Rectangular Hardinian Arrays

George Spahn and Robert Dougherty-Bliss

May 2024

1 Introduction

In [1], Dougherty-Bliss and Kauers introduce a combinatorial object known as a Hardinian array. A Hardinian array with positive integer parameter r is an $n \times k$ array which obeys the following rules:

1. The top left entry is 0 , the bottom right entry is the king distance minus r.
2. Each king step down, right, and down-right must increase the value by or leave the value the same.
3. Each value must be within r of its king distance.

The family of bivariate sequences $H_{r}(n, k)$ counts the number of Hardinian arrays.
Sequence AXXXXX in the OEIS [2] contains the following conjectures about $H_{2}(n, k)$ for fixed k :

$$
\begin{aligned}
& H_{2}(n, 1)=\frac{1}{2} n^{2}-\frac{3}{2} n+1 \\
& H_{2}(n, 2)=4 n^{2}-20 n+25 \\
& H_{2}(n, 3)=40 n^{2}-279 n+497 \\
& H_{2}(n, 3)=480 n^{2}-4354 n+10098 \\
& H_{2}(n, 4)=6400 n^{2}-71990 n+206573 \\
& H_{2}(n, 5)=90112 n^{2}-1212288 n+4150790 \\
& H_{2}(n, 6)=1306624 n^{2}-20460244 n+81385043
\end{aligned}
$$

We can confirm that these conjectures are correct. In fact, we can prove the following theorem.

Theorem 1. $H_{r}(n, k)$ is a polynomial of degree r for sufficiently large $n(o r k)$. There is an algorithm to determine this polynomial.

The technique to prove this theorem is an application of the transfer matrix method. Given a fixed k, there exists a finite state machine which accepts only valid Hardinian arrays. This state machine has an adjacency matrix which is lower triangular and at
least a single 1 on its diagonal. This implies that the number of paths of length n on this state machine which end in accepting states are polynomials.

The brilliant idea to make the state machine finite is the following change of variables.

Definition 1. Given a Hardinian array, M, define a new array $T(M)$ by

$$
T(M)_{i j}=M_{i j}-K D(i, j)+r
$$

where $K D(i, j)=\max (i, j)$ is the king distance of (i, j) from $(0,0)$. (Note that our matrices are 0 -indexed.)

Now suppose we fix the number of rows n and count the number of $n \times k$ arrays as k increases. Can we construct a finite state machine that reads the columns as symbols and determines whether the columns read so far form a valid array? At first this seems tricky: since the values of the matrix can be arbitrarily large, we cannot simply use the contents of the previous column as a state. We can't store the king distance either because it also is allowed to grow without bound.

Note that the entries of $T(M)$ are strictly between 0 and r, so it will now be convenient to use the contents of the previous column as a state in our state machine. We must now replace the 3 conditions on Hardinian arrays with 3 equivalent conditions on modified arrays.

Since each row must be a non-increasing sequence of entries between 0 and r, the number of possibilities for a row of length k is upper bounded by a polynomial in k of degree r. Later we will show that indeed the number of valid arrays eventually satisfies a polynomial in k.

2 Our code

We have written a small Maple package which implements the main theorem. Its main procedure is hardinPoly $(\mathrm{n}, \mathrm{r}, \mathrm{k})$, which produces the polynomial which $H_{r}(n, k)$ equals for sufficiently large n. Here is a brief demo:

```
> hardinPoly(n, 2, 1);
    2
    1/2n-3/2n+1
> hardinPoly(n, 2, 2);
                        2
        4n-20n + 25
> hardinPoly(n, 2, 3);
                        2
        40n - 279n + 497
> hardinPoly(n, 2, 4);
            2
        480n - 4354n + 10098
> hardinPoly(n, 3, 6);
```

```
    3 2
5242880/3n - 41275392n + 991610656/3n - 897487301
```

As a very crude overestimate, the state machine for parameter r with k rows contains r^{k} vertices, so the adjancency matrix is $r^{k} \times r^{k}$. We need to compute the inverse of an $r^{k} \times r^{k}$ symbolic matrix. There are a few other computational problems involved. If we put some effort into it, we could probably make our programs much much faster, perhaps by borrowing some techniques from computer algebra.

3 Random facts

Here are some random facts that we need to write down.
Theorem 2. For any square matrix M, the sequences

$$
a_{i j}(n):=\left(M^{n}\right)_{i j}
$$

are all C-finite with characteristic polynomial dividing the characteristic polynomial of M. In particular, the eigenvalues of $a_{i j}$ are eigenvalues of M.
Proof. By the Caley-Hamilton theorem, M is annihilated by its own characteristic polynomial. Multiplying this by M^{n} and extracting the $i j$ th entry shows that $a_{i j}(n)$ is also annihilated by the characteristic polynomial, and therefore its characteristic polynomial divides M 's.

Corollary 1. If a square matrix M has only eigenvalues 0 and 1 , then $a_{i j}(n)=$ $\left(M^{n}\right)_{i j}$ is either zero for all but finitely many values or a polynomial.
Proof. By the previous theorem $a_{i j}(n)$ is C -finite with eigenvalues 0 and 1 .
Theorem 3. The adjacency matrix for the "Hardinian state machine" can be made lower triangular.
Proof. A vertex in the state machine is labeled by a vector of values. The edge $v \rightarrow w$ exists only if (but not necessarily $i f$) each entry in w is \leq its corresponding entry in v. Therefore, if we order the vertices by their sum, then the adjacency matrix will be lower triangular.

Theorem 4. If M is a square matrix, then the ijth entry of $(I-x M)^{-1}$ is the generating function of $a_{i j}(n)=\left(M^{n}\right)_{i j}$.
Proof. I believe that this theorem is true, but I have never seen a careful proof. I would be interested in finding one / writing one.

References

[1] Robert Dougherty-Bliss and Manuel Kauers. "Hardinian Arrays". In: El. J. Combinat. 31 (2 2024).
[2] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. 2024. URL: http://oeis.org.

