The Reluctance of a Sequence

Guest Lecture, Math 640, Rutgers, May 22024

Neil J. A. Sloane,
Chairman, OEIS Foundation,
Visiting Scholar, Rutgers University

Outline

- Recamán's sequence A5132
- Minimized Recamán A125717
- Definition of reluctance function
- EKG A064413
- Cup of Coffee sequence A280864
- Cald's sequence A6509

Recamán's Sequence

A5132

Recamán's Sequence

Bernardo Recamán Santos, 1991

Subtract or add: 1, 2, 3, 4, 5, 6, \ldots
Pin plot of A005132(n)
No negative terms, no repeats (except when adding)
$0,1,3,6,2,7,13,20,12,21,11, \ldots$

$$
123-4567-8 \quad 9-10 \ldots
$$

A5132

Recamán's Sequence (2)

Edmund Harriss,

First 62 terms drawn as a spiral

Recamán's Sequence (5) A5132

The Big Question: Does every number appear?

After 10^15 terms, $852655=5 \times 31 \times 5501$ was missing (Allan Wilks, 2001)
After $10^{\wedge} 230$ terms, 852655 is still missing (Ben Chaffin, 2018)

30 years ago I believed that every number would eventually appear. Today I think that there are infinitely many missing terms, and 852655 just got lucky and is the first of many.

Why is $\mathbf{8 5 2 6 5 5}$ so reluctant to appear? Can we define "reluctance" ?

Minimized Recamán Sequence

A125717

Leroy Quet, 2007

Minimized Recamán Sequence (Leroy Quet, 2007) A125717

$a(0)=0 ; a(n)=\min m>=0$ s.t. m is new and $m=a(n-1) \bmod n$

$$
\begin{gathered}
\log _{10}(\text { when }) \approx \frac{10}{6} \log _{10}(\text { which }) \\
\text { when } \approx(\text { which })^{5 / 3} \\
y=x^{5 / 3} \\
\text { is reluctance function for A } 125717
\end{gathered}
$$

Use Plot command in OEIS

Reluctance Function for a sequence a(n) believed to be a permutation of positive integers

Let $b(n)=$ inverse perrmutation to $a(n)$, compute $h(n)=$ record high-points in $b(n)$, and $w(n)=$ indices of these high-points in $b(n)$

Then $w(n)$ are numbers that take a record number of steps to appear in $a(n)$, and $h(n)=$ how long it takes fot $w(n)$ to appear in $a(n)$.

If $h(n)=f(w(n))$, we call $y=f(x)$ the reluctance function.

The EKG Sequence

A064413

Jonathan Ayres, 2001

EKG Sequence (A64413)

I, 2, 4, 6, 3, 9, I2, 8, IO, 5, I5, ...
$a(1)=I, a(2)=2$,
$\mathrm{a}(\mathrm{n})=\min \mathrm{k}$ such that

- GCD \{a(n-l), k \} > I
- k not already in sequence
- Jonathan Ayres, 200I
- Analyzed by Lagarias, Rains, NJAS, Exper. Math., 2002
- Gordon Hamilton,Videos related to this sequence:

Question: Does every number appear?

High school student: That's obvious!

Me: I don't think so!

The EKG sequence (cont) Theorem: Every positive number appears

Proof:
There are several steps. (i) Sequence is infinite (easy).
(ii) Let $T(m)=n$ such that $a(n)=m$, or -1 if m is missing from sequence.

Let $\mathrm{W}(\mathrm{m})=\max \mathrm{T}(\mathrm{i}), \mathrm{i}<=\mathrm{m}$. Then if $\mathrm{n}>\mathrm{W}(\mathrm{m}), \mathrm{a}(\mathrm{n})>\mathrm{m}$.
(iii) Let $\mathbf{p}=$ prime. Exists \mathbf{n} such that $\mathbf{p} \mid \mathbf{a}(\mathbf{n})$. If not, no prime $\mathbf{q}>\mathbf{p}$ can divide any term either, because if $a(n)=q k$ then $p k$ would be a smaller choice.

So all terms are products just of primes < p .
Choose $\mathrm{n}>\mathrm{W}\left(\mathrm{p}^{\wedge} \mathbf{2}\right)$, say $a(n)=q k$, for prime $q<p$, so $q k>p^{\wedge} 2$. Then pk < $\mathrm{p}^{\wedge} \mathbf{2}$ < qk was a smaller candidate for $\mathrm{a}(\mathrm{n})$, contradiction.
(iv) When p first divides $a(n)$, say $a(n)=k p$, then k is a prime $<p$. If $k=2$ we have $a(n)=2 p, a(n+1)=p$. Otherwise we have $a(n)=k p$, $a(n)=p, a(n+1)=2 p$. Either way we see adjacent terms p and $2 p$.
(v) If for some prime p there are infinitely many multiples of p, then all multiples of p are in the sequence.
If not, let $k p=$ smallest missing multiple of p.
Find $\mathbf{n}>\mathbf{W}(k p)$ with $a(n)=m p$. Then $k p<m p$ was a smaller candidate for $a(n)$, a contradiction.
(vi) If for some prime p all multiples of p are in the sequence then all numbers appear. For suppose k is smallest missing number.

