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Introduction
Given a linear [𝑛,𝑘]-code 𝐶 over GF(𝑞), its weight enumerator is defined to be:

𝑊𝐶(𝑡) =
𝑛∑

𝑖=0
𝐴𝑖𝑡𝑖,

where𝐴𝑖 is number of codewords in𝐶withweight 𝑖. Knowing theweight enumerator of a code
is often useful for error-detection and error-correction analysis [1]. The famous MacWilliams
identity gives a relationship between the weight enumerator of a code 𝐶 and its dual 𝐶⟂ [2].
Using this identity and brute force, the weight enumerator of any linear code can be found
in 𝑂(𝑛𝑞min(𝑘,𝑛−𝑘)) time by computing the Hamming distance of all codewords in 𝐶 or 𝐶⟂,
whichever is smaller.

While this is the fastest method to compute weight enumerators in general, there are certain
classes of codes which have convenient properties that allow their weight enumerators to be
computed more easily. Here, we will focus on the weight enumerators of some maximum
distance separable (MDS) codes, which have parameters [𝑛,𝑘,𝑛 − 𝑘 + 1]. Assmus, Gleason,
Mattson and Turyn [3], Forney and Kohlenberg [4], and Kasami, Lin and Peterson [5] all in-
dependently determined that the coefficients of such codes for 𝑖 ∈ {𝑛 − 𝑘 + 1,… ,𝑛} are given
by:

𝐴𝑖 =
(𝑛
𝑖
)
(𝑞 − 1)

𝑖−𝑑∑

𝑗=0
(−1)𝑗

(𝑖 − 1
𝑗

)
𝑞𝑖−𝑗−𝑑.

In this article, we will first show that the algorithm in our accompanying Maple package for
computing theseweight enumerators workswithout relying on this known result. Afterwards,
we will compute the mean and variance of the weight distributions of many MDS codes, and
present some experimentally-supported conjectures about other standardized moments.
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ComputingWeight Enumerators
For prime powers 𝑞 = 𝑝𝑘, we will specifically investigate linear codes 𝐶 of length 𝑛 ≤ 𝑞 − 1
with distance 𝑑 ≤ 𝑛 whose parity check matrices are of the form:

⎡
⎢
⎢
⎢
⎣

1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑑−21 𝑥𝑑−22 ⋯ 𝑥𝑑−2𝑛

⎤
⎥
⎥
⎥
⎦

,

where 𝑥1,… ,𝑥𝑛 ∈ GF(𝑞)× are distinct. Let’s denote this class of linear codes with fixed 𝑞,𝑑 as
𝒞𝑞,𝑑. Our goal in this section is to find a faster way to compute the weight enumerators of such
𝐶 ∈ 𝒞𝑞,𝑑 with runtime faster than 𝑂(𝑛𝑞min(𝑑−1,𝑛−𝑑+1)). We will present out algorithm after first
proving one lemma.

Lemma 0.1. Fix 𝑞,𝑑,𝑛. Assume that we know that every code 𝐶 ∈ 𝒞𝑞,𝑑 with codewords of length
𝑛 has the same number of codewords of weight 𝑛. Let this number be denoted as 𝑎. Then for any
𝐶′ ∈ 𝒞𝑞,𝑑 with length 𝑛′, the number of codewords of weight 𝑛 in 𝐶 is equal to 𝑎

(𝑛′
𝑛

)
.

Proof. If 𝑛′ ≤ 𝑛, this statement trivially holds, so assume 𝑛′ > 𝑛. Let’s say that the parity
check matrix of 𝐶′ has columns 1,… ,𝑛′ containing powers of 𝑥1,… ,𝑥𝑛′ respectively. Suppose
𝑐1⋯ 𝑐𝑛′ ∈ GF(𝑞)𝑛′ has weight 𝑛. Let 𝜎 ∶ [𝑛] → [𝑛′] map 𝑖 ∈ [𝑛] to the 𝑖-th smallest index of
𝑐1⋯ 𝑐𝑛′ such that 𝑐𝜎(𝑖) ≠ 0. If 𝑐1⋯ 𝑐𝑛′ ∈ 𝐶′, then we should satisfy:

⎡
⎢
⎢
⎢
⎣

1 1 ⋯ 1
𝑥𝜎(1) 𝑥𝜎(2) ⋯ 𝑥𝜎(𝑛)
⋮ ⋮ ⋱ ⋮

𝑥𝑑−2𝜎(1) 𝑥𝑑−2𝜎(2) ⋯ 𝑥𝑑−2𝜎(𝑛)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐𝜎(1)
𝑐𝜎(2)
⋮
𝑐𝜎(𝑛)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0

⎤
⎥
⎥
⎥
⎦

.

We observe that there exists 𝐶 ∈ 𝒞𝑞,𝑑 with codewords of length 𝑛 having this parity check
matrix. Therefore 𝑐1⋯ 𝑐𝑛′ ∈ 𝐶′ if and only if 𝑐𝜎(1)⋯ 𝑐𝜎(𝑛) ∈ 𝐶. By assumption, all such 𝐶 have
𝑎 of codewords of weight 𝑛, and since there are

(𝑛′
𝑛

)
ways to assign zeros so that 𝑐1⋯ 𝑐𝑛′ has

weight 𝑛, it follows that there are 𝑎
(𝑛′
𝑛

)
codewords of weight 𝑛 in 𝐶′.

Now we prove our algorithm for computing weight enumerators.

Theorem 0.2. The following algorithm is correct:
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Algorithm 1:
Data: Parameters 𝑛,𝑞,𝑑 as described above
Result: 𝑓 =𝑊𝐶(𝑡)
𝐴 ← [];
for 𝑖 ← 1 to 𝑛 − 𝑑 + 1 do

𝐴[𝑖]← 𝑞𝑖 − 1;
end
𝑓 ← 1;
for 𝑘 ← 𝑑 + 1 to 𝑛 + 1 do

𝑎 ← 𝐴[𝑘 − 𝑑];
for 𝑖 ← 0 to 𝑛 − 𝑘 + 1 do

𝐴[𝑖]← 𝐴[𝑖] − 𝑎
(𝑖+𝑘−1
𝑘−1

)
;

end
𝑓 ← 𝑓 + 𝑎

( 𝑛
𝑘−1

)
𝑡𝑘−1;

end

Proof. Fix 𝑞,𝑑. We will prove this algorithm by induction on 𝑛.

Case 𝑛 = 𝑑: Since we have a linear code with distance 𝑛 = 𝑑, every codeword except for the
zero codeword will have weight 𝑑. We know that there are 𝑞𝑛−(𝑑−1) = 𝑞 codewords, and hence
there are 𝑞 − 1 codewords of weight 𝑑. This is what we set 𝑎 to in the second for loop, so we
compute 𝑓 = (𝑞 − 1)𝑡𝑑 + 1 as desired. Note that 𝑎 is set to the same value regardless of the
specific parity check matrix being considered.

Case 𝑛 > 𝑑: Assume by induction that our algorithm works for input length 𝑛 − 1 and that
for each 𝑎 value set in the second for loop from 𝑘 = 𝑑 + 1 to 𝑘 = 𝑛, 𝑎 is equal to the number
of codewords of weight 𝑘 − 1 in any code from 𝒞𝑞,𝑑 with codewords of length 𝑘 − 1. Now fix
𝑘 ∈ {𝑑 + 1,… ,𝑛}. By lemma 0.1, we have that 𝑎

( 𝑛
𝑘−1

)
is the number of codewords of weight

𝑘 − 1 in any code from 𝒞𝑞,𝑑 with codewords of length 𝑛. Therefore we set the coefficient of
𝑡𝑘−1 correctly at the end of the for loop. Furthermore, when we subtract all of these values
from 𝐴[𝑛], we will have accounted for all codewords of every weight except 𝑛. Hence when
𝑘 = 𝑛 + 1, we set 𝑎 to be the number of codewords of weight 𝑛 in any code from 𝒞𝑞,𝑑 with
codewords of length 𝑛, and since

(𝑛
𝑛

)
= 1, we set the coefficient of 𝑡𝑛 in 𝑓 correctly, meaning

we now satisfy 𝑓 =𝑊𝐶(𝑡). Note again the value of 𝑎 did not depend on a specific parity check
matrix.

Runtime Analysis
We have provided a Maple package if the reader would like to experimentally check that our
algorithm is faster than the naive version. However, we will provide a rough runtime analysis
here. Note we will use a slightly modified algorithm.
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Lemma 0.3. The following algorithm is correct:

Algorithm 2:
Data: Parameters 𝑛,𝑞,𝑑 as described above
Result: 𝑓 =𝑊𝐶(𝑡)
𝐴 ← [];
for 𝑖 ← 1 to 𝑛 − 𝑑 + 1 do

𝐴[𝑖]← 𝑞𝑖 − 1;
end
𝑓 ← 1;
for 𝑘 ← 𝑑 + 1 to 𝑛 + 1 do

𝑎 ← 𝐴[𝑘 − 𝑑];
for 𝑖 ← 1 to 𝑛 − 𝑘 + 1 do

𝑎 ← 𝑎 × (𝑖 + 𝑘 − 1);
𝑎 ← 𝑎∕𝑖;
𝐴[𝑖]← 𝐴[𝑖] − 𝑎;

end
𝑓 ← 𝑓 + 𝑎𝑡𝑘−1;

end

Proof. It is apparent that we are just computing the binomial coefficients in a different way
from algorithm 1, so theorem 0.2 implies that this algorithm is correct.

Theorem 0.4. Computing all binomial coefficients in algorithm 2 takes𝑂(𝑛3 log2(𝑛) log log(𝑛))
time.

Proof. We first observe that we compute at most 𝑛 binomial coefficients, and it is apparent
that at any point in the algorithm, 𝑎 < 𝑛𝑛. Such numbers can be stored using 𝑂(log(𝑛𝑛)) =
𝑂(𝑛 log(𝑛)) bits.

By Schönhage and Strassen [6], multiplication of two 𝑘-bit numbers may be computed in
𝑂(𝑘 log(𝑘) log log(𝑘)) time. We also know that multiplication and division have the same
runtime [7]. Therefore we can compute all binomial coefficients in 𝑂(𝑛3 log2(𝑛) log log(𝑛))
time.

We have omitted the analysis for the other computations since computing the binomial coef-
ficients will require the most time for inputs where 𝑛 is close to 𝑞.

Weight Distribution Statistics
In this section, we’ll compute themean and variance of the weight distributions of many codes
that we have been inspecting and will show some experimental results suggesting patterns for
the moments. First we’ll compute the means.
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Theorem 0.5. For all 𝐶 ∈ 𝒞𝑞,𝑑 with codewords of length 𝑛, the mean of the weights is
𝑛(𝑞−1)

𝑞
.

Proof. Fix 𝑞,𝑑. We will prove this by cases.

Case 𝑛 = 𝑑: If 𝑛 = 𝑑, then |𝐶| = 𝑞. We also know that every nonzero codeword in 𝐶 has
weight at least 𝑑, and since 𝑛 = 𝑑, there are 𝑞−1 codewords of weight 𝑑 and one codeword of
weight 0. Therefore the mean of the weights is 𝑛(𝑞−1)

𝑞
.

Case 𝑛 > 𝑑: Let 𝐶′ be the code with parity check matrix constructed by taking the first 𝑛−1
columns of the parity check matrix for 𝐶. Let’s say that𝑊𝐶′ =

∑𝑛−1
𝑖=0 𝐴𝑖𝑡𝑖. By theorem 0.2, we

have:

𝑊𝐶(𝑡) =
𝑛−1∑

𝑖=0

𝑛
𝑛 − 𝑖𝐴𝑖𝑡𝑖 + (𝑞𝑛−𝑑+1 −

𝑛−1∑

𝑖=0
𝐴𝑖

𝑛
𝑛 − 𝑖 )𝑡

𝑛.

Hence:
∑𝑛−1

𝑖=0 (𝑖𝐴𝑖
𝑛

𝑛−𝑖
) + 𝑛(𝑞𝑛−𝑑+1 −

∑𝑛−1
𝑖=0 (𝐴𝑖

𝑛

𝑛−𝑖
))

𝑞𝑛−𝑑+1
=

∑𝑛−1
𝑖=0 ((𝑖 − 𝑛)𝐴𝑖

𝑛

𝑛−𝑖
) + 𝑛𝑞𝑛−𝑑+1

𝑞𝑛−𝑑+1

=
−𝑛𝑞𝑛−𝑑 + 𝑛𝑞𝑛−𝑑+1

𝑞𝑛−𝑑+1

=
𝑛(𝑞 − 1)

𝑞 .

We note that this is actually the largest possible mean of the weights [8]. Next we compute
some variances in a similar way.

Theorem 0.6. Fix 𝑞,𝑛. For all 𝑑 < 𝑛, the weight distribution of every code 𝐶 ∈ 𝒞𝑞,𝑑 with code-
words of length 𝑛 has variance 𝑛(𝑞−1)

𝑞2
.

Proof. Fix 𝑑,𝑞. Let 𝐶′ be the code with parity checkmatrix constructed by taking the first 𝑛−1
columns of the parity check matrix for 𝐶. Let𝑊𝐶′ =

∑𝑛−1
𝑖=0 𝐴𝑖𝑡𝑖. By theorem 0.5, we know the
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mean of 𝐶. We compute:

Var =
𝑛−1∑

𝑖=0

𝑛
𝑛 − 𝑖𝐴𝑖

1
𝑞𝑛−𝑑+1

(𝑖 −
𝑛(𝑞 − 1)

𝑞 )2 + (𝑛 −
𝑛(𝑞 − 1)

𝑞 )2 1
𝑞𝑛−𝑑+1

(𝑞𝑛−𝑑+1 −
𝑛−1∑

𝑖=0

𝑛
𝑛 − 𝑖𝐴𝑖)

=
𝑛−1∑

𝑖=0

𝑛
𝑛 − 𝑖𝐴𝑖

1
𝑞𝑛−𝑑+1

((𝑖 −
𝑛(𝑞 − 1)

𝑞 )2 − (𝑛 −
𝑛(𝑞 − 1)

𝑞 )2) + (𝑛 −
𝑛(𝑞 − 1)

𝑞 )2

=
𝑛−1∑

𝑖=0

𝑛
𝑛 − 𝑖𝐴𝑖

1
𝑞𝑛−𝑑+1

(𝑖 − 𝑛)((2 − 𝑞)𝑛 + 𝑖𝑞)
𝑞 + (𝑛 −

𝑛(𝑞 − 1)
𝑞 )2

= − 𝑛
𝑞𝑛−𝑑+1

𝑛−1∑

𝑖=0
𝐴𝑖(

(2 − 𝑞)𝑛
𝑞 + 𝑖) + (𝑛 −

𝑛(𝑞 − 1)
𝑞 )2

= − 𝑛
𝑞𝑛−𝑑+1

(
(2 − 𝑞)𝑛

𝑞 𝑞𝑛−𝑑 +
(𝑛 − 1)(𝑞 − 1)

𝑞 𝑞𝑛−𝑑) + (𝑛 −
𝑛(𝑞 − 1)

𝑞 )2

=
𝑛(𝑞 − 1)

𝑞2 .

Finally we list two conjectures.

Conjecture 0.7. Fix 𝑞,𝑛. For all 𝑑 ≤ 𝑛 − 2, all codes 𝐶 ∈ 𝒞𝑞,𝑑 with codewords of length 𝑛 have
weight distributions with third central moment given by −𝑛(𝑞−1)(𝑞−2)

𝑞3
. For all 𝑑 ≤ 𝑛 − 3, all codes

𝐶 ∈ 𝒞𝑞,𝑑 with codewords of length 𝑛 have weight distributions with fourth central moment given
by 𝑛(3𝑞𝑛+𝑞2−3𝑛−6𝑞+6)(𝑞−1)

𝑞4
.

Conjecture 0.8. Suppose 𝑘 ∈ ℕ. Fix 𝑞,𝑛. For all 𝑑 ≤ 𝑛 + 1 − 𝑘, all codes 𝐶 ∈ 𝒞𝑞,𝑑 with
codewords of length 𝑛 have weight distributions with the same first 𝑘 moments.

We tested that conjecture 0.7 held for all primes less than 200 and we have provided a method
in the accompanying Maple package showing some evidence for conjecture 0.8.

Conclusion
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