#Ok to post #Salman Manzoor, 03-13-25, Assignment 14 RandomBell1:=proc(K) local A0, A1, B0, B1, V, k, i: A0:=C1QG()[4]: A1:=C1QG()[2]: B0:= -(C1QG()[2]+C1QG()[4])/sqrt(2): B1:=(C1QG()[2]-C1QG()[4])/sqrt(2): V=[ra(K)+I*ra(K),ra(K)+ra(K)*I,ra(K)+I*ra(K),ra(K)+I*ra(K)]: k:=add(abs(V[i]),i=1..4): Bell(A0,A1,B0,B1,V/k): end: RandomBell:=proc(K,N) local sum, count, instance: sum:=0: count:=0: for i from 1 to N do instance:=RandomBell1(K): sum:=sum+instance: if evalb(instance>2) then count++: end: od: evalf([sum,count]/N): end: ra:=proc(K): rand(-K..K)(): end: #Bell(A0,A1,B0,B1,V): The expression due to Bell that is the quantum analog of #a0*b0+a0*b1+a1*b0-a1*b1 ( the expectation of its abslute value is <=2) Bell:=proc(A0,A1,B0,B1,V) ExpMV(TP(A0,B0),V)+ExpMV(TP(A0,B1),V)+ExpMV(TP(A1,B0),V)-ExpMV(TP(A1,B1),V): end: C1QG:=proc(): [ [[1,0],[0,1]], [[0,1],[1,0]], [[0,-I],[I,0]], [[1,0],[0,-1]], [[1,0],[0,I]], [[1,0],[0,sqrt(2)/2+sqrt(2)/2*I]], expand([[1,1],[1,-1]]/sqrt(2)) ]: end: #TP(A,B):the tensor product of matrix A and matrix B (using our data structure #of lists-of-lists #Let A be an a1 by a2 matrix and #Let B be a b1 by b2 matrix #TP(A,B): is a1*b1 by a2*b2 matrix TP:=proc(A,B) local a1,a2,b1,b2,AB,i,i1,j,j1,AB1: a1:=nops(A): a2:=nops(A[1]): b1:=nops(B): b2:=nops(B[1]): #The rows of TP(A,B) are called [i,i1] where 1<=i<=a1 and 1<=i1<=b1 #The columns of TP(A,B) are called [j,j1] where 1<=j<=a2 and 1<=j1<=b2 AB:=[]: for i from 1 to a1 do for i1 from 1 to b1 do #AB1 is the [i,i1]-row of TP(A,B) AB1:=[]: for j from 1 to a2 do for j1 from 1 to b2 do AB1:=[op(AB1),A[i][j]*B[i1][j1]]: od: od: AB:=[op(AB),AB1]: od: od: AB: end: #Added after class: #ExpMV(M,V): inputs a Hermitian matrix M and a state vector V finds the expected value of the observable M in state V #: ExpMV:=proc(M,V) local i,j,n: add(add(conjugate(V[i])*M[i][j]*V[j],j=1..nops(V)),i=1..nops(V)): end: