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1 Introduction
The Amitsur-Levitzki theorem is a celebrated result stating that for any n×n matrices A1, : : : ,A2n

over a commutative ring, X
ff∈Sn

sgn(ff) · Aff(1) · · ·Aff(2n) = 0.

This theorem has received many proofs after the original of Amitsur and Levitzki, which was a
direct proof [1]. These include a proof of Kostant by relating it to Lie algebra cohomology [2], a
proof of Swan via the interpretation of matrices as directed graphs [6] [7], a proof of Razmyslov
related to the Cayley-Hamilton theorem [4], a proof of Rosset using Grassman variables [5], and
a proof of Procesi showing that the Amitsur-Levitzki theorem is the Cayley-Hamilton identity for
the generic Grassman matrix [3].
In this project, we experiment with various classes of matrices to find identities similar to that of
the Amitsur-Levitzki theorem, where we still sum over the symmetric group but do not require
the constants to correspond to the permutation signs. In particular, we provide a Maple package
to investigate symmetric, antisymmetric, tridiagonal, triangular, Toeplitz, Hankel, and circulant
matrices. We finish by proving some easy identities motivated by our experiments and describing
some potentially interesting behaviors.

2 Preliminaries and Maple Procedures
For completeness, here are the formal definitions of the standard matrix classes we investigated:

• A matrix A is symmetric iff A = At .
• A matrix A is antisymmetric iff A = −At .
• A matrix A is tridiagonal iff all nonzero entries are on the main diagonal, the lower

diagonal, and the upper diagonal.
• A matrix A is upper triangular iff all entries below the main diagonal are 0.
• A matrix A is Toeplitz iff each descending diagonal from left to right is constant.
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• A matrix A is Hankel iff each ascending skew-diagonal from left to right is constant.
• A matrix A is circulant iff each row is rotated one element to the right relative to the

preceding row.
• A matrix A is anticirculant iff each row is rotated one element to the left relative to the

preceding row.
Accompanying this report is the Maple package AL.txt. The primary procedure is ALnm, which
tries to find a nontrivial identity involving m n × n matrices of a particular class. The main
procedures used for testing particular classes are:

• ALnmG: for arbitrary n × n matrices
• ALnmS: for arbitrary n × n symmetric matrices
• ALnmAS: for arbitrary n × n antisymmetric matrices
• ALnmTD: for arbitrary n × n tridiagonal matrices
• ALnmUT: for arbitrary n × n upper triangular matrices
• ALnmToeplitz: for arbitrary n × n Toeplitz matrices
• ALnmHankel: for arbitrary n × n Hankel matrices
• ALnmC: for arbitrary n × n circulant matrices
• ALnmAC: for arbitrary n × n anticirculant matrices
• ALnmCG: for arbitrary n × n circulant matrices with a specified shift

All of these procedures have optional arguments allowing for the restriction of generated matrices
to have certain entries set to zero. There is also an optional argument to test for identities
involving raising matrices to different powers in the sum.

3 Results
We will begin with some identities found from our experiments that we were able to prove.

3.1 A Circulant Matrix Identity
The following observations and propositions relate to circulant matrices and are all a consequence
of lemma 1 and theorem 1, but we include this discussion to motivate the statement of theorem 1.
Observation 1. Let A1,A2,A3 be n× n matrices with constant columns. Then for any c1,c2,c3,X

ff∈S3

sgn(ff) · cff(3) · Aff(1)Aff(2)Aff(3) = 0.

Proof. It is ETS this holds when A1,A2,A3 each have only one nonzero column consisting of 1’s.
We observe AiAjAk = Ak for i ,j ,k ∈ [3]. The statement follows.
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We note that matrices with constant columns are circulant matrices with shift 0 and that we have
removed some constraints on the constants compared to those in the Amitsur-Levitzki theorem.
This is the motivation behind our next observation.
Observation 2. Let A1,A2,A3 be n × n anticirculant matrices. Then for any c1,c2,c3,X

ff∈S3

sgn(ff) · cff(2) · Aff(1)Aff(2)Aff(3) = 0.

Proof. It is ETS this holds when A1,A2,A3 each have only one nonzero entry per row which is
set to 1. Let jk satisfy (Ak)0,jk = 1 where we take our matrices to be 0-indexed. We observe by
taking indices mod n,

(A1A2A3)i ,j = 1 ⇐⇒ (A2A3)j1−i , j = 1 ⇐⇒ (A3)j2+i−j1, j = 1 ⇐⇒ j = j3− j2− i+ j1 mod n

and

(A3A2A1)i ,j = 1 ⇐⇒ (A2A1)j3−i , j = 1 ⇐⇒ (A1)j2+i−j3, j = 1 ⇐⇒ j = j1−j2− i+j3 mod n.

Hence by symmetry, AiAjAk = AkAjAi and the statement follows.

It is well known that circulant matrices (with shift 1) commute. At a first glance, circulant
matrices with shift s 6∈ {−1,0,1} do not have behavior as nice as these 3 cases. For example, we
experimentally found that circulant matrices with shift 2 of shapes 2 × 2, 3 × 3, 4 × 4, 5 × 5,
6 × 6, 7 × 7, and 8 × 8 required 3, 3, 4, 5, 4, 4, and 5 matrices respectively. However, the
following lemma makes it easier to see what is happening in some cases.
Lemma 1. Let A1,A2 be n× n circulant matrices with shifts s1 and s2 respectively. Then A1A2

is a circulant matrix with shift s1 · s2.

Proof. By 0-indexing our matrices and taking indices mod n, we compute:

(A1A2)i ,j =
n−1X
k=0

(A1)i ,k · (A2)k,j

=
n−1X
k=0

(A1)0,k−is1 · (A2)0,j−ks2

=
n−1X
k=0

(A1)0,k · (A2)0,j−(k+is1)s2

=
n−1X
k=0

(A1)0,k · (A2)0,j−is1s2−ks2

=
n−1X
k=0

(A1)0,k · (A2)k,j−is1s2

= (A1A2)0, j−is1s2 .

Hence A1A2 is a circulant matrix with shift s1 · s2.
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With this lemma, we can state more general versions of observation 1.
Proposition 1. Fix s ≥ 1. Let n = s‘ for some ‘ ≥ 1. Then for any n × n circulant matrices
with shift s A1, : : : ,A‘+2 and any (‘+ 2)!=2 constants ci ,X

ff∈S‘+2

sgn(ff) · cff|[3,‘+2]
· Aff(1) · · ·Aff(‘+2) = 0.

Proof. By lemma 1, we know that Aff(3) · · ·Aff(‘+2) is a circulant matrix with shift s‘ = 0 mod n.
Hence

Aff(1)Aff(2)Aff(3) · · ·Aff(‘+2) = Aff(2)Aff(1)Aff(3) · · ·Aff(‘+2).

We can similarly state a more general version of observation 2
Proposition 2. Let n,s ≥ 1 where gcd(n, s) = 1. Then for any n × n circulant matrices with
shift s A1, : : : ,Aordn(s)+1 and any (ordn(s) + 1)!=2 constants ci ,X

ff∈Sordn(s)+1

sgn(ff) · cff|[2, ordn(s)]
· Aff(1) · · ·Aff(ordn(s)+1) = 0.

Proof. It is ETS this holds when A1, : : : ,Aordn(s)+1 each have only one nonzero entry per row
which is set to 1. Let jk satisfy (Ak)0,jk = 1 where we take our matrices to be 0-indexed. We
observe by taking indices mod n,

(A1A2 · · ·Aordn(s)Aordn(s)+1)0,j = 1 ⇐⇒ (A2 · · ·Aordn(s)Aordn(s)+1)j1,j = 1

⇐⇒ (A3 · · ·Aordn(s)Aordn(s)+1)j2+sj1,j = 1

⇐⇒ · · ·
⇐⇒ (Aordn(s)+1)jordn(s)+sjordn(s)−1+···+sordn(s)−1j1, j

⇐⇒ j = jordn(s)+1 + sjordn(s) + s2jordn(s)−1 + · · ·+ sordn(s)j1 mod n

⇐⇒ j = jordn(s)+1 + sjordn(s) + s2jordn(s)−1 + · · ·+ j1 mod n

and

(Aordn(s)+1A2 · · ·Aordn(s)A1)0,j = 1 ⇐⇒ (A2 · · ·Aordn(s)A1)jordn(s)+1,j = 1

⇐⇒ (A3 · · ·Aordn(s)A1)j2+sjordn(s)+1,j = 1

⇐⇒ · · ·
⇐⇒ (A1)jordn(s)+sjordn(s)−1+···+sordn(s)−1jordn(s)+1, j

⇐⇒ j = j1 + sjordn(s) + s2jordn(s)−1 + · · ·+ sordn(s)jordn(s)+1 mod n

⇐⇒ j = j1 + sjordn(s) + s2jordn(s)−1 + · · ·+ jordn(s)+1 mod n.

Hence by symmetry,

Aff(1)Aff(2) · · ·Aff(ordn(s))Aff(ordn(s)+1) = Aff(ordn(s)+1)Aff(2) · · ·Aff(ordn(s))Aff(1).
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The proof of proposition 2 then gives us a natural way combine our results for circulant matrices
with arbitrary fixed s.
Theorem 1. Let n, s ≥ 1. Let 0 ≤ x1 < x2 be the first integers for which sx1 = sx2 mod n.
Then for any n × n circulant matrices with shift s A1, : : : ,Ax2+1 and any (x2 + 1)!=2 constants
ci , X

ff∈Sx2+1

sgn(ff) · cff|[2, x2−x1]∪[x2−x1+2, x2+1]
· Aff(1) · · ·Aff(x2+1) = 0.

Proof. It is ETS this holds when A1, : : : ,Ax2+1 each have only one nonzero entry per row which
is set to 1. Let jk satisfy (Ak)0,jk = 1 where we take our matrices to be 0-indexed. We observe
by taking indices mod n and applying the same logic as in the proof of proposition 2,
(A1A2 · · ·Ax2−x1Ax2−x1+1Ax2−x1+2 · · ·Ax2+1)0,j = 1

⇐⇒ jx2+1 + sjx2 + · · ·+ sx1−1jx2−x1 + sx1 jx2−x1+1 + sx1+1jx2−x1+2 + · · ·+ sx2−1j2 + sx2 j1 mod n

⇐⇒ jx2+1 + sjx2 + · · ·+ sx1−1jx2−x1 + sx1 jx2−x1+1 + sx1+1jx2−x1+2 + · · ·+ sx2−1j2 + sx1 j1 mod n

and
(Ax2−x1+1A2 · · ·Ax2−x1A1Ax2−x1+1 · · ·Ax2+1)0,j = 1

⇐⇒ jx2+1 + sjx2 + · · ·+ sx1−1jx2−x1 + sx1 j1 + sx1+1jx2−x1+2 + · · ·+ sx2−1j2 + sx2 jx2−x1+1 mod n

⇐⇒ jx2+1 + sjx2 + · · ·+ sx1−1jx2−x1 + sx1 j1 + sx1+1jx2−x1+2 + · · ·+ sx2−1j2 + sx1 jx2−x1+1 mod n.
Hence by symmetry,

Aff(1)Aff(2) · · ·Aff(x2−x1)Aff(x2−x1+1)Aff(x2−x1+2) · · ·Aff(x2+1)

= Aff(x2−x1+1)Aff(2) · · ·Aff(x2−x1)Aff(1)Aff(x2−x1+2) · · ·Aff(x2+1).

Based on experimental data, we conjecture that theorem 1 is tight.

3.2 A Toeplitz Matrix Identity
Proposition 3. Let A1,A2 be n × n upper triangular Toeplitz matrices. Then A1A2 = A2A1.

Proof. Taking our matrices to be 0-indexed, we compute:

(A1A2)i ,j =

jX
k=i

(A1)i ,k(A2)k,j

=

jX
k=i

(A1)0,k−i(A2)0,j−k

=

jX
k=i

(A2)0,k−i(A1)0,j−k

= (A2A1)i ,j .
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3.3 Data and Conjectures
Based on our experimental data, we make the following conjecture:
Conjecture 1. Let A1, : : : ,An+1 be n×n Hankel matrices with all zeros below the skew-diagonal.
Then X

ff∈Sn+1

sgn(ff) · Aff(1) · · ·Aff(n+1) = 0.

Despite being quite similar to Toeplitz matrices, we observe that this would imply that we re-
quire many more matrices compared to the similar assumptions of proposition 3. However, we
conjecture that Toeplitz matrices and Hankel matrices behave the same way when restricted in
the following way:
Conjecture 2. Let A1, : : : ,A4 be n × n tridiagonal Toeplitz matrices. Let B1, : : : ,B4 be n × n
Hankel matrices with all nonzero entries contained in the main skew-diagonal, the lower skew-
diagonal, and the upper skew-diagonal. ThenX

ff∈S4

sgn(ff) · Aff(1)Aff(2)Aff(3)Aff(4) = 0 =
X
ff∈S4

sgn(ff) · Bff(1)Bff(2)Bff(3)Bff(4).

Dropping the Toeplitz restricted but keeping the upper triangular shape, we conjecture
Conjecture 3. Let A1, : : : ,An be n×n upper triangular matrices with zeros on the main diagonal.
Then X

ff∈Sn

sgn(ff) · Aff(1) · · ·Aff(n) = 0.

Less precisely, we found interesting behavior for the following classes of matrices:
• tridiagonal matrices with all zeros on the main diagonal
• symmetric matrices with all zeros on the main diagonal
• antisymmetric matrices with all zeros on the main diagonal
• arbitrary matrices with all zeros on the first row

We were able to find likely identities for these classes with n × n matrices for small fixed n
requiring less than 2n matrices. The tridiagonal, symmetric, and antisymmetric were particularly
interesting since the outputs of our Maple procedures suggest that these sums might not work
by taking the constants to be the signs of the permutations.

4 Conclusion
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