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1 Introduction
In [1], Dougherty-Bliss and Kauers introduce a combinatorial object known as a Har-
dinian array. A Hardinian array with positive integer parameter r is an n × k array
which obeys the following rules:

1. The top left entry is 0, the bottom right entry is the king distance minus r.

2. Each king step down, right, and down-right must increase the value by or leave
the value the same.

3. Each value must be within r of its king distance.

The family of bivariate sequences Hr(n, k) counts the number of Hardinian arrays.
Sequence AXXXXX in the OEIS [2] contains the following conjectures about

H2(n, k) for fixed k:

H2(n, 1) =
1

2
n2 − 3

2
n+ 1

H2(n, 2) = 4n2 − 20n+ 25

H2(n, 3) = 40n2 − 279n+ 497

H2(n, 3) = 480n2 − 4354n+ 10098

H2(n, 4) = 6400n2 − 71990n+ 206573

H2(n, 5) = 90112n2 − 1212288n+ 4150790

H2(n, 6) = 1306624n2 − 20460244n+ 81385043.

We can confirm that these conjectures are correct. In fact, we can prove the following
theorem.

Theorem 1. Hr(n, k) is a polynomial of degree r for sufficiently large n (or k). There
is an algorithm to determine this polynomial.

The technique to prove this theorem is an application of the transfer matrix method.
Given a fixed k, there exists a finite state machine which accepts only valid Hardinian
arrays. This state machine has an adjacency matrix which is lower triangular and at
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least a single 1 on its diagonal. This implies that the number of paths of length n on
this state machine which end in accepting states are polynomials.

The brilliant idea to make the state machine finite is the following change of vari-
ables.

Definition 1. Given a Hardinian array, M , define a new array T (M) by

T (M)ij = Mij −KD(i, j) + r,

where KD(i, j) = max(i, j) is the king distance of (i, j) from (0, 0). (Note that our
matrices are 0-indexed.)

Now suppose we fix the number of rows n and count the number of n×k arrays as
k increases. Can we construct a finite state machine that reads the columns as symbols
and determines whether the columns read so far form a valid array? At first this seems
tricky: since the values of the matrix can be arbitrarily large, we cannot simply use
the contents of the previous column as a state. We can’t store the king distance either
because it also is allowed to grow without bound.

Note that the entries of T (M) are strictly between 0 and r, so it will now be con-
venient to use the contents of the previous column as a state in our state machine. We
must now replace the 3 conditions on Hardinian arrays with 3 equivalent conditions on
modified arrays.

Since each row must be a non-increasing sequence of entries between 0 and r, the
number of possibilities for a row of length k is upper bounded by a polynomial in k of
degree r. Later we will show that indeed the number of valid arrays eventually satisfies
a polynomial in k.

2 Our code
We have written a small Maple package which implements the main theorem. Its
main procedure is hardinPoly(n, r, k), which produces the polynomial which
Hr(n, k) equals for sufficiently large n. Here is a brief demo:

> hardinPoly(n, 2, 1);
2

1/2 n - 3/2 n + 1
> hardinPoly(n, 2, 2);

2
4 n - 20 n + 25

> hardinPoly(n, 2, 3);
2

40 n - 279 n + 497
> hardinPoly(n, 2, 4);

2
480 n - 4354 n + 10098

> hardinPoly(n, 3, 6);
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3 2
5242880/3 n - 41275392 n + 991610656/3 n - 897487301

As a very crude overestimate, the state machine for parameter r with k rows con-
tains rk vertices, so the adjancency matrix is rk × rk. We need to compute the inverse
of an rk×rk symbolic matrix. There are a few other computational problems involved.
If we put some effort into it, we could probably make our programs much much faster,
perhaps by borrowing some techniques from computer algebra.

3 Random facts
Here are some random facts that we need to write down.

Theorem 2. For any square matrix M , the sequences

aij(n) := (Mn)ij

are all C-finite with characteristic polynomial dividing the characteristic polynomial
of M . In particular, the eigenvalues of aij are eigenvalues of M .

Proof. By the Caley–Hamilton theorem, M is annihilated by its own characteristic
polynomial. Multiplying this by Mn and extracting the ijth entry shows that aij(n) is
also annihilated by the characteristic polynomial, and therefore its characteristic poly-
nomial divides M ’s.

Corollary 1. If a square matrix M has only eigenvalues 0 and 1, then aij(n) =
(Mn)ij is either zero for all but finitely many values or a polynomial.

Proof. By the previous theorem aij(n) is C-finite with eigenvalues 0 and 1.

Theorem 3. The adjacency matrix for the “Hardinian state machine” can be made
lower triangular.

Proof. A vertex in the state machine is labeled by a vector of values. The edge v → w
exists only if (but not necessarily if ) each entry in w is ≤ its corresponding entry in
v. Therefore, if we order the vertices by their sum, then the adjacency matrix will be
lower triangular.

Theorem 4. If M is a square matrix, then the ijth entry of (I − xM)−1 is the gener-
ating function of aij(n) = (Mn)ij .

Proof. I believe that this theorem is true, but I have never seen a careful proof. I would
be interested in finding one / writing one.
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