# OK to post homework # Aurora Hiveley, 3/12/25, Assignment 14 Help := proc(): print(`RandomBell1(K), RandomBell(K,N)`): end: with(combinat): with(linalg): # RandomBell1(K) # (1) After defining ra:=proc(K): rand(-K..K)():end: Keeping the same A0,A1,B0,B1, as in the wikipedia article # A0:=C1QG()[4],A1:=C1QG()[2],B0:= -(C1QG()[2]+C1QG()[4])/sqrt(2),B1:=(C1QG()[2]-C1QG()[4])/sqrt(2) # (2) Picks a random state (in the 2-qubit space generated by 00,01,10,11, sets V=[ra(K)+I*ra(K),ra(K)+ra(K)*I,ra(K)+I*ra(K),ra(K)+I*ra(K)]: # (3) NORMALIZE it! , i.e. divide V by its NORM. rename the new state V. # Computes Bell(A0,A1,B0,B1,V) ## given: ra:=proc(K): rand(-K..K)():end: A0:=C1QG()[4]: A1:=C1QG()[2]: B0:= -expand((C1QG()[2]+C1QG()[4])/sqrt(2)): B1:= expand((C1QG()[2]-C1QG()[4])/sqrt(2)): RandomBell1 := proc(K) local i,V: V := [ra(K)+I*ra(K),ra(K)+ra(K)*I,ra(K)+I*ra(K),ra(K)+I*ra(K)]: V := expand(V/ sqrt(add( V[i]*conjugate(V[i]), i=1..nops(V))) ): Bell(A0,A1,B0,B1,V): end: # RandomBell(K,N): that runs RandomBell1(K) N times and returns # (1) The average value over all N trials. # (2) The fraction of times it exceeds 2, thereby refuting Albert (and Boris and Nathan) RandomBell := proc(K,N) local tot,gr2,a,i: tot := 0: gr2 := 0: for i from 1 to N do a := evalf(RandomBell1(K)): tot := tot + a: if a > 2 then gr2 ++: fi: od: [tot/N, gr2/N]: end: # What did you get for RandomBell(10,1000)? # output: [-0.019, 1/500] ### copied from C14.txt #C14.txt, March 10, 2025, Bell's Theorem Help14:=proc(): print(`Bell(A0,A1,B0,B1), `): print(`Bell(C1QG()[4],C1QG()[2], -(C1QG()[2]+C1QG()[4])/sqrt(2),(C1QG()[2]-C1QG()[4])/sqrt(2),ES()[1]); `): end: #Bell(A0,A1,B0,B1,V): The expression due to Bell that is the quantum analog of #a0*b0+a0*b1+a1*b0-a1*b1 ( the expectation of its abslute value is <=2) Bell:=proc(A0,A1,B0,B1,V) ExpMV(TP(A0,B0),V)+ExpMV(TP(A0,B1),V)+ExpMV(TP(A1,B0),V)-ExpMV(TP(A1,B1),V): end: #C8.txt, Feb. 17, 2025 #Feb. 10, 2025 C6.txt Help8:=proc(): print(`ES(), TP(A,B), ExpMV(M,V) `):end: #From C8.txt #ES(): the four fullly entangled states in the Alice-Bob combined system #based on p. 166of Susskind-Friedman's book #[singlet, T1,T2,T3] #[uu.ud,du,dd] ES:=proc() [ [0,1/sqrt(2),-1/sqrt(2),0], [0,1/sqrt(2),1/sqrt(2),0], [1/sqrt(2),0,0, 1/sqrt(2)], [1/sqrt(2),0,0,-1/sqrt(2)] ] end: C1QG:=proc(): [ [[1,0],[0,1]], [[0,1],[1,0]], [[0,-I],[I,0]], [[1,0],[0,-1]], [[1,0],[0,I]], [[1,0],[0,sqrt(2)/2+sqrt(2)/2*I]], expand([[1,1],[1,-1]]/sqrt(2)) ]: end: #TP(A,B):the tensor product of matrix A and matrix B (using our data structure #of lists-of-lists #Let A be an a1 by a2 matrix and #Let B be a b1 by b2 matrix #TP(A,B): is a1*b1 by a2*b2 matrix TP:=proc(A,B) local a1,a2,b1,b2,AB,i,i1,j,j1,AB1: a1:=nops(A): a2:=nops(A[1]): b1:=nops(B): b2:=nops(B[1]): #The rows of TP(A,B) are called [i,i1] where 1<=i<=a1 and 1<=i1<=b1 #The columns of TP(A,B) are called [j,j1] where 1<=j<=a2 and 1<=j1<=b2 AB:=[]: for i from 1 to a1 do for i1 from 1 to b1 do #AB1 is the [i,i1]-row of TP(A,B) AB1:=[]: for j from 1 to a2 do for j1 from 1 to b2 do AB1:=[op(AB1),A[i][j]*B[i1][j1]]: od: od: AB:=[op(AB),AB1]: od: od: AB: end: #Added after class: #ExpMV(M,V): inputs a Hermitian matrix M and a state vector V finds the expected value of the observable M in state V #: ExpMV:=proc(M,V) local i,j,n: add(add(conjugate(V[i])*M[i][j]*V[j],j=1..nops(V)),i=1..nops(V)): end: