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1 Introduction

Error-correcting codes are a fundamental tool for protecting data from noise. Applications for
error-correcting range from complexity theory, to pseudorandomness, and cryptography.

We say that a (n,M, d)-code is a code of length n containing M codewords, and minimum
distance d. One of the main problems in coding theory is to find M as large as possible so that we
get a large good code with n small and large d. In this way, we have fast transmission of messages
(n) from a wide variety (M) of messages and are able to correct as many errors (d).

In this project, we aim to construct a database for weight enumerators of cyclic linear codes
[n, k] over GF (q) up to a given size. For each generated cyclic linear code and its weight enumerator
polynomial, we find the average and standard deviation of each weight.

The outline of this paper is as follows. We first begin with some background for the reader
to familiarize with some key terms and introduce the problem in more detail. We then proceed
by introducing Maple procedures that were written to generate all necessary data. Following this
section, we discuss the results from our analysis and end with a conclusion.

2 Background

In this section, we aim to introduce key terms in coding theory. All definitions are cited from [2],
unless stated otherwise. We refer the reader to [2] for more necessary background.

Throughout this paper, we assume that the alphabet F , is the Galois field GF (q), where q is a
prime power, and we regard (Fq)

n as the vector space V (n, q).

Definition 1. A q-ary code C is a set of sequences where each symbol is from a set Fq =
{λ1, · · · , λq} of q distinct elements. The set Fq is called the alphabet and it is usually taken to
be the set Zq = {0, 1, 2, · · · , q − 1}.

In this paper we focus on linear codes, specifically cyclic codes.

Definition 2. A linear code over GF (q) is just a subspace of V (n, q), for some positive integer n.
Thus a subset C of V (n, q) is a linear code if and only if

1. u+ v ∈ C for all u and v in C, and

2. au ∈ C, for all u ∈ C, a ∈ GF (q).

1



If C is a k-dimensional subspace of V (n, q), then the linear code C is called an [n,k]-code, or some-
times, if we wish to specify also the minimum distance d of C, an [n, k, d]-code.

Linear codes are useful for a few reasons:

1. Finding the minimum distance of a linear code requires less comparisons than that of a general
code.

2. We can specify a linear [n, k]-code by simply giving a basis of k codewords. To find a specific
non-linear code, we may have to list all the codewords.

3. There are established procedures for encoding and decoding linear codes, which are discussed
in Chapter 6 of [2]

Cyclic codes are a specific type of linear code. They possess a rich algebraic structure, while
practically they can be efficiently implemented by means of simple devices known as shift registers.
Additionally, many important codes, such as binary Hamming codes and Golay codes are equivalent
to cyclic codes.

Definition 3. A code C is cyclic if (i) C is a linear code and (ii) any cyclic shift of a codeword is
also a code, i.e. whenever a0a1...an−1 is in C, then so is an−1a0a1...an−2

Take the binary code C = {000, 101, 011, 110}. It is is linear and any shift of it’s codewords is
still a member of C.

In this project, we need to generate cyclic [n,n-a] -codes over GF (q) for various n, a, and q prime.
There is a powerful fact about cyclic codes that we used to generate all possible cyclic codes within
our parameters.

Fact: Any cyclic code can be generated by a polynomial. Before we explain how, let’s discuss
some necessary information about polynomials.

We start with the set of all polynomials in x with coefficients in Fq, we denote this set F [x].
Polynomials in F [x] can be added, subtracted and multiplied just as one expects. We can even divide
polynomials, using the division algorithm. F [x] is an example of an algebraic structure known as a
ring. This means F [x] shares qualities with other rings, like the set of all integers (See Chapter 3 of
[2]).

3 Maple Procedures

Accompanying this paper is the Maple package proj1.txt, authored by Himanshu Chandra, Nkhalo
Malawo, and Lucy Martinez. Additionally, certain procedures written by Doron Zeilberger were
implemented during class. We thank Joseph Koutsoutis who provided one of the procedures, as
described below.

HD(u,v), where u is a codeword, v is another codeword of the same length. This procedure is
used to calculate the Hamming distance between two words of the same length.

LtoC(q,M), where q is number of symbols used for coding i.e. size of the alphabet, M is a list of
basis vectors for our linear code over GF (q). This procedure outputs all the codewords (the actual
subset of GF (q)n) with qk elements).

CtoL(n,x,g), where n is length of the codewords, x is a variable,g is a generator polynomial g(x)
over Rn ( mod (xn − 1)). This procedure outputs the generator matrix for the cyclic code < g(x) >
over Rn( mod (xn − 1)).
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CtoDual(n,q,x,g), where n is length of the codewords, q is a prime number of symbols, x is a
variable, g is a polynomial g (a generator of a cyclic code) mod q. This procedure is used to create
the generator matrix for the dual code of CtoL(n,x,g).

AllFactors(n,q,x) inputs the length of the codewords denoted by n, the number of symbols
q where q is prime, and a variable x. It outputs all the factors of xn − 1 mod q except for 1 and
xn − 1. This procedure was provided by Joseph Koutsoutis.

DualCodes(n,q,a), where n is length of the codewords, q is a prime number of symbols, a is the
dimension of the subspace i.e number of codewords in the code. This procedure is used to generate
all cyclic linear [n, n− a] dual codes over GF (q) of length n.

WtEnumerator(q,C,t), where q is a prime number of symbols, C is a linear code C over GF (q),
t is a variable. This procedure is used to generate the weight-enumerator, in t, of the linear code C.

MacWm(n,q,a,Cdual,z), where n is length of codewords, q is a prime number of symbols, a is is
the dimension of the subspace i.e number of codewords in the code, Cdual is a Dual Code C over
GF (q), z is a variable. This procedure is used to compute its weight enumerator polynomial for the
code C using the MacWilliams identity.

AveAndMoms(f,z,N), where f is a probability generating function f(z) (a polynomial, rational
function and possibly beyond), z is a variable, N is the required moment (about the mean). This
procedure is used to return a list whose first entry is the average (alias expectation, alias mean)
followed by the variance, the third moment (about the mean) and so on, until the N -th moment
(about the mean). If f(1) is not 1, than it first normalizes it by dividing by f(1) (if it is not 0).
This procedure was provided in [1].

Di(a,b), where a is numerator of probability, b is the denominator. This procedure is used to
output true with prob. a/b. Try: Di(1,3);

Rqnk(q,n,k), where q is a prime number of symbols, n is the length of codewords, k is the
dimension of the subspace. This procedure is used to create (uniformly at) random n row-echelon
matrices over GF (q)n representing k-dim subspaces. Try Rqnk(2,10,5);

Span1(M,n,q)), where M is a base for a vector subspace over GF (q)n, n is the length of the
codewords, q is a prime number of symbols. This procedure is find all the vectors for a base M for
a vector subspace over GF (q)n. Try: M:=Rqnk(2,10,3); Span1(M,10,2);

Wt1(v), where v is a vector. This procedure is used to compute the weight i.e. the number of
non-zero entries in the vector v.

WtEnu(M,q,z), where M is a base for a vector subspace over GF (q)n, q is number of symbols, z
is a variable. This procedure is used to generate the he weight-enumerator according to the variable
z, of the subspace of GF (q)n generated by M (where n:=nops(M [1]). Try: M :=Rqnk(2,10,3);
WtEnu(M ,2,z);

Stat(n,q,a,z), where n is length of codewords, q is a prime number of symbols, a is the
dimension of the subspace i.e number of codewords in the code, z is a variable. This procedure is
used to generate all cyclic linear [n, n− a] dual codes over GF (q) of length n, C=DualCodes(n,q,a),
and outputs a list of lists with the following information generating polynomial (g(x)) of the code,
weight enumerator of the code, average and standard deviation for each code in C=DualCodes(n,q,a).
For example, Stat(7,2,3,z); returns

[[x3 + x+ 1, z7 + 7z4 + 7z3 + 1, 7/2,
√
7/2], [x3 + x2 + 1, z7 + 7z4 + 7z3 + 1, 7/2,

√
7/2]].

The above example is
CreateTable(n,q,a,z), where n is length of codewords, q is number of symbols, a is is the

dimension of the subspace i.e number of codewords in the code, z is a variable. This procedure is
used to tabulate the results.
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4 Results

In this section, we discuss some of the observations taken from generating some data. The data
discussed in this section is attached as a separate file as some of the files are large.

The goal of this project is to generate as much as data as possible using CreateTable(n,q,a,z).
This procedure will output four columns as follows: The first column prints [n, q, k] which corre-
sponds to the cyclic code of length n over GF (q), the second columns outputs the generator poly-
nomial of the code, g(x), of degree n− k, the third column prints the weight enumerator in variable
z, and the last column outputs a list of length two where the first value is the average weight and
the second value is the standard deviation of the weight of the code.

Running CreateTable(120,2,3,z); outputs a table with 107 rows for 3 ≤ n ≤ 120, 0 ≤ k ≤
117 and q = 2. In this table, all generator polynomials will be of degree 3 since Stat(n,q,a,z)

looks for codes with generator polynomial of degree a = n − k. The time that it takes to generate
this table in Maple is 8.406 seconds. In this table, one of the examples is the cyclic linear code with
parameters [4, 2, 1] with generator polynomial x3 + x2 + x+ 1, and weight enumerator z4 + 1. The

average weight for this cyclic code is 3
2 and its standard deviation is

√
3
7 .

Running CreateTable(120,2,4,z); outputs a table with 144 rows for 4 ≤ n ≤ 120, 0 ≤ k ≤
116 and q = 2. In this table, all generator polynomials will be of degree 4 since Stat(n,q,a,z)

looks for codes with generator polynomial of degree a = n − k. The time that it takes to generate
this table in Maple is 7.281 seconds. One of the examples is the cyclic linear code with parameters
[5, 2, 1] with generator polynomial x4 + x3 + x2 + 1, and weight enumerator z5 + 1. The average
weight for this cyclic code is 5

2 and its standard deviation is 5
2 .

Generating data for 4 ≤ n ≤ 120, q = 2 for generator polynomials of degree n− k is possible for
up to n− k = 12. The running time in Maple for CreateTable(120,2,12,z) is 56.453 seconds.

We generated data for the following:

• CreateTable(120,2,a,z) for 3 ≤ a ≤ 12.

• CreateTable(50,3,3,z) and CreateTable(50,3,4,z).

• CreateTable(50,5,3,z).

• CreateTable(30,7,3,z).

Running CreateTable(50,3,3,z) takes 1.218 seconds in Maple, while CreateTable(70,3,3,z)
takes 3.140 seconds. However, once you run CreateTable(50,3,3,z), it takes a while. We do not
have an estimate on how long it takes.

One of the observations on generating data is the following.

Observation 1. The average weight for a cyclic linear code [n, k] over GF (q) is

n

(
1− 1

q

)
.

Running through the tables, we notice this pattern in the average weight. We do not know
whether this is a known fact. We invite the reader to provide a reference if this is known.
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