# OK to post homework # Aurora Hiveley, 4/15/25, Assignment 22 Help := proc(): print(``): end: # Run ConfirmR(2^n,19) for n from 10 to 20. Are all the denominators always 19? # [seq(ConfirmR(2^n,19),n=10..20)]: # [[1/19, 3/28, 4/25, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19], [1/19, 2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, 10/19, 11/19, 12/19, 13/19, 14/19, 15/19, 16/19, 17/19, 18/19]] # not always 19, look at the second and third entries of the first output! # Rediscover # The fact that multiplication of numbers is commutative by running ALnm(X,1,2,10); # -X[[1, 2]] + X[[2, 1]] # That there is no Amitsur-Levitsky relation between three 2x2 matrices by running ALnm(X,2,3,10); # 0 # The Amitsur-Levitsky relation between four 2x2 matrices by running ALnm(X,2,4,10); # X[[1, 2, 3, 4]] - X[[1, 2, 4, 3]] - X[[1, 3, 2, 4]] + X[[1, 3, 4, 2]] + X[[1, 4, 2, 3]] - X[[1, 4, 3, 2]] - X[[2, 1, 3, 4]] + X[[2, 1, 4, 3]] + X[[2, 3, 1, 4]] - X[[2, 3, 4, 1]] - X[[2, 4, 1, 3]] + X[[2, 4, 3, 1]] + X[[3, 1, 2, 4]] - X[[3, 1, 4, 2]] - X[[3, 2, 1, 4]] + X[[3, 2, 4, 1]] + X[[3, 4, 1, 2]] - X[[3, 4, 2, 1]] - X[[4, 1, 2, 3]] + X[[4, 1, 3, 2]] + X[[4, 2, 1, 3]] - X[[4, 2, 3, 1]] - X[[4, 3, 1, 2]] + X[[4, 3, 2, 1]] # That there is no Amitsur-Levitsky relation between five 3x3 matrices by running ALnm(X,3,5,10); # 0 # The Amitsur-Levitsky relation between four 3x3 matrices by running ALnm(X,3,6,10); # -X[[1, 2, 3, 4, 5, 6]] + X[[1, 2, 3, 4, 6, 5]] + X[[1, 2, 3, 5, 4, 6]] - X[[1, 2, 3, 5, 6, 4]] - X[[1, 2, 3, 6, 4, 5]] + X[[1, 2, 3, 6, 5, 4]] + X[[1, 2, 4, 3, 5, 6]] - X[[1, 2, 4, 3, 6, 5]] - X[[1, 2, 4, 5, 3, 6]] + X[[1, 2, 4, 5, 6, 3]] + X[[1, 2, 4, 6, 3, 5]] - X[[1, 2, 4, 6, 5, 3]] - X[[1, 2, 5, 3, 4, 6]] + X[[1, 2, 5, 3, 6, 4]] + X[[1, 2, 5, 4, 3, 6]] - X[[1, 2, 5, 4, 6, 3]] - X[[1, 2, 5, 6, 3, 4]] + X[[1, 2, 5, 6, 4, 3]] + X[[1, 2, 6, 3, 4, 5]] - X[[1, 2, 6, 3, 5, 4]] - X[[1, 2, 6, 4, 3, 5]] + X[[1, 2, 6, 4, 5, 3]] + X[[1, 2, 6, 5, 3, 4]] - X[[1, 2, 6, 5, 4, 3]] + X[[1, 3, 2, 4, 5, 6]] - X[[1, 3, 2, 4, 6, 5]] - X[[1, 3, 2, 5, 4, 6]] + X[[1, 3, 2, 5, 6, 4]] + X[[1, 3, 2, 6, 4, 5]] - X[[1, 3, 2, 6, 5, 4]] - X[[1, 3, 4, 2, 5, 6]] + X[[1, 3, 4, 2, 6, 5]] + X[[1, 3, 4, 5, 2, 6]] - X[[1, 3, 4, 5, 6, 2]] - X[[1, 3, 4, 6, 2, 5]] + X[[1, 3, 4, 6, 5, 2]] + X[[1, 3, 5, 2, 4, 6]] - X[[1, 3, 5, 2, 6, 4]] - X[[1, 3, 5, 4, 2, 6]] + X[[1, 3, 5, 4, 6, 2]] + X[[1, 3, 5, 6, 2, 4]] - X[[1, 3, 5, 6, 4, 2]] - X[[1, 3, 6, 2, 4, 5]] + X[[1, 3, 6, 2, 5, 4]] + X[[1, 3, 6, 4, 2, 5]] - X[[1, 3, 6, 4, 5, 2]] - X[[1, 3, 6, 5, 2, 4]] + X[[1, 3, 6, 5, 4, 2]] - X[[1, 4, 2, 3, 5, 6]] + X[[1, 4, 2, 3, 6, 5]] + X[[1, 4, 2, 5, 3, 6]] - X[[1, 4, 2, 5, 6, 3]] - X[[1, 4, 2, 6, 3, 5]] + X[[1, 4, 2, 6, 5, 3]] + X[[1, 4, 3, 2, 5, 6]] - X[[1, 4, 3, 2, 6, 5]] - X[[1, 4, 3, 5, 2, 6]] + X[[1, 4, 3, 5, 6, 2]] + X[[1, 4, 3, 6, 2, 5]] - X[[1, 4, 3, 6, 5, 2]] - X[[1, 4, 5, 2, 3, 6]] + X[[1, 4, 5, 2, 6, 3]] + X[[1, 4, 5, 3, 2, 6]] - X[[1, 4, 5, 3, 6, 2]] - X[[1, 4, 5, 6, 2, 3]] + X[[1, 4, 5, 6, 3, 2]] + X[[1, 4, 6, 2, 3, 5]] - X[[1, 4, 6, 2, 5, 3]] - X[[1, 4, 6, 3, 2, 5]] + X[[1, 4, 6, 3, 5, 2]] + X[[1, 4, 6, 5, 2, 3]] - X[[1, 4, 6, 5, 3, 2]] + X[[1, 5, 2, 3, 4, 6]] - X[[1, 5, 2, 3, 6, 4]] - X[[1, 5, 2, 4, 3, 6]] + X[[1, 5, 2, 4, 6, 3]] + X[[1, 5, 2, 6, 3, 4]] - X[[1, 5, 2, 6, 4, 3]] - X[[1, 5, 3, 2, 4, 6]] + X[[1, 5, 3, 2, 6, 4]] + X[[1, 5, 3, 4, 2, 6]] - X[[1, 5, 3, 4, 6, 2]] - X[[1, 5, 3, 6, 2, 4]] + X[[1, 5, 3, 6, 4, 2]] + X[[1, 5, 4, 2, 3, 6]] - X[[1, 5, 4, 2, 6, 3]] - X[[1, 5, 4, 3, 2, 6]] + X[[1, 5, 4, 3, 6, 2]] + X[[1, 5, 4, 6, 2, 3]] - X[[1, 5, 4, 6, 3, 2]] - X[[1, 5, 6, 2, 3, 4]] + X[[1, 5, 6, 2, 4, 3]] + X[[1, 5, 6, 3, 2, 4]] - X[[1, 5, 6, 3, 4, 2]] - X[[1, 5, 6, 4, 2, 3]] + X[[1, 5, 6, 4, 3, 2]] - X[[1, 6, 2, 3, 4, 5]] + X[[1, 6, 2, 3, 5, 4]] + X[[1, 6, 2, 4, 3, 5]] - X[[1, 6, 2, 4, 5, 3]] - X[[1, 6, 2, 5, 3, 4]] + X[[1, 6, 2, 5, 4, 3]] + X[[1, 6, 3, 2, 4, 5]] - X[[1, 6, 3, 2, 5, 4]] - X[[1, 6, 3, 4, 2, 5]] + X[[1, 6, 3, 4, 5, 2]] + X[[1, 6, 3, 5, 2, 4]] - X[[1, 6, 3, 5, 4, 2]] - X[[1, 6, 4, 2, 3, 5]] + X[[1, 6, 4, 2, 5, 3]] + X[[1, 6, 4, 3, 2, 5]] - X[[1, 6, 4, 3, 5, 2]] - X[[1, 6, 4, 5, 2, 3]] + X[[1, 6, 4, 5, 3, 2]] + X[[1, 6, 5, 2, 3, 4]] - X[[1, 6, 5, 2, 4, 3]] - X[[1, 6, 5, 3, 2, 4]] + X[[1, 6, 5, 3, 4, 2]] + X[[1, 6, 5, 4, 2, 3]] - X[[1, 6, 5, 4, 3, 2]] + X[[2, 1, 3, 4, 5, 6]] - X[[2, 1, 3, 4, 6, 5]] - X[[2, 1, 3, 5, 4, 6]] + X[[2, 1, 3, 5, 6, 4]] + X[[2, 1, 3, 6, 4, 5]] - X[[2, 1, 3, 6, 5, 4]] - X[[2, 1, 4, 3, 5, 6]] + X[[2, 1, 4, 3, 6, 5]] + X[[2, 1, 4, 5, 3, 6]] - X[[2, 1, 4, 5, 6, 3]] - X[[2, 1, 4, 6, 3, 5]] + X[[2, 1, 4, 6, 5, 3]] + X[[2, 1, 5, 3, 4, 6]] - X[[2, 1, 5, 3, 6, 4]] - X[[2, 1, 5, 4, 3, 6]] + X[[2, 1, 5, 4, 6, 3]] + X[[2, 1, 5, 6, 3, 4]] - X[[2, 1, 5, 6, 4, 3]] - X[[2, 1, 6, 3, 4, 5]] + X[[2, 1, 6, 3, 5, 4]] + X[[2, 1, 6, 4, 3, 5]] - X[[2, 1, 6, 4, 5, 3]] - X[[2, 1, 6, 5, 3, 4]] + X[[2, 1, 6, 5, 4, 3]] - X[[2, 3, 1, 4, 5, 6]] + X[[2, 3, 1, 4, 6, 5]] + X[[2, 3, 1, 5, 4, 6]] - X[[2, 3, 1, 5, 6, 4]] - X[[2, 3, 1, 6, 4, 5]] + X[[2, 3, 1, 6, 5, 4]] + X[[2, 3, 4, 1, 5, 6]] - X[[2, 3, 4, 1, 6, 5]] - X[[2, 3, 4, 5, 1, 6]] + X[[2, 3, 4, 5, 6, 1]] + X[[2, 3, 4, 6, 1, 5]] - X[[2, 3, 4, 6, 5, 1]] - X[[2, 3, 5, 1, 4, 6]] + X[[2, 3, 5, 1, 6, 4]] + X[[2, 3, 5, 4, 1, 6]] - X[[2, 3, 5, 4, 6, 1]] - X[[2, 3, 5, 6, 1, 4]] + X[[2, 3, 5, 6, 4, 1]] + X[[2, 3, 6, 1, 4, 5]] - X[[2, 3, 6, 1, 5, 4]] - X[[2, 3, 6, 4, 1, 5]] + X[[2, 3, 6, 4, 5, 1]] + X[[2, 3, 6, 5, 1, 4]] - X[[2, 3, 6, 5, 4, 1]] + X[[2, 4, 1, 3, 5, 6]] - X[[2, 4, 1, 3, 6, 5]] - X[[2, 4, 1, 5, 3, 6]] + X[[2, 4, 1, 5, 6, 3]] + X[[2, 4, 1, 6, 3, 5]] - X[[2, 4, 1, 6, 5, 3]] - X[[2, 4, 3, 1, 5, 6]] + X[[2, 4, 3, 1, 6, 5]] + X[[2, 4, 3, 5, 1, 6]] - X[[2, 4, 3, 5, 6, 1]] - X[[2, 4, 3, 6, 1, 5]] + X[[2, 4, 3, 6, 5, 1]] + X[[2, 4, 5, 1, 3, 6]] - X[[2, 4, 5, 1, 6, 3]] - X[[2, 4, 5, 3, 1, 6]] + X[[2, 4, 5, 3, 6, 1]] + X[[2, 4, 5, 6, 1, 3]] - X[[2, 4, 5, 6, 3, 1]] - X[[2, 4, 6, 1, 3, 5]] + X[[2, 4, 6, 1, 5, 3]] + X[[2, 4, 6, 3, 1, 5]] - X[[2, 4, 6, 3, 5, 1]] - X[[2, 4, 6, 5, 1, 3]] + X[[2, 4, 6, 5, 3, 1]] - X[[2, 5, 1, 3, 4, 6]] + X[[2, 5, 1, 3, 6, 4]] + X[[2, 5, 1, 4, 3, 6]] - X[[2, 5, 1, 4, 6, 3]] - X[[2, 5, 1, 6, 3, 4]] + X[[2, 5, 1, 6, 4, 3]] + X[[2, 5, 3, 1, 4, 6]] - X[[2, 5, 3, 1, 6, 4]] - X[[2, 5, 3, 4, 1, 6]] + X[[2, 5, 3, 4, 6, 1]] + X[[2, 5, 3, 6, 1, 4]] - X[[2, 5, 3, 6, 4, 1]] - X[[2, 5, 4, 1, 3, 6]] + X[[2, 5, 4, 1, 6, 3]] + X[[2, 5, 4, 3, 1, 6]] - X[[2, 5, 4, 3, 6, 1]] - X[[2, 5, 4, 6, 1, 3]] + X[[2, 5, 4, 6, 3, 1]] + X[[2, 5, 6, 1, 3, 4]] - X[[2, 5, 6, 1, 4, 3]] - X[[2, 5, 6, 3, 1, 4]] + X[[2, 5, 6, 3, 4, 1]] + X[[2, 5, 6, 4, 1, 3]] - X[[2, 5, 6, 4, 3, 1]] + X[[2, 6, 1, 3, 4, 5]] - X[[2, 6, 1, 3, 5, 4]] - X[[2, 6, 1, 4, 3, 5]] + X[[2, 6, 1, 4, 5, 3]] + X[[2, 6, 1, 5, 3, 4]] - X[[2, 6, 1, 5, 4, 3]] - X[[2, 6, 3, 1, 4, 5]] + X[[2, 6, 3, 1, 5, 4]] + X[[2, 6, 3, 4, 1, 5]] - X[[2, 6, 3, 4, 5, 1]] - X[[2, 6, 3, 5, 1, 4]] + X[[2, 6, 3, 5, 4, 1]] + X[[2, 6, 4, 1, 3, 5]] - X[[2, 6, 4, 1, 5, 3]] - X[[2, 6, 4, 3, 1, 5]] + X[[2, 6, 4, 3, 5, 1]] + X[[2, 6, 4, 5, 1, 3]] - X[[2, 6, 4, 5, 3, 1]] - X[[2, 6, 5, 1, 3, 4]] + X[[2, 6, 5, 1, 4, 3]] + X[[2, 6, 5, 3, 1, 4]] - X[[2, 6, 5, 3, 4, 1]] - X[[2, 6, 5, 4, 1, 3]] + X[[2, 6, 5, 4, 3, 1]] - X[[3, 1, 2, 4, 5, 6]] + X[[3, 1, 2, 4, 6, 5]] + X[[3, 1, 2, 5, 4, 6]] - X[[3, 1, 2, 5, 6, 4]] - X[[3, 1, 2, 6, 4, 5]] + X[[3, 1, 2, 6, 5, 4]] + X[[3, 1, 4, 2, 5, 6]] - X[[3, 1, 4, 2, 6, 5]] - X[[3, 1, 4, 5, 2, 6]] + X[[3, 1, 4, 5, 6, 2]] + X[[3, 1, 4, 6, 2, 5]] - X[[3, 1, 4, 6, 5, 2]] - X[[3, 1, 5, 2, 4, 6]] + X[[3, 1, 5, 2, 6, 4]] + X[[3, 1, 5, 4, 2, 6]] - X[[3, 1, 5, 4, 6, 2]] - X[[3, 1, 5, 6, 2, 4]] + X[[3, 1, 5, 6, 4, 2]] + X[[3, 1, 6, 2, 4, 5]] - X[[3, 1, 6, 2, 5, 4]] - X[[3, 1, 6, 4, 2, 5]] + X[[3, 1, 6, 4, 5, 2]] + X[[3, 1, 6, 5, 2, 4]] - X[[3, 1, 6, 5, 4, 2]] + X[[3, 2, 1, 4, 5, 6]] - X[[3, 2, 1, 4, 6, 5]] - X[[3, 2, 1, 5, 4, 6]] + X[[3, 2, 1, 5, 6, 4]] + X[[3, 2, 1, 6, 4, 5]] - X[[3, 2, 1, 6, 5, 4]] - X[[3, 2, 4, 1, 5, 6]] + X[[3, 2, 4, 1, 6, 5]] + X[[3, 2, 4, 5, 1, 6]] - X[[3, 2, 4, 5, 6, 1]] - X[[3, 2, 4, 6, 1, 5]] + X[[3, 2, 4, 6, 5, 1]] + X[[3, 2, 5, 1, 4, 6]] - X[[3, 2, 5, 1, 6, 4]] - X[[3, 2, 5, 4, 1, 6]] + X[[3, 2, 5, 4, 6, 1]] + X[[3, 2, 5, 6, 1, 4]] - X[[3, 2, 5, 6, 4, 1]] - X[[3, 2, 6, 1, 4, 5]] + X[[3, 2, 6, 1, 5, 4]] + X[[3, 2, 6, 4, 1, 5]] - X[[3, 2, 6, 4, 5, 1]] - X[[3, 2, 6, 5, 1, 4]] + X[[3, 2, 6, 5, 4, 1]] - X[[3, 4, 1, 2, 5, 6]] + X[[3, 4, 1, 2, 6, 5]] + X[[3, 4, 1, 5, 2, 6]] - X[[3, 4, 1, 5, 6, 2]] - X[[3, 4, 1, 6, 2, 5]] + X[[3, 4, 1, 6, 5, 2]] + X[[3, 4, 2, 1, 5, 6]] - X[[3, 4, 2, 1, 6, 5]] - X[[3, 4, 2, 5, 1, 6]] + X[[3, 4, 2, 5, 6, 1]] + X[[3, 4, 2, 6, 1, 5]] - X[[3, 4, 2, 6, 5, 1]] - X[[3, 4, 5, 1, 2, 6]] + X[[3, 4, 5, 1, 6, 2]] + X[[3, 4, 5, 2, 1, 6]] - X[[3, 4, 5, 2, 6, 1]] - X[[3, 4, 5, 6, 1, 2]] + X[[3, 4, 5, 6, 2, 1]] + X[[3, 4, 6, 1, 2, 5]] - X[[3, 4, 6, 1, 5, 2]] - X[[3, 4, 6, 2, 1, 5]] + X[[3, 4, 6, 2, 5, 1]] + X[[3, 4, 6, 5, 1, 2]] - X[[3, 4, 6, 5, 2, 1]] + X[[3, 5, 1, 2, 4, 6]] - X[[3, 5, 1, 2, 6, 4]] - X[[3, 5, 1, 4, 2, 6]] + X[[3, 5, 1, 4, 6, 2]] + X[[3, 5, 1, 6, 2, 4]] - X[[3, 5, 1, 6, 4, 2]] - X[[3, 5, 2, 1, 4, 6]] + X[[3, 5, 2, 1, 6, 4]] + X[[3, 5, 2, 4, 1, 6]] - X[[3, 5, 2, 4, 6, 1]] - X[[3, 5, 2, 6, 1, 4]] + X[[3, 5, 2, 6, 4, 1]] + X[[3, 5, 4, 1, 2, 6]] - X[[3, 5, 4, 1, 6, 2]] - X[[3, 5, 4, 2, 1, 6]] + X[[3, 5, 4, 2, 6, 1]] + X[[3, 5, 4, 6, 1, 2]] - X[[3, 5, 4, 6, 2, 1]] - X[[3, 5, 6, 1, 2, 4]] + X[[3, 5, 6, 1, 4, 2]] + X[[3, 5, 6, 2, 1, 4]] - X[[3, 5, 6, 2, 4, 1]] - X[[3, 5, 6, 4, 1, 2]] + X[[3, 5, 6, 4, 2, 1]] - X[[3, 6, 1, 2, 4, 5]] + X[[3, 6, 1, 2, 5, 4]] + X[[3, 6, 1, 4, 2, 5]] - X[[3, 6, 1, 4, 5, 2]] - X[[3, 6, 1, 5, 2, 4]] + X[[3, 6, 1, 5, 4, 2]] + X[[3, 6, 2, 1, 4, 5]] - X[[3, 6, 2, 1, 5, 4]] - X[[3, 6, 2, 4, 1, 5]] + X[[3, 6, 2, 4, 5, 1]] + X[[3, 6, 2, 5, 1, 4]] - X[[3, 6, 2, 5, 4, 1]] - X[[3, 6, 4, 1, 2, 5]] + X[[3, 6, 4, 1, 5, 2]] + X[[3, 6, 4, 2, 1, 5]] - X[[3, 6, 4, 2, 5, 1]] - X[[3, 6, 4, 5, 1, 2]] + X[[3, 6, 4, 5, 2, 1]] + X[[3, 6, 5, 1, 2, 4]] - X[[3, 6, 5, 1, 4, 2]] - X[[3, 6, 5, 2, 1, 4]] + X[[3, 6, 5, 2, 4, 1]] + X[[3, 6, 5, 4, 1, 2]] - X[[3, 6, 5, 4, 2, 1]] + X[[4, 1, 2, 3, 5, 6]] - X[[4, 1, 2, 3, 6, 5]] - X[[4, 1, 2, 5, 3, 6]] + X[[4, 1, 2, 5, 6, 3]] + X[[4, 1, 2, 6, 3, 5]] - X[[4, 1, 2, 6, 5, 3]] - X[[4, 1, 3, 2, 5, 6]] + X[[4, 1, 3, 2, 6, 5]] + X[[4, 1, 3, 5, 2, 6]] - X[[4, 1, 3, 5, 6, 2]] - X[[4, 1, 3, 6, 2, 5]] + X[[4, 1, 3, 6, 5, 2]] + X[[4, 1, 5, 2, 3, 6]] - X[[4, 1, 5, 2, 6, 3]] - X[[4, 1, 5, 3, 2, 6]] + X[[4, 1, 5, 3, 6, 2]] + X[[4, 1, 5, 6, 2, 3]] - X[[4, 1, 5, 6, 3, 2]] - X[[4, 1, 6, 2, 3, 5]] + X[[4, 1, 6, 2, 5, 3]] + X[[4, 1, 6, 3, 2, 5]] - X[[4, 1, 6, 3, 5, 2]] - X[[4, 1, 6, 5, 2, 3]] + X[[4, 1, 6, 5, 3, 2]] - X[[4, 2, 1, 3, 5, 6]] + X[[4, 2, 1, 3, 6, 5]] + X[[4, 2, 1, 5, 3, 6]] - X[[4, 2, 1, 5, 6, 3]] - X[[4, 2, 1, 6, 3, 5]] + X[[4, 2, 1, 6, 5, 3]] + X[[4, 2, 3, 1, 5, 6]] - X[[4, 2, 3, 1, 6, 5]] - X[[4, 2, 3, 5, 1, 6]] + X[[4, 2, 3, 5, 6, 1]] + X[[4, 2, 3, 6, 1, 5]] - X[[4, 2, 3, 6, 5, 1]] - X[[4, 2, 5, 1, 3, 6]] + X[[4, 2, 5, 1, 6, 3]] + X[[4, 2, 5, 3, 1, 6]] - X[[4, 2, 5, 3, 6, 1]] - X[[4, 2, 5, 6, 1, 3]] + X[[4, 2, 5, 6, 3, 1]] + X[[4, 2, 6, 1, 3, 5]] - X[[4, 2, 6, 1, 5, 3]] - X[[4, 2, 6, 3, 1, 5]] + X[[4, 2, 6, 3, 5, 1]] + X[[4, 2, 6, 5, 1, 3]] - X[[4, 2, 6, 5, 3, 1]] + X[[4, 3, 1, 2, 5, 6]] - X[[4, 3, 1, 2, 6, 5]] - X[[4, 3, 1, 5, 2, 6]] + X[[4, 3, 1, 5, 6, 2]] + X[[4, 3, 1, 6, 2, 5]] - X[[4, 3, 1, 6, 5, 2]] - X[[4, 3, 2, 1, 5, 6]] + X[[4, 3, 2, 1, 6, 5]] + X[[4, 3, 2, 5, 1, 6]] - X[[4, 3, 2, 5, 6, 1]] - X[[4, 3, 2, 6, 1, 5]] + X[[4, 3, 2, 6, 5, 1]] + X[[4, 3, 5, 1, 2, 6]] - X[[4, 3, 5, 1, 6, 2]] - X[[4, 3, 5, 2, 1, 6]] + X[[4, 3, 5, 2, 6, 1]] + X[[4, 3, 5, 6, 1, 2]] - X[[4, 3, 5, 6, 2, 1]] - X[[4, 3, 6, 1, 2, 5]] + X[[4, 3, 6, 1, 5, 2]] + X[[4, 3, 6, 2, 1, 5]] - X[[4, 3, 6, 2, 5, 1]] - X[[4, 3, 6, 5, 1, 2]] + X[[4, 3, 6, 5, 2, 1]] - X[[4, 5, 1, 2, 3, 6]] + X[[4, 5, 1, 2, 6, 3]] + X[[4, 5, 1, 3, 2, 6]] - X[[4, 5, 1, 3, 6, 2]] - X[[4, 5, 1, 6, 2, 3]] + X[[4, 5, 1, 6, 3, 2]] + X[[4, 5, 2, 1, 3, 6]] - X[[4, 5, 2, 1, 6, 3]] - X[[4, 5, 2, 3, 1, 6]] + X[[4, 5, 2, 3, 6, 1]] + X[[4, 5, 2, 6, 1, 3]] - X[[4, 5, 2, 6, 3, 1]] - X[[4, 5, 3, 1, 2, 6]] + X[[4, 5, 3, 1, 6, 2]] + X[[4, 5, 3, 2, 1, 6]] - X[[4, 5, 3, 2, 6, 1]] - X[[4, 5, 3, 6, 1, 2]] + X[[4, 5, 3, 6, 2, 1]] + X[[4, 5, 6, 1, 2, 3]] - X[[4, 5, 6, 1, 3, 2]] - X[[4, 5, 6, 2, 1, 3]] + X[[4, 5, 6, 2, 3, 1]] + X[[4, 5, 6, 3, 1, 2]] - X[[4, 5, 6, 3, 2, 1]] + X[[4, 6, 1, 2, 3, 5]] - X[[4, 6, 1, 2, 5, 3]] - X[[4, 6, 1, 3, 2, 5]] + X[[4, 6, 1, 3, 5, 2]] + X[[4, 6, 1, 5, 2, 3]] - X[[4, 6, 1, 5, 3, 2]] - X[[4, 6, 2, 1, 3, 5]] + X[[4, 6, 2, 1, 5, 3]] + X[[4, 6, 2, 3, 1, 5]] - X[[4, 6, 2, 3, 5, 1]] - X[[4, 6, 2, 5, 1, 3]] + X[[4, 6, 2, 5, 3, 1]] + X[[4, 6, 3, 1, 2, 5]] - X[[4, 6, 3, 1, 5, 2]] - X[[4, 6, 3, 2, 1, 5]] + X[[4, 6, 3, 2, 5, 1]] + X[[4, 6, 3, 5, 1, 2]] - X[[4, 6, 3, 5, 2, 1]] - X[[4, 6, 5, 1, 2, 3]] + X[[4, 6, 5, 1, 3, 2]] + X[[4, 6, 5, 2, 1, 3]] - X[[4, 6, 5, 2, 3, 1]] - X[[4, 6, 5, 3, 1, 2]] + X[[4, 6, 5, 3, 2, 1]] - X[[5, 1, 2, 3, 4, 6]] + X[[5, 1, 2, 3, 6, 4]] + X[[5, 1, 2, 4, 3, 6]] - X[[5, 1, 2, 4, 6, 3]] - X[[5, 1, 2, 6, 3, 4]] + X[[5, 1, 2, 6, 4, 3]] + X[[5, 1, 3, 2, 4, 6]] - X[[5, 1, 3, 2, 6, 4]] - X[[5, 1, 3, 4, 2, 6]] + X[[5, 1, 3, 4, 6, 2]] + X[[5, 1, 3, 6, 2, 4]] - X[[5, 1, 3, 6, 4, 2]] - X[[5, 1, 4, 2, 3, 6]] + X[[5, 1, 4, 2, 6, 3]] + X[[5, 1, 4, 3, 2, 6]] - X[[5, 1, 4, 3, 6, 2]] - X[[5, 1, 4, 6, 2, 3]] + X[[5, 1, 4, 6, 3, 2]] + X[[5, 1, 6, 2, 3, 4]] - X[[5, 1, 6, 2, 4, 3]] - X[[5, 1, 6, 3, 2, 4]] + X[[5, 1, 6, 3, 4, 2]] + X[[5, 1, 6, 4, 2, 3]] - X[[5, 1, 6, 4, 3, 2]] + X[[5, 2, 1, 3, 4, 6]] - X[[5, 2, 1, 3, 6, 4]] - X[[5, 2, 1, 4, 3, 6]] + X[[5, 2, 1, 4, 6, 3]] + X[[5, 2, 1, 6, 3, 4]] - X[[5, 2, 1, 6, 4, 3]] - X[[5, 2, 3, 1, 4, 6]] + X[[5, 2, 3, 1, 6, 4]] + X[[5, 2, 3, 4, 1, 6]] - X[[5, 2, 3, 4, 6, 1]] - X[[5, 2, 3, 6, 1, 4]] + X[[5, 2, 3, 6, 4, 1]] + X[[5, 2, 4, 1, 3, 6]] - X[[5, 2, 4, 1, 6, 3]] - X[[5, 2, 4, 3, 1, 6]] + X[[5, 2, 4, 3, 6, 1]] + X[[5, 2, 4, 6, 1, 3]] - X[[5, 2, 4, 6, 3, 1]] - X[[5, 2, 6, 1, 3, 4]] + X[[5, 2, 6, 1, 4, 3]] + X[[5, 2, 6, 3, 1, 4]] - X[[5, 2, 6, 3, 4, 1]] - X[[5, 2, 6, 4, 1, 3]] + X[[5, 2, 6, 4, 3, 1]] - X[[5, 3, 1, 2, 4, 6]] + X[[5, 3, 1, 2, 6, 4]] + X[[5, 3, 1, 4, 2, 6]] - X[[5, 3, 1, 4, 6, 2]] - X[[5, 3, 1, 6, 2, 4]] + X[[5, 3, 1, 6, 4, 2]] + X[[5, 3, 2, 1, 4, 6]] - X[[5, 3, 2, 1, 6, 4]] - X[[5, 3, 2, 4, 1, 6]] + X[[5, 3, 2, 4, 6, 1]] + X[[5, 3, 2, 6, 1, 4]] - X[[5, 3, 2, 6, 4, 1]] - X[[5, 3, 4, 1, 2, 6]] + X[[5, 3, 4, 1, 6, 2]] + X[[5, 3, 4, 2, 1, 6]] - X[[5, 3, 4, 2, 6, 1]] - X[[5, 3, 4, 6, 1, 2]] + X[[5, 3, 4, 6, 2, 1]] + X[[5, 3, 6, 1, 2, 4]] - X[[5, 3, 6, 1, 4, 2]] - X[[5, 3, 6, 2, 1, 4]] + X[[5, 3, 6, 2, 4, 1]] + X[[5, 3, 6, 4, 1, 2]] - X[[5, 3, 6, 4, 2, 1]] + X[[5, 4, 1, 2, 3, 6]] - X[[5, 4, 1, 2, 6, 3]] - X[[5, 4, 1, 3, 2, 6]] + X[[5, 4, 1, 3, 6, 2]] + X[[5, 4, 1, 6, 2, 3]] - X[[5, 4, 1, 6, 3, 2]] - X[[5, 4, 2, 1, 3, 6]] + X[[5, 4, 2, 1, 6, 3]] + X[[5, 4, 2, 3, 1, 6]] - X[[5, 4, 2, 3, 6, 1]] - X[[5, 4, 2, 6, 1, 3]] + X[[5, 4, 2, 6, 3, 1]] + X[[5, 4, 3, 1, 2, 6]] - X[[5, 4, 3, 1, 6, 2]] - X[[5, 4, 3, 2, 1, 6]] + X[[5, 4, 3, 2, 6, 1]] + X[[5, 4, 3, 6, 1, 2]] - X[[5, 4, 3, 6, 2, 1]] - X[[5, 4, 6, 1, 2, 3]] + X[[5, 4, 6, 1, 3, 2]] + X[[5, 4, 6, 2, 1, 3]] - X[[5, 4, 6, 2, 3, 1]] - X[[5, 4, 6, 3, 1, 2]] + X[[5, 4, 6, 3, 2, 1]] - X[[5, 6, 1, 2, 3, 4]] + X[[5, 6, 1, 2, 4, 3]] + X[[5, 6, 1, 3, 2, 4]] - X[[5, 6, 1, 3, 4, 2]] - X[[5, 6, 1, 4, 2, 3]] + X[[5, 6, 1, 4, 3, 2]] + X[[5, 6, 2, 1, 3, 4]] - X[[5, 6, 2, 1, 4, 3]] - X[[5, 6, 2, 3, 1, 4]] + X[[5, 6, 2, 3, 4, 1]] + X[[5, 6, 2, 4, 1, 3]] - X[[5, 6, 2, 4, 3, 1]] - X[[5, 6, 3, 1, 2, 4]] + X[[5, 6, 3, 1, 4, 2]] + X[[5, 6, 3, 2, 1, 4]] - X[[5, 6, 3, 2, 4, 1]] - X[[5, 6, 3, 4, 1, 2]] + X[[5, 6, 3, 4, 2, 1]] + X[[5, 6, 4, 1, 2, 3]] - X[[5, 6, 4, 1, 3, 2]] - X[[5, 6, 4, 2, 1, 3]] + X[[5, 6, 4, 2, 3, 1]] + X[[5, 6, 4, 3, 1, 2]] - X[[5, 6, 4, 3, 2, 1]] + X[[6, 1, 2, 3, 4, 5]] - X[[6, 1, 2, 3, 5, 4]] - X[[6, 1, 2, 4, 3, 5]] + X[[6, 1, 2, 4, 5, 3]] + X[[6, 1, 2, 5, 3, 4]] - X[[6, 1, 2, 5, 4, 3]] - X[[6, 1, 3, 2, 4, 5]] + X[[6, 1, 3, 2, 5, 4]] + X[[6, 1, 3, 4, 2, 5]] - X[[6, 1, 3, 4, 5, 2]] - X[[6, 1, 3, 5, 2, 4]] + X[[6, 1, 3, 5, 4, 2]] + X[[6, 1, 4, 2, 3, 5]] - X[[6, 1, 4, 2, 5, 3]] - X[[6, 1, 4, 3, 2, 5]] + X[[6, 1, 4, 3, 5, 2]] + X[[6, 1, 4, 5, 2, 3]] - X[[6, 1, 4, 5, 3, 2]] - X[[6, 1, 5, 2, 3, 4]] + X[[6, 1, 5, 2, 4, 3]] + X[[6, 1, 5, 3, 2, 4]] - X[[6, 1, 5, 3, 4, 2]] - X[[6, 1, 5, 4, 2, 3]] + X[[6, 1, 5, 4, 3, 2]] - X[[6, 2, 1, 3, 4, 5]] + X[[6, 2, 1, 3, 5, 4]] + X[[6, 2, 1, 4, 3, 5]] - X[[6, 2, 1, 4, 5, 3]] - X[[6, 2, 1, 5, 3, 4]] + X[[6, 2, 1, 5, 4, 3]] + X[[6, 2, 3, 1, 4, 5]] - X[[6, 2, 3, 1, 5, 4]] - X[[6, 2, 3, 4, 1, 5]] + X[[6, 2, 3, 4, 5, 1]] + X[[6, 2, 3, 5, 1, 4]] - X[[6, 2, 3, 5, 4, 1]] - X[[6, 2, 4, 1, 3, 5]] + X[[6, 2, 4, 1, 5, 3]] + X[[6, 2, 4, 3, 1, 5]] - X[[6, 2, 4, 3, 5, 1]] - X[[6, 2, 4, 5, 1, 3]] + X[[6, 2, 4, 5, 3, 1]] + X[[6, 2, 5, 1, 3, 4]] - X[[6, 2, 5, 1, 4, 3]] - X[[6, 2, 5, 3, 1, 4]] + X[[6, 2, 5, 3, 4, 1]] + X[[6, 2, 5, 4, 1, 3]] - X[[6, 2, 5, 4, 3, 1]] + X[[6, 3, 1, 2, 4, 5]] - X[[6, 3, 1, 2, 5, 4]] - X[[6, 3, 1, 4, 2, 5]] + X[[6, 3, 1, 4, 5, 2]] + X[[6, 3, 1, 5, 2, 4]] - X[[6, 3, 1, 5, 4, 2]] - X[[6, 3, 2, 1, 4, 5]] + X[[6, 3, 2, 1, 5, 4]] + X[[6, 3, 2, 4, 1, 5]] - X[[6, 3, 2, 4, 5, 1]] - X[[6, 3, 2, 5, 1, 4]] + X[[6, 3, 2, 5, 4, 1]] + X[[6, 3, 4, 1, 2, 5]] - X[[6, 3, 4, 1, 5, 2]] - X[[6, 3, 4, 2, 1, 5]] + X[[6, 3, 4, 2, 5, 1]] + X[[6, 3, 4, 5, 1, 2]] - X[[6, 3, 4, 5, 2, 1]] - X[[6, 3, 5, 1, 2, 4]] + X[[6, 3, 5, 1, 4, 2]] + X[[6, 3, 5, 2, 1, 4]] - X[[6, 3, 5, 2, 4, 1]] - X[[6, 3, 5, 4, 1, 2]] + X[[6, 3, 5, 4, 2, 1]] - X[[6, 4, 1, 2, 3, 5]] + X[[6, 4, 1, 2, 5, 3]] + X[[6, 4, 1, 3, 2, 5]] - X[[6, 4, 1, 3, 5, 2]] - X[[6, 4, 1, 5, 2, 3]] + X[[6, 4, 1, 5, 3, 2]] + X[[6, 4, 2, 1, 3, 5]] - X[[6, 4, 2, 1, 5, 3]] - X[[6, 4, 2, 3, 1, 5]] + X[[6, 4, 2, 3, 5, 1]] + X[[6, 4, 2, 5, 1, 3]] - X[[6, 4, 2, 5, 3, 1]] - X[[6, 4, 3, 1, 2, 5]] + X[[6, 4, 3, 1, 5, 2]] + X[[6, 4, 3, 2, 1, 5]] - X[[6, 4, 3, 2, 5, 1]] - X[[6, 4, 3, 5, 1, 2]] + X[[6, 4, 3, 5, 2, 1]] + X[[6, 4, 5, 1, 2, 3]] - X[[6, 4, 5, 1, 3, 2]] - X[[6, 4, 5, 2, 1, 3]] + X[[6, 4, 5, 2, 3, 1]] + X[[6, 4, 5, 3, 1, 2]] - X[[6, 4, 5, 3, 2, 1]] + X[[6, 5, 1, 2, 3, 4]] - X[[6, 5, 1, 2, 4, 3]] - X[[6, 5, 1, 3, 2, 4]] + X[[6, 5, 1, 3, 4, 2]] + X[[6, 5, 1, 4, 2, 3]] - X[[6, 5, 1, 4, 3, 2]] - X[[6, 5, 2, 1, 3, 4]] + X[[6, 5, 2, 1, 4, 3]] + X[[6, 5, 2, 3, 1, 4]] - X[[6, 5, 2, 3, 4, 1]] - X[[6, 5, 2, 4, 1, 3]] + X[[6, 5, 2, 4, 3, 1]] + X[[6, 5, 3, 1, 2, 4]] - X[[6, 5, 3, 1, 4, 2]] - X[[6, 5, 3, 2, 1, 4]] + X[[6, 5, 3, 2, 4, 1]] + X[[6, 5, 3, 4, 1, 2]] - X[[6, 5, 3, 4, 2, 1]] - X[[6, 5, 4, 1, 2, 3]] + X[[6, 5, 4, 1, 3, 2]] + X[[6, 5, 4, 2, 1, 3]] - X[[6, 5, 4, 2, 3, 1]] - X[[6, 5, 4, 3, 1, 2]] + X[[6, 5, 4, 3, 2, 1]] ### copied from C22.txt #C22.txt, April 14, 2025 Help22:=proc(): print(` BAc(f), Likelyc(q,r) , LikelycC(q,r) , ConfirmR(q,r). RM(n,K), ALnm(X,n,m,K)) `): end: read `QC.txt`: #BAc(f): a clever version of BA(f): the best relative approximation to the fraction f #with denominator <=sqrt(denom(f)) BAc:=proc(f) local L,i: L:=CVG(f): for i from 1 to nops(L) while denom(L[i])^2<=denom(f) do od: L[i-1]: end: #Likelyc(q,r): All c less than q such that |{rc}_q| <=r/2 Likelyc:=proc(q,r) local c,L: L:=[]: for c from 1 to q-1 do if abs(mods(r*c,q))<=r/2 then if c mod 2=0 then c:=c+1: fi: L:=[op(L),c]: fi: od: L: end: #LikelycC(q,r): All c less than q such that |{rc}_q| <=r/2 the clever way #i.e. all integer multioles of q/r rounded #LikelycC(q,r): All c less than q such that |{rc}_q| <=r/2 LikelycC:=proc(q,r) local i,L,c: L:=[]: #integer multiples of q/r for i from 1 to r-1 do c:=round(q/r*i): if c mod 2=0 then c:=c+1: fi: L:=[op(L),c]: od: L: end: #ConfirmR(q,r) ConfirmR:=proc(q,r) local L,i: if r^2>=q then RETURN(FAIL): fi: L:=LikelycC(q,r): [seq(BAc(L[i]/q),i=1..nops(L))]; end: #added after class ##start Amitsur-Levitstky (Joseph's project) with(combinat): #Mul(A,B): the product of matrix A and B (assuming that it exists). Try: #Mul([[a1,a2]],[[b1],[b2]]); Mul:=proc(A,B) local i,j,k,n: [seq([seq(add(A[i][k]*B[k][j],k=1..nops(A[i])),j=1..nops(B[1]))],i=1..nops(A))]: end: #RM(n,K): a random n by n matrix with entries in [1,K] RM:=proc(n,K) local ra,i,j: ra := rand(1..K): [seq([seq(ra(),i=1..n)],j=1..n)]: end: #RMs(n,K,m): A list of m random nxn matrices with entries from [1,K] RMs:=proc(n,K,m) local i: [seq(RM(n,K), i=1..m)]: end: #ALnm(X,n,m,K): Tries to find a relation between m n by n matrices. Try: #ALnm(X,1,2); Alnm(X,2,4); Alnm(X,3,6); ALnm:=proc(X,n,m,K) local A, pi, eqs, M, var, i, var1, v, T,JK,M1,c,i1: var := {seq(c[pi], pi in permute(m))}: JK:=add(c[pi]*X[pi],pi in permute(m)): eqs := {}: for i from 1 to trunc(m!/n^2)+5 do A := RMs(n,K,m): M:=[[0$n]$n]: for pi in permute(m) do M1:=A[pi[1]]: for i1 from 2 to m do M1:=Mul(M1,A[pi[i1]]): od: M:=expand(M+c[pi]*M1): od: eqs := eqs union {seq(op(M[i]),i=1..nops(M))}: od: var := solve(eqs, var): if subs(var,JK)=0 then RETURN(0): fi: var1:={}: for v in var do if op(1,v)=op(2,v) then var1:=var1 union {op(1,v)}: fi: od: subs(var1[1]=1,subs(var,JK)): end: