# Ok to post homework # Lucy Martinez, 03-12-2025, Assignment 14 with(combinat): ###################### #Problem 1: Write a procedure RandomBell1(K) # (1) After defining ra:=proc(K): rand(-K..K)():end: # Keeping the same A0,A1,B0,B1, as in the wikipedia article # A0:=C1QG()[4],A1:=C1QG()[2], B0:= -(C1QG()[2]+C1QG()[4])/sqrt(2), # B1:=(C1QG()[2]-C1QG()[4])/sqrt(2) # (2) Picks a random state (in the 2-qubit space generated by 00,01,10,11, # sets V=[ra(K)+I*ra(K),ra(K)+ra(K)*I,ra(K)+I*ra(K),ra(K)+I*ra(K)]: # (3) NORMALIZE it! , i.e. divide V by its NORM. rename the new state V. # Computes Bell(A0,A1,B0,B1,V) RandomBell1:=proc(K) local A0,A1,B0,B1,V,v,i,k: A0:=C1QG()[4]: A1:=C1QG()[2]: B0:=-expand((C1QG()[2]+C1QG()[4])/sqrt(2)): B1:=expand((C1QG()[2]-C1QG()[4])/sqrt(2)): V:=[ra(K)+I*ra(K),ra(K)+ra(K)*I,ra(K)+I*ra(K),ra(K)+I*ra(K)]: k:=sqrt(add(abs(V[i])^2,i=1..nops(V))): V:=[seq(V[i]/k,i=1..nops(V))]: Bell(A0,A1,B0,B1,V): end: #ra(K): random number between -K and K ra:=proc(K): rand(-K..K)(): end: #Problem 2: Write a procedure RandomBell(K,N) # that runs RandomBell1(K) N times and returns # (1) The average value over all N trials. # (2) The fraction of times it exceeds 2, # thereby refuting Albert (and Boris and Nathan) # What did you get for RandomBell(10,1000)? # Answer: I ran it a few times, here are the results: # [0.03855372122, 0.005000000000] # [0.006640886106, 0.008000000000] # [0.01375946829, 0.007000000000] RandomBell:=proc(K,N) local R,i,co,co1: co:=0: co1:=0: for i from 1 to N do R:=RandomBell1(K): co:=co+R: if evalf(R)>2 then co1:=co1+1: fi: od: [evalf(co/N),evalf(co1/N)]: end: ####################################previous classes: #C14.txt, March 10, 2025 #In honor of Albert Einstein's bday, born on 3/14 #Bell's theorem with(combinat): with(linalg): Help14:=proc(): print(`Bell(A0,A1,B0,B1,V)`): #Observe that V=ES()[1] for Bell print(`Bell(C1QG()[4],C1QG()[2],-expand((C1QG()[2]+C1QG()[4])/sqrt(2)),expand((C1QG()[2]-C1QG()[4])/sqrt(2)),ES()[1]) `): end: #We have 4 observables: A0,A1,B0,B1 #Bell(A0,A1,B0,B1,V): the expression due to Bell, that is the quantum analog # of a0*b0+a0*b1+a1*b0-a1*b1 (the expectation of its absolute value is <=2) Bell:=proc(A0,A1,B0,B1,V): ExpMV(TP(A0,B0),V)+ExpMV(TP(A0,B1),V)+ExpMV(TP(A1,B0),V)-ExpMV(TP(A1,B1),V): end: #################################################### #C13.txt, March 06, 2025 #Computing Quantum gates with(combinat): with(linalg): Help13:=proc(): print(`C1QG(), C1QGnames(),BV(n),nBasis(n,X),UMtoT(M,n,X)`): end: C1QGnames:=proc(): [` Identity `, ` PauliX `, `PauliY `, `PauliZ `, ` PhaseS `, `TPi/8` , ` Hadamard `]: end: C1QG:=proc(): [ [[1,0],[0,1]], [[0,1],[1,0]], [[0,-I],[I,0]], [[1,0],[0,-1]], [[1,0],[0,I]], [[1,0],[0,sqrt(2)/2+sqrt(2)/2*I]], expand([[1,1],[1,-1]]/sqrt(2)) ]: end: #BV(n):inputs a non-neg. integer and outputs the list of length 2^n-i # of all the 0-1 vectors in lex. order BV:=proc(n) local V,i: option remember: if n=0 then return([[]]): fi: V:=BV(n-1): [seq([0, op(V[i])], i=1..nops(V)),seq([1, op(V[i])], i=1..nops(V))]: end: #nBasis(n,X): the basis of n-quantum gates circuits X[e1,e2,...,en] # corresponding to |e1>|e2>...|en> nBasis:=proc(n,X) local V,i: V:=BV(n): [seq(X[V[i]],i=1..nops(V))]: end: #UMtoT(M,n,X): inputs a unitary matrix M of size 2^n by 2^n # (corresponding to a quantum circuit with n qbits) # and outputs the corresponding linear transformation as it acts # on the canonical basis nBasis(n,X) UMtoT:=proc(M,n,X) local T,V,i,j: if not IsUM(M) then print(M, `is not unitary`): return(FAIL): fi: if nops(M)<>2^n then return(FAIL): fi: V:=nBasis(n,X): for j from 1 to nops(V) do T[V[j]]:=add(V[i]*M[i][j],i=1..nops(M)): od: [op(T),V]: end: #TtoUM(T,n): goes from the table to unitary matrix TtoUM:=proc(T,n) local T1,B,i,j: B:=T[2]: T1:=T[1]: if nops(B)<>2^n then return(FAIL): fi: [seq([seq( coeff(T1[B[j]],B[i],1) ,j=1..2^n)],i=1..2^n)]: end: ####from previous classes HelpOld:=proc(): print(`CT(A), IsUM(A), Mul(A,B), ES(), TP(A,B)`):end: #Mul(A,B): the product of matrix A and B (assuming that it exists) Mul:=proc(A,B) local i,j,k: [seq([seq(add(A[i][k]*B[k][j],k=1..nops(A[i])),j=1..nops(B[1]))],i=1..nops(A))]: end: #CT(A): the conjugate transpose of A CT:=proc(A): local i,j,n: n:=nops(A): [seq([seq(conjugate(A[j][i]),j=1..n)],i=1..n)]: end: Con:=proc(A): local i,j,n: n:=nops(A): [seq([seq(A[j][i],j=1..n)],i=1..n)]: end: #IsUM(A): Is the matrix A unitary? IsUM:=proc(A) local n,i,j, P: n:=nops(A): P:=simplify(Mul(A,CT(A))): evalb(P=[seq([0$(i-1),1,0$(n-i)],i=1..n)]): end: #################################################### #C8.txt, Feb. 17, 2025 Help8:=proc(): print(`ES(),TP(A,B),ExpMV(M,V)`): end: #ES(): the four fully entangled states in the Alice-Bob combined system # based on pg. 166 of Susskind-Friedman's book # [singlet, T1,T2,T3] # [uu, ud, du, dd] ES:=proc(): [ [0, 1/sqrt(2), -1/sqrt(2), 0], [0, 1/sqrt(2), 1/sqrt(2), 0], [1/sqrt(2),0,0,1/sqrt(2)], [1/sqrt(2),0,0,-1/sqrt(2)] ]: end: #TP(A,B): the tensor product of matrix A and matrix Bob # (using our data structure of lists-of-lists) # Let A be an a1 by a2 matrix and # Let B be a b1 by b2 matrix # the resulting matrix (after applying tensor prod) is dim a1*b1 by a2*b2 TP:=proc(A,B) local a1,a2,b1,b2,i,j,i1,j1,AB1,AB: a1:=nops(A): a2:=nops(A[1]): b1:=nops(B): b2:=nops(B[1]): AB:=[]: #the rows of TP(A,B) are called [i,i1] where 1<=i<=a1 and 1<=i1<=b1 #the cols of TP(A,B) are called [j,j1] where 1<=j<=a2 and 1<=j1<=b2 for i from 1 to a1 do for i1 from 1 to b1 do #AB1 is the [i,i1]-row of TP(A,B) AB1:=[]: for j from 1 to a2 do for j1 from 1 to b2 do AB1:=[op(AB1),A[i][j]*B[i1][j1]]: od: od: AB:=[op(AB),AB1]: od: od: AB: end: #Added after class: #ExpMV(M,V): inputs a Hermitian matrix M and a state vector V finds the expected value of the observable M in state V #: ExpMV:=proc(M,V) local i,n,j: add(add(conjugate(V[i])*M[i][j]*V[j],j=1..nops(V)),i=1..nops(V)): end: ################################################# #C6.txt, Feb. 10, 2025 Help6:=proc(): print(`Mul(A,B), Com(A,B),RSV(n,K), CheckUP(A,B,V)`): end: #Mul(A,B): the product of matrix A and B (assumming that it exists) Mul:=proc(A,B) local i,j,k,n: n:=nops(A): [seq([seq( add(A[i][k]*B[k][j],k=1..n), j=1..n)],i=1..n)]: end: #Com(A,B): the commutator of A and B Com:=proc(A,B): Mul(A,B)-Mul(B,A): end: #RSV(n,K): A (normalized) random state vector with n complex components # whose real and imaginary parts are from -K to K RSV:=proc(n,K) local ra,v,i,a: ra:=rand(-K..K): v:=[seq(ra()+I*ra(),i=1..n)]: a:=sqrt(add(v[i]*conjugate(v[i]),i=1..n)): [seq(v[i]/a,i=1..n)]: end: #SOME NOTES: # mu:=Sum(a*Pr(X=a),a in A): # av=average # sigma^2=Sum((a-av)^2*Pr(X=a),a in A) = Sum(a^2*Pr(), a in A) # The standard deviation of a random variable is the square root of its variance #NOTE: Com(PM()[1],PM()[2])=2*I*PM()[3] #Del(L,A): the "average error", i.e. standard deviation of the prob. distribution # of measuring the observable L when the state is A Del:=proc(L,A) local pd,ev,av,i,n: n:=nops(L): pd:=ProbDist(L,A): ev:=pd[1]: #the average (third element in ProbDist) av:=pd[3]: pd:=pd[2]: #the first term in the following is the second moment sqrt(add(ev[i]^2*pd[i],i=1..n)-av^2): end: #Here, we will change notation by making #CheckUP(A,B,V): the ratio of Del(A,V)*Del(B,V)/Expectation(Com(A,B),V) # it should be >=1/2 CheckUP:=proc(A,B,V) local C: C:=Com(A,B): if abs(ProbDist(C,V)[3])=0 then RETURN(FAIL): fi: evalf(Del(A,V)*Del(B,V)/abs(ProbDist(C,V)[3])): end: ################################################# #C5.txt, Feb. 6, 2025 Help5:=proc(): print(` PM(), RHM(n,K) , EV(L), EVC1(L,g), EVC(L), IP(A,B), ProbDist(L,A) `): end: #PM(): the three famous Pauli matrices sigma_x,sigma_y, sigma_z PM:=proc(): [ [[0,1],[1,0]], [[0,-I],[I,0]], [[1,0],[0,-1]], [[1,0],[0,1]] ]: end: #RHM(n,K): a random n by n Hermitian matrix with entriries from -K to K RHM:=proc(n,K) local ra,i,j,L: ra:=rand(-K..K): for i from 1 to n do for j from 1 to i-1 do L[i,j]:=ra()+I*ra(): L[j,i]:=conjugate(L[i,j]): od: L[i,i]:=ra(): od: [seq([seq(L[i,j],j=1..n)],i=1..n)]: end: #EV(L): inputs a Hermitian matrix (say n by n) and outputs the LIST of eigenvalues EV:=proc(L) local x,L1,i,n: n:=nops(L): L1:=[seq(L[i]-[0$(i-1),x,0$(n-i)],i=1..n)]: [solve(det(L1),x)]: end: #EVC1(L,g): inputs a matrix L and an eigenvalue g finds the NORMALIZED eigenvector EVC1:=proc(L,g) local v,i,j,var,eq,V,n,L1,V1,va,k: n:=nops(L): L1:=[seq(L[i]-[0$(i-1),g,0$(n-i)],i=1..n)]: if simplify(det(L1))<>0 then RETURN(FAIL): fi: V:=[seq(v[i],i=1..n)]: var:={seq(v[i],i=1..n)}: eq:={seq(add(L1[i,j]*V[j],j=1..n),i=1..n)}: var:=solve(eq,var): #V1 the set of unknowns that is arbitrary V1:={}: for va in var do if op(1,va)=op(2,va) then V1:=V1 union {op(1,va)}: fi: od: if nops(V1)<>1 then RETURN(FAIL): fi: V:=subs(var,V): V:=subs(V1[1]=1,V): k:=sqrt(add(abs(V[i])^2,i=1..n)): [seq(V[i]/k,i=1..n)]: end: #EVC(L): inputs a Hermitian matrix and outputs the pair ListOfEigenvalues, ListOfEigenvectors EVC:=proc(L) local n,ev,evc,i: n:=nops(L): ev:=EV(L): evc:=[seq(EVC1(L,ev[i]),i=1..n)]: [ev,evc]: end: #IP(A,B): the inner product of state-vectors A and B IP:=proc(A,B) local n,i: n:=nops(A): if nops(B)<>n then RETURN(FAIL): fi: simplify(add(A[i]*conjugate(B[i]),i=1..n)): end: #ProbDist(L,A): Given an obervalble represented by the Hermitian matrix L and a state vector A #outputs first all the eigenvalues, the prob. of winding in the respective pure states #followed by the expected value of A #(i.e. if you make the observation L and the state is A the average in the long run) ProbDist:=proc(L,A) local evc,i,A1,k,PD,n: n:=nops(L): k:=sqrt(add(abs(A[i])^2,i=1..n)): A1:=[seq(A[i]/k,i=1..n)]: #evc outputs the pair ListOfEigenvalues and ListOfEigenvectors evc:=EVC(L): PD:=[seq(abs(IP(A1,evc[2][i]))^2,i=1..n)]: #evc[1] is the list of eigenvalues [evc[1],PD,add(PD[i]*evc[1][i],i=1..n)]: end: