·a+1 · b+1 · c+2 ·d, under the constraints
that a+ b = 1/2, c+d = 1/2, a+ c = 1/2, b+d = 1/2. The solution to
this LP is a = 0, b = 1/2, c = 1/2, d = 0, so the minimal cost is C = 1.

4. Computing Edge Curvature:

κ(v1, v2) = 1− W1(µ1, µ2)

d(v1, v2)
= 1− 1 = 0

2



The edge curvatures for all edges is 0, so the Ollivier-Ricci curvature of
Cn, which is the average over all edge curvatures, is 0. This is an opportune
time for the interested reader to note how a weighted edge (d(v1, v2) ̸= 1)
would affect the curvature.

1.1.2 Complete Graphs:

Given uniform probability distributions at each vertex, the Ollivier-Ricci
Curvature of a complete graph is easy to compute because of its substantial
vertex transitivity. With this in mind, we compute the Ollivier-Ricci Cur-
vature for a general complete graph, rather than a complete graph of fixed
order, below.

1. Establishing the Distributions: In Kn, the uniform distribution
vector has length n− 1 and entries all equal to (n− 1)−1.

2. Conceptualizing the Cost Matrix: The neighborhoods of any two
vertices u, v inKn have substantial overlap. The only non-overlap in the
neighborhoods is the two endvertices themselves: the only neighbor of
u which is not also a neighbor of v is v itself. The Wasserstein distance
between u and v is therefore 1/(n− 1).

3. Computing Edge Curvature: Assuming the edges are all unweighted,

κ(u, v) = 1− (n− 1)−1

d(u, v)
= 1− 1

n− 1
.

4. Graph Curvature: Since all the edge curvatures are the same, the
Ollivier-Ricci Curvature of the graph is simply

1− 1

n− 1
.

However, if one of the edges had weight 100, for example, the curvature
of that edge would be 1−(100n−100)−1. In this case, the Ollivier-Ricci
curvature of the graph would be((

n
2

)
− 1

)(
1− 1

n−1
+

[
1− 1

100n−100

])
(
n
2

) .

3



1.1.3 A Negatively Curved Edge

Consider the graph G with 5 vertices and edge set

{{v1, v2}, {v1, v3}, {v2, v3}, {v3, v5}, {v5, v4}}.

We compute the curvature of the edge {1, 3} by hand and leave the remaining
edges as an exercise to the interested reader.

1. Determining the Distribution: Assuming a uniform distribution,
the distribution vector at v3 is (1/3, 1/3, 1/3) corresponding to the three
neighbors of v3. The distribution vector at v5 is (1/2, 1/2).

2. Constructing the Cost Matrix:

to v3 to v4
from v1 1 3
from v2 1 3
from v5 1 1

Table 3: Cost Matrix for the edge {v3, v5} in G

3. Finding the Wasserstein Distance:

to v3 to v4 Total Supply
from v1 a b 1/3
from v2 c d 1/3
from v5 e f 1/3

Total Demand 1/2 1/2

Table 4: Transport Plan for edge {v3, v5} in G

We seek to minimize C = 1a + 3b + 1c + 3d + 1e + 1f , subject to the
following constraints: a+ b = 1/3, c+ d = 1/3, e+ f = 1/3, a+ c+ e =
1/2, b + d + f = 1/2. The solution to this LP is a = 1/3, b = 0, c =
1/6, d = 1/6, e = 0, f = 1/3, which corresponds to C = 4/3.

4. Computing the Curvature: The curvature of the unweighted edge
v3, v5 in G is therefore 1− 4/3 = −1/3.

4



Note: In the accompanying Maple file, you can verify this example by
running EdgeCurvsList(G) where

G=Graph([1, 2, 3, 4, 5], {{1, 2}, {1, 3}, {2, 3}, {3, 5}, {4, 5}}).

1.2 Community Detection

We can, of course, compute the Ollivier-Ricci curvature of graphs much larger
and/or denser than those shown above. In practice, graphs of interest are
quite large; for example, a protein-protein interaction network can have thou-
sands of nodes, as could the network representing researchers and their coau-
thors. Methods relying on Ollivier-Ricci curvature have generated substan-
tial interest in the area of community detection, where these methods often
outperform standard connectivity- and eigenvalue-based techniques (see [4]).

The connection between Ollivier-Ricci Curvature and Community De-
tection is as follows: edges with negative Ollivier-Ricci Curvature represent
bridges between communities, and edges with positive curvature tend to hold
a community together. The community detection algorithm given in [4] it-
eratively removes the negatively curved edge of greatest magnitude until no
negatively curved edges remain, leaving a set of likely communities. We
implement this algorithm at the end of the following section.

2 Maple Code

There are three key pieces of information involved in the computation of Ricci
Curvature: a graph, edge weights, and the distributions associated with each
vertex. In the code that follows, we handle each of these components, while
giving increasing flexibility to the user in terms of input parameters.

We begin with the case of Ollivier-Ricci Curvature for unweighted graphs
with uniform distributions assigned to each vertex. The following is a simple
procedure to create the uniform distribution vector and list of Neighbors for
a vertex x in a graph G. Graphs are to be given as a standard Maple graph
object unless otherwise noted.

distributionx:=proc(G,x) local Neis, n, distvec, i:

Neis:=Neighbors(G,x):

n:=nops(Neis):

distvec:= Vector(n):

5



distvec:=Vector([seq(1/n, i=1..n)]):

return([Neis, distvec]):

end:

Given two vertices x, y, we observe that the associated distributions µx, µy

are supported on the set of neighbors of x and y, respectively. We denote
these sets by {x1, . . . , xn} and {y1, . . . , ym}, respectively. Let d(xi, yi) denote
the graph shortest path distance between xi and yi. The cost matrix proce-
dure in OlliRicci.txt inputs G and two vertices x, y and outputs the n ×m
matrix C such that C(i, j) = d(xi, yj). We refer to this matrix in the pro-
cedure wasserstein, in which we compute the Wasserstein/Earth Mover’s
distance using the following LP (see [1]):

minimize
n∑

i=1

m∑
j=1

Cijzij :

subject to
m∑
j=1

zij = mass at i in µx

n∑
i=1

zij = mass at j inµx

zij ≥ 0 for all i, j.

The implementation is as follows:

wasserstein:=proc(x, y, G) local n,m, obj, distx, disty,

Neisx, Neisy, C, flovars, constr,

i, j, flovarslist, LPsol, wassersteindist:

distx:=distributionx(G, x):

disty:=distributionx(G, y):

Neisx:=distx[1]:

Neisy:=disty[1]:

n:=nops(Neisx):

m:=nops(Neisy):

6



C:=costmatrix(G, x, y):

if n=0 or m=0 then return("ERROR: isolated vertex"):

fi:

flovars:=Matrix(n,m,(i,j) -> Z[i,j]):

obj:=add(add(C[i,j]*flovars[i,j], j=1..m),i=1..n):

constr:={}:

#outflow contstraints

for i from 1 to n do

constr:=constr union {add(flovars[i,j], j=1..m)=distx[2][i]}:

od:

#inflow constraints

for j from 1 to m do

constr:=constr union {add(flovars[i,j], i=1..n)=disty[2][j]}:

od:

#nonnegativity

for i from 1 to n do

for j from 1 to m do

constr:=constr union {flovars[i,j]>=0}:

od:

od:

#formatting for LP solver

flovarslist:=[seq(seq(flovars[i,j], j=1..m), i=1..n)]:

LPsol:=LPSolve(obj, constr):

wassersteindist:=LPsol[1]:

RETURN(wassersteindist);

end:

We also include in OlliRicci.txt the procedure wassermanualdist, whose
inputs are (x, distx, y, disty, G), where x and y are vertices, G is a
graph, and, distributions distx and disty as lists.

Synthesizing the aforementioned procedures, OlliRicciEdge computes
the Ollivier-Ricci curvature of an edge. This procedure allows the user to
input the weight of the edge, allowing for use with weighted graphs. Extend-

7



ing this, OlliRicciEdgeD calls wassermanualdist, accommodating graphs
with non-uniform distribution vectors.

Finally, the collection of procedures OlliRicci, OlliRicciW, and
OlliRicciWD, compute the Ollivier-Ricci Curvature of unweighted graphs
with uniform distributions, weighted graphs with uniform distributions, and
weighted graphs with non-uniform manually entered distributions. In the
case of weighted graphs, we depart from the standard Maple graph notation
and use the format G = E, where each e ∈ E is of the form {endvertex1,

endvertex2, weight}. For convenience, OlliRicciWD is included below:

OlliRicciWD:=proc(G1, D) local G, verts, wedges, edgecurvs,

edges,i, f, e:

verts:=[seq(i, i=1..G1[1])]:

wedges:=G1[2]:

edgecurvs:=[]:

#need to process G

edges:={}:

for f in wedges do

edges:= edges union {{f[1], f[2]}}:

od:

G:=Graph(verts, edges):

#build list of weighted curvatures

for e in wedges do

dist(e[1]):=[Neighbors(G, e[1]), Vector(D[e[1]])]:

print(e, e[1], dist(e[1]));

dist(e[2]):=[Neighbors(G, e[2]), Vector(D[e[2]])]:

print(e, e[2], dist(e[2]));

edgecurvs:=[op(edgecurvs), OlliRicciEdgeMD(G, e[1],

dist(e[1]), e[2], dist(e[2]), e[3])]:

od:

return(add(edgecurvs)/nops(wedges)):

end:

As discussed in 1 community detection is an application of Ricci Curva-
ture that has garnered recent interest. The authors of [4] supply an algorithm
for detecting communities in graphs using Ricci Curvature. Their implemen-
tation scales well (much better than what we show below) and has yielded
novel insights for real-world problems. In the following, we implement their
algorithm in Maple.

8



The first step involves “pruning” the given graph by removing all edges
with negative Ricci curvatures. We recall that negative curvatures tend to
indicate FILL IN. It is worth noting that this is the slowest step in our
implementation.

Prune:=proc(G) local Gcopy, ecurvs, x, y, edge,

minEdge, minCurv, aff, u,v, Neis, e:

Gcopy:=CopyGraph(G):

ecurvs:=table():

for edge in Edges(Gcopy) do

x:=edge[1]:

y:=edge[2]:

ecurvs[[x,y]]:=OlliRicciEdge(Gcopy, x, y, 1):

od:

while true do

minEdge:=NULL:

minCurv:=0:

for edge in Edges(Gcopy) do

x:=edge[1]:

y:=edge[2]:

if assigned(ecurvs[[x,y]]) and ecurvs[[x,y]]< minCurv then

minCurv:=ecurvs[[x,y]]:

minEdge:=[x,y]:

fi:

od:

if minEdge =NULL then break: fi:

x:=minEdge[1]:

y:=minEdge[2]:

RemoveEdge(Gcopy, x, y):

ecurvs[[x,y]]:=’undef’:

#optimizing: recomputing curvatures only for

#affected edges, not for all except removed

9



for u in [x,y] do

Neis:=Neighbors(Gcopy, u):

for v in Neis do

if v<u then

e:=[v,u]:

else

e:=[u,v]:

fi:

ecurvs[[op(e)]]:=OlliRicciEdge(Gcopy, e[1], e[2], 1):

od:

od:

od:

RETURN(Gcopy):

end:

After the graph is “pruned” we consider each of the remaining connected
components as communities. In the Maple package accompanying this paper,
the community detection procedure RicciCommDetect takes two arguments,
(G,s), where s is the smallest community size we consider.

3 Future Work

As with any computer program, there is room for optimization. Particularly,
the shortest path computations in the cost matrix could be optimized for
large graphs potentially using a breadth-first search or other algorithms. The
current computation is slow for dense graphs. In the table below, we show
the computing time on a standard laptop for the unweighted Ollivier-Ricci
Curvature of each of the complete graphs on 2 to 20 vertices:

2 3 4 5 6 7 8 9 10
0.001 0.003 0.005 0.012 0.025 0.044 0.081 0.238 0.241

11 12 13 14 15 16 17 18 19 20
1.41 1.77 3.56 5.57 8.63 13.0 19.1 25.3 41.5 52.4

Table 5: Computation times for OlliRicci for Complete Graphs

Additionally, for any graph with negative edge curvatures, the Prune step
is very slow. Optimizing that step would make the community detection

10



algorithm more viable.

References

[1] Nazanin Azarhooshang, Prithviraj Sengupta, and Bhaskar DasGupta.
“A review of and some results for Ollivier–Ricci network curvature”. In:
Mathematics 8.9 (2020), p. 1416.

[2] Yann Ollivier. “Ricci curvature of Markov chains on metric spaces”. In:
Journal of Functional Analysis 256.3 (2009), pp. 810–864.

[3] Yann Ollivier. “Ricci curvature of metric spaces”. In: Comptes Rendus
Mathematique 345.11 (2007), pp. 643–646.

[4] Jayson Sia, Edmond Jonckheere, and Paul Bogdan. “Ollivier-ricci curvature-
based method to community detection in complex networks”. In: Scien-
tific reports 9.1 (2019), p. 9800.

11


	Background
	Examples:
	Cycles:
	Complete Graphs:
	A Negatively Curved Edge

	Community Detection

	Maple Code
	Future Work

