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1 But what is a Lee code?

In 1958, one C.Y. Lee from bell labs published Some properties of nonbinary error-correcting
codes [2], in which Lee outlines a new kind of metric on which one can define codes, the Lee
metric:

Definition 1. Given two words u, v ∈ Zn
q , the Lee distance (or q-Lee distance) is given as

δ(u, v)L =
n∑

i=1

min{q − |ui − vi|, |ui − vi|}

[1] The motivation to define an error metric as such as opposed to the standard hamming
distance is to encode relative closeness between words, which has uses in phase modulation
transmission, which makes sense since Lee went on to be an early pioneer in implementing
CDMA as a technology, but that’s besides the point.

Definition 2. C is an e-error correcting Lee code if it is a subset C ⊂ Zn
q such that for any

u, v ∈ C, δL(u, v) ≥ 2e+ 1

Additionally, based on the definition of the Lee distance one can see that it is the Man-
hattan metric (taxicab metric, l1 metric on Zn) restricted to Zq:

Definition 3. For any two points u, v ∈ Zn, the taxicab metric between the two is given as

δ(u, v) =
n∑

i=1

|ui − vi|

Note that the lee metric and lee codes give us a more tangible geometry to work with
than the hamming metric. This gives rise to the natural definition of the lee sphere:

Definition 4. A lee sphere with radius d centered at point p ∈ Zn
q is the set {u ∈ Zn

q :
δL(u, p) = d}
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2 BUT WHAT IS A PERFECT LEE CODE?

Here are some examples of lee spheres of radius 1 for dimensions n = 2, 3:

2 But what is a perfect Lee code?

The definition is what you think it is

Definition 5. A perfect lee code C is an e-error correcting code such that for each x ∈ Zn
q ,

there exists c ∈ C such δL(c, x) ≤ e

Now one may ask why these are interesting objects to study, however, there are some
associated theorems and conjectures that enrich the subject

Theorem 1. For every n ∈ N, there exists a 1-error correcting code on Zn
2n+1 of the form

for every c ∈ C,
∑n

i=1 ixi ≡ 0 mod 2n+ 1

Proof: Note for every c ∈ C such that
∑n

i=1 ici ≡ 0 mod 2n+ 1 we have that
c1 ≡ −

∑n
i=1 ici mod 2n + 1, therefore we have uniquely determined (2n + 1)n−1 points

in C. We must now show that every element is within distance 1 of a desired point.
Suppose p ∈ Zn

2n+1. Then
∑n

i=1 ipi ≡ k mod 2n + 1. We will consider −n ≤ k ≤ n.
If k ≡ 0 mod 2n + 1 then p is in the code. If k ≥ 0 then if we take pk 7→ pk − 1
then

∑n
i=1 pi − k ≡ k − k ≡ 0 mod 2n + 1, thus placing our modified point within the

code. If k < 0 then we map pk 7→ pk + 1, placing it within the code by a similar logic.
Note for each point in our set we have determined 2n additional points, thus we reach
(2n + 1)(2n + 1)n−1 = (2n + 1)n = |Zn

2n+1| limit, however we don’t know that our spheres
are disjointed, points, showing that we have found a perfect 1-error correcting code.

Conjecture 1. (Golomb-Welch) For n ≥ 3, e ≥ 2 there does not exist a perfect e-error
correcting code

Conjecture 2. (Horak) For n ∈ N, if 2n+ 1 is prime, there is exactly 1 possible perfect lee
code up to isomorphism.

Theorem 2. For n ∈ N, if 2n + 1 is not prime, there is an uncountable number of perfect
tilings of Z2n+1 by 1-d lee spheres.

Note these two above conjectures and the construction of theorem 1 give us potentially
the ONLY perfect lee code for the specified dimension. Furthermore, one can uniquely extend
these perfect lee codes as tilings of Zn, which allows us to completely characterize all tilings
of Zn with respect to the Manhattan metric. Also of interest is that the above conjectures
have been proven for n = 2, 3, 5, which gives us a full categorization of the Lee sphere tilings
in those dimensions.
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3 Classifying symmetries of Zn tilings

Observe that by the construction in Theorem 1, our code is given as a dot product. There-
fore our desired isomorphic codes will be attained via isometries. Note that all orthogonal
transformations of Zn, denoted by the group O(Zn) is given by all permutation matrices
where each column may or may not be negative. Therefore |O(Zn)| = n!2n. Before writing
the maple program I conjectured that the lee codes are exactly the same under rotations.
One can look above and see that this is the case. However, my maple program to compute
the orbit of the theorem 1 code failed this trend for n = 5, as the sequence of the size of the
orbits was 2, 8, 384 for dimensions 2, 3, 5 respectively. Note this implies that the codes have
4, 6, and 10 symmetries respectively when diving by the order of O(Zn). Note for dimen-
sions n = 5 the program took half an hour to run, so further optimizations are necessary to
explore the group operation of O(Zn) on the codes.

4 Constructing generating matrices for perfect Lee codes

To have efficient computations for a linear code, it’s natural to construct a generating matrix.
For codes over the hamming metric the theory is well established, however having codes with
the same dimension of the ambient space does not occur. Here they do. Therefore there is
no clear way to make a generating matrix as before. To create the new generating matrices,
one can analyze the requirement to sum to a multiple of 2n+1. For a given dimension n, the
rows the generating matrix are as follows: for i ≡ 0 mod 2, ri1 = i, ri,(n−1− i

2
) = ri,(n− i

2
) = 1,

and the rest are 0. For i ≡ 1 mod 2, ri1 = i, rn− i−1
2

−1 = 2, and the rest are 0.
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