Find $n>W(k)$ such that $a(n)$ is multiple of $k p$. Then k was smaller candidate for $a(n)$, contradiction.
(vii) By (iii) and (iv) we see infinitely many multiples of 2, and by (v) and (vi) we see all numbers.

The three worst non-proofs

in order of increasing badness

It's obvious
 It's true for the first 10000 terms Here is the proof ... [and it's wrong]

When you write your paper proving that the long-standing Gauss PQR conjecture is true, start off by describing
the previous attempts at proof,
and where they failed
and then explain how your proof is better

A064955
-ix when?
$2 x$ slowest mn

$$
\begin{array}{llllll}
1 & 2 & 3 & 5 & 7 & 11 \\
2 & 3 & 3 & 3 & 5 & 5
\end{array}
$$ Open Problem what are these numbers??

$k^{\text {th }}$ high point $k=p_{k}=k \log k$
when? index is about $2 p_{k}$
Consistent with "Conjecture: if $a(n)=p$ there
Open Problem

$$
a(n) \sim \frac{n}{2}\left(1+\frac{1}{3 \log n}\right)^{\prime \prime}
$$

The "Cup of Coffee" Sequence

A280864
Rémy Sigrist, 2017

REMY SIGRIST'S SEQUENCE
LES of positive integers such that if a prime p divides $a(n)$ then p divides $\mathrm{a}(\mathrm{n}-\mathrm{I})$ or $\mathrm{a}(\mathrm{n}+\mathrm{I})$ but not both

| $n: n: 1$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a(n): 1$ | 2 | 4 | 3 | 6 | 8 | 5 | 10 | 12 | 9 | 7 | 14 | 16 | 11 | 22 |
| $p(n):-$ | - | 2 | - | 3 | 2 | - | 5 | 2 | 3 | - | 7 | 2 | - | 11 |
| $q(n):-$ | 2 | - | 3 | 2 | - | 5 | 2 | 3 | - | 7 | 2 | - | 11 | 2 |
| $n: 16$ | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| $a(n): 18$ | 15 | 20 | 24 | 21 | 28 | 26 | 13 | 17 | 34 | 30 | 49 | 19 | 38 | 32 |
| $p(n): 2$ | 3 | 5 | 2 | 3 | 7 | 2 | 13 | - | 17 | 2 | 15 | - | 19 | 2 |
| $q(n): 3$ | 5 | 2 | 3 | 7 | 2 | 13 | - | 17 | 2 | 15 | - | 19 | 2 | - |

REMY SIGRIST'S SEQUENCE (cont.)
Conjecture: This is a permutation of the positive integers.

$$
\begin{gathered}
\text { I can prove: } \\
\text { - every prime appears } \\
\text { - every even number appears } \\
\text { - infinitely many odd multiples of any odd prime } p \\
\text { - every number appears iff every square appears }
\end{gathered}
$$

But I cannot prove that every odd number appears

Reluctance of Cup-of-Coffee Sequence A280864

$\underline{\text { A } 372059 ~ v s ~} \underline{\text { A372058 }}$

Other LES (Lexicographically Earliest Sequences)

There are a great many! Tetris A109812,
Yellowstone Permutation, Enots Wolley.
Grant Olson, Two-Up, Cald's Sequence, Ali Sada, etc

Many are conjectured to be permutations of positive integers, but there are very few proofs.

An inconclusive example A252867

(Set-theory analog of Yellowstone permuation A098550)

A352336 vs A352359

Another inconclusive example

A109812

The Tetris sequence

Set-theory analog of natural numbers!

What is the reluctance function?

Cald's Sequence

A6509

Jnl. Rec. Math., 1974

Francis Bald's sequence
J. Rec Moth 1974

$$
\begin{aligned}
& a(1)=1 \\
& a(n+1)=a_{n}-\text { prime (n) if >of near } \\
& a(x) \\
& a(n+1)=a_{n}+\text { prime (n) if new) } \\
& \text { acre } \\
& a(n+1)=0
\end{aligned}
$$

A6509

$$
1_{2}^{509} 3^{6} 5^{11}-7^{4} 11^{15}-13^{2} 17^{19 \cdots}
$$

Missing terms? All 1339

$$
5,7,8,9,10,13, \ldots \longleftarrow \text { What are these numbers? }
$$

zeros at $A 1128.77$:

$$
117,199, \cdots
$$

Cold's Sequence

Can't define reluctance in same way, because don't know inverse function.

I offer \$250 for first proof that 5 is missing from Card's sequence

