#Feb. 3, 2025 Help4q:=proc(): print(` RM(n,K), CT(A), IsUM(A) ,PM()`): end: with(combinat): with(linalg): UM := proc(alpha, beta, gamma, delta) local U1, U2, U3, U; U1 := Matrix(2, 2, [ exp(I*alpha) * exp(-I*beta/2), 0, 0, exp(I*alpha) * exp(I*beta/2) ], datatype = complex[float]); U2 := Matrix(2, 2, [ cos(gamma/2), -sin(gamma/2), sin(gamma/2), cos(gamma/2) ], datatype = float); # Real values only U3 := Matrix(2, 2, [ exp(-I*delta/2), 0, 0, exp(I*delta/2) ], datatype = complex[float]); U := U1 . U2 . U3; return U; end: #PM(): the three famous Pauli matrices sigma_x,sigma_y, sigma_z PM:=proc(): [ [[0,1],[1,0]], [[0,-I],[I,0]], [[1,0],[0,-1]] ]: end: #RM(n,K): a random n by n matrix with complex entries from -K to K RM:=proc(n,K) local ra,i,j: ra:=rand(-K..K): [seq([seq( ra()+I*ra(),j=1..n)],i=1..n)]: end: #CT(A): the conjugate transpose of A CT:=proc(A): local n,i,j: n:=nops(A): [seq([seq(conjugate(A[j][i]),j=1..n)],i=1..n)]: end: #IsUM(A): Is the matrix A unitary IsUM:=proc(A) local n,i,j, P: n:=nops(A): P:=multiply(A,CT(A)): evalb([seq([seq(P[i,j],j=1..n)],i=1..n)]=[seq([0$(i-1),1,0$(n-i)],i=1..n)]): end: Help4:=proc(): print(` EstimateAverageClique(n,p,k,K) , STbf(G) `):end: #STbf: Inputs a graph G=[n,E] and outputs the set of all spanning trees # STbf:=proc(G) local n,E,S,ST,g: n:=G[1]: E:=G[2]: S:=choose(E,n-1): ST:={}: for g in S do if IsCo([n,g]) then ST:=ST union {[n,g]}: fi: od: ST: end: #NST(G): The number of spanning trees of G (using the Matrix Three Therorem NST:=proc(G) local n,D1,A,i: n:=G[1]: A:=AM(G): D1:=[seq(add(A[i]),i=1..n)]: D1:=[seq([0$(i-1),D1[i],0$(n-i)], i=1..n)]: A:=D1-A: A:=[ seq([op(1..n-1,A[i])] , i=1..n-1)]: det(A): end: #code by Joseph K. EstimateAverageClique := proc(n,p,k,K) local i: evalf([add(nops(Cliques(RG(n,p),k)), i=1..K) / K, binomial(n,k)*p^binomial(k,2)]): end: #old stuff #C3.txt: Jan.30, 2025 Help3:=proc(): print(`AM(G), Neis(G), IsCo(G), NuCG(n), NuCGc(n) `): end: #Neis(G): inputs a graph G=[n,E] and outputs a list of length n, N, such that #N[i] is the set of neighbors of vertexi Neis:=proc(G) local n,E,N,i,e: n:=G[1]: E:=G[2]: for i from 1 to n do N[i]:={}: od: for e in E do N[e[1]]:=N[e[1]] union {e[2]}: N[e[2]]:=N[e[2]] union {e[1]}: od: [seq(N[i],i=1..n)]: end: #C(G,i): The connected component of vertex i CC:=proc(G,i) local n,C1,C2,C3,N,i1: if not (type(G,list) and nops(G)=2 and type(G[1],integer) and G[1]>=0 and type(G[2],set)) then RETURN(FAIL): fi: n:=G[1]: N:=Neis(G): C1:={i}: C2:=C1 union { seq(op(N[i1]), i1 in C1)}: while C1<>C2 do C3:=C2 union { seq(op(N[i1]), i1 in C2)}: C1:=C2: C2:=C3: od: C2: end: #IsCo(G): Is the graph G connected? IsCo:=proc(G): evalb(nops(CC(G,1))=G[1]):end: #NuCG(n): the first n terms of the sequence enumerating CONNECTED labeled graphs on n vertices #OEIS A001187 NuCG:=proc(n) local i,g: [seq(coeff(add(IsCo(g), g in Graphs(i)),true,1),i=1..n)]: end: NuCGc:=proc(n) local f,z,i: #The number of labeled graphs on n vertices is 2^binomial(n,2) f:=log(add(2^binomial(i,2)*z^i/i!,i=0..n)): f:=taylor(f,z=0,n+1): [seq(i!*coeff(f,z,i),i=1..n)]: end: ## adjacency matrices Code by Aurora Hiveley # AM(G): inputs a graph [n,E] and outputs the adjacency matrix, represented as a list of length n of lists of length n, # such that M[i][j]=1 if {i,j} belongs to E and 0 otherwise. # For example AM([2,{{1,2}}]); should output [[0,1],[1,0]] . AM := proc(G) local n,E,e,M: n := G[1]: E := G[2]: M := [[0$n]$n]: # initialize n x n matrix of all 0's for e in E do M[e[1]][e[2]]++: M[e[2]][e[1]]++: od: M: end: #C2.txt: Jan. 27, 2025 Help2:=proc(): print(`LC(p), RG(n,p), Cliques(G,k) `):end: with(combinat): #LC(p): inputs a rational number between 0 and 1 and outputs true with prob. p LC:=proc(p) local a,b,ra: if not (type(p,fraction) and p>=0 and p<=1) then RETURN(FAIL): fi: a:=numer(p): b:=denom(p): ra:=rand(1..b)(): if ra<=a then true: else false: fi: end: RG:=proc(n,p) local E,i,j: E:={}: for i from 1 to n do for j from i+1 to n do if LC(p) then E:=E union {{i,j}}: fi: od: od: [n,E]: end: #Cliques(G,k): inputs a graph G and a pos. integer k outputs the set of #k-cliques Cliques:=proc(G,k) local n, E,S,i,c,C: n:=G[1]: E:=G[2]: S:={}: C:=choose({seq(i,i=1..n)},k): for c in C do if choose(c,2) minus E={} then S:=S union {c}: fi: od: S: end: ###From C1 #C1.txt: Jan. 23, 2025 Exp Math (Dr. Z.) Help1:=proc(): print(`Graphs(n), Tri(G) , TotTri(G) `): end: #An undirected graph is a set of vertices V and a set of edges #[V,E] and edge e={i,j} where i and j belong to V #Our vertices are labeled {1,2,...,n} #Our data structure is [n,E] where E is the set of edges [3,{{1,2},{1,3},{2,3}}]; #If there are n vertices how many (undirected) graphs there #Graphs(n): inputs a non-neg. integer and outputs the set of ALL #graphs on {1,...,n} Graphs:=proc(n) local i,j,S,E,s: E:={seq(seq({i,j},j=i+1..n), i=1..n)}; S:=powerset(E): {seq([n,s],s in S)}: end: #Tri(G): inputs a graph [n,E] and outputs the set of all triples {i,j,k} #such {{i,j},{i,k},{j,k}} is a subset of E Tri:=proc(G) local n,S,E,i,j,k: n:=G[1]: E:=G[2]: #S is the set of love triangles S:={}: for i from 1 to n do for j from i+1 to n do for k from j+1 to n do #if member({i,j},E) and member({i,k},E), and member({j,k},E) then if {{i,j},{i,k},{j,k}} minus E={} then S:=S union {{i,j,k}}: fi: od: od: od: S: end: #Comp(G): the complement of G=[n,E] Comp:=proc(G) local n,i,j,E: n:=G[1]: E:=G[2]: [n,{seq(seq({i,j},j=i+1..n), i=1..n)} minus E]: end: #Tot(G): the total number of love triangles and hate triangles TotTri:=proc(G) nops(Tri(G))+nops(Tri(Comp(G))): end: