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 CODING THEORY: A COUNTEREXAMPLE TO G. H.. HARDY'S
 CONCEPTION OF APPLIED MATHEMATICS

 NORMAN LEVINSON, Massachusetts Institute of Technology

 1. Introduction. A major theme of G. H. Hardy in "A Mathematician's

 Apology" [5] is the division of mathematics into pure mathematics, "the 'real'
 mathematics of the 'real' mathematicians which is almost wholly 'useless' "

 [5, p. 119] and applied mathematics, which he regarded as dull and trivial. In
 contrast to the harmlessness and innocence of 'real' mathematics, the "trivial

 mathematics on the other hand has many applications in war." See [5, p. 1411.
 Hardy exults particularly in the uselessness of number theory which, if "real
 mathematics" were useful, could be exploited for evil as well as good. Hence
 "Gauss and lesser mathematicians may be justified in rejoicing that there is one
 science at any rate, and that their own, whose very remoteness from ordinary
 human activities should keep it gentle and clean." See [5, p. 121].

 Hardy did approve of theoretical physics as exemplified by relativity and
 quantum mechanics, but regarded them as quite useless [5, p. 135]. If time has
 shown him wrong about this, it can be argued that in these subjects he was not
 an expert, and therefore the real test of his ideas concern pure mathematics.

 Here we shall show how coding theory refutes Hardy's notion. Finite fields,
 also called Galois fields, and theorems from number theory play a central role
 in coding theory. In some areas of applied mathematics, the role of pure math-
 ematics is often at best one of reassurance, such as in providing a nonconstruc-
 tive existence theorem or a uniqueness theorem, but not in providing the com-
 putational or analytic procedures that yield the actual results. In practice the
 procedures used may involve more intuition and experience than rigor. This is
 not the case in coding theory, where pure mathematics supplies the constructive
 procedure for carrying out coding. This may surprise applied mathematicians
 more than it will pure mathematicians. To accommodate those applied readers,
 our account will not require familiarity with finite fields or number theory.
 Rather we shall start with the problem of error correction in the transmission
 of information by use of codes, and show how this leads to the introduction of
 a certain mathematical object which is in fact a finite field. Cyclotomic poly-
 nomials, a discovery of Gauss, will play a key role.

 Quadratic residues and the law of quadratic reciprocity (which Hardy [5,
 p. 92 ] regarded as one of the most beautiful theorems of mathematics) also enter
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 250 NORMAN LEVINSON [March

 coding theory [1, pp. 173, 354]. Another working tool is the Chinese remainder
 theorem [1, p. 339]. Hardy [5, p. 113] discusses the aesthetic quality of "real

 mathematics." Here the highly regarded theorems and their proofs possess
 "a very high degree of unexpectedness, combined with inevitability and economy."
 This is true of the manner in which finite fields enter coding theory, as we shall
 see.

 Not unexpectedly, finite fields were introduced into coding theory mainly
 by men trained as mathematicians. Some of the early work was apparently
 not published. The particular development which will be described here, the

 BCH codes, is due independently to Bose and Ray-Chauduri [2] and to
 Hocquenhem [6]. What is most important for the actual usefulness of the
 method, an efficient decoding process for these codes was discovered by an

 engineer, Peterson [7]. The BCH codes were generalized considerably by
 Gorenstein and Zierler [3].

 Berlekamp [1, p. vii] states that 'the essential limitation of all coding and
 decoding schemes.. . (has been) the complexity (and cost) of the decoder.
 The important work of Reed and Solomon (1960), Bose and Chaudhuri (1960),
 Gorenstein and Zierler (1961), and Peterson (1961) marked the advent of a new
 approach to this problem. By associating each digit of certain codes with an
 element in a Galois field, it was found possible to derive an algebraic equation

 whose roots represent the locations of the channel errors.... As a consequence
 it is now possible to build algebraic decoders which are orders of magnitude

 simpler than any that have previously been considered."
 The notation used below mainly conforms with that used in Berlekamp [I].

 2. Coding. Here a message will mean a finite ordered sequence of two sym-
 bols which it is desired to transmit through a channel. For example the channel

 may be a cable or a radio frequency band. It will be convenient to designate the
 two symbols as 0 and 1. A sequence of k such symbols may be regarded as a

 binary k-vector (a,, a2, . * *, ak), where each aj is either 0 or 1. Clearly there are
 2k binary k-vectors. If the transmission channel is noisy, the received vector may

 differ from the one sent, that is, the transmission process may introduce errors.
 One way to improve reliability is to repeat the message several times. This is an
 example of the use of redundancy, that is the transmission of more than the k
 binary digits contained in the original message in order to improve the reliabil-
 ity of the transmission process.

 Simple repetition is not efficient. In general, a binary n-vector is trans-
 mitted with n=k+r, where k is the number of binary digits which form a
 message and r is the number of redundant digits. These redundant digits are

 determined according to some rule by the k digits of the message. The process
 of constructing the redundant n-vector from the message k-vector is called
 encoding. While there are 2n binary n-vectors, the encoding process leads to a

 subset of 2k of these, which may be called code-vectors. Because of errors in
 transmission, the n-vectors which are received need not be code-vectors. The
 process of correcting the received n-vector and extracting the original k-vector
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 1970] CODING THEORY 251

 is called decoding. The arithmetic operations in encoding and decoding will be
 carried out modulo 2, that is, 1+1=0. This is equivalent to binary addition
 with no carry-over, and hence is a process easy to design into an electronic
 computer. The binary arithmetic to be used here need involve only 0 and 1,
 with rules 0+0=0, 0+1=1+0=1, 1+1=0, 0 0=0 1=1 0=0 and 1.1=1.
 With these rules, 0 and 1 form a field of two elements, which is known as GF(2)
 the Galois field of two elements. (This is not the place where finite fields play a
 crucial role in coding theory, since GF(2) by itself is rather trivial.) All arith-
 metic that follows involving vectors, matrices, and polynomials will be carried
 out in GF(2). We recall that modulo 2 all even integers may be replaced by 0
 and all odd integers by 1.

 3. Hamming single error correcting code. Suppose a channel is sufficiently
 reliable so we can assume that if a binary n-vector is transmitted, then the
 received binary n-vector contains an error in at most one entry. How much
 redundancy will allow the position of the error to be determined? Suppose m is
 a positive integer and set n = 2m - 1. (This assumption about n here and later is
 more restrictive than necessary, but is sufficient to illustrate the basic ideas.)
 A binary number b that could designate which of the n received binary digits
 contains an error must itself have m digits, because it requires m binary digits
 to represent the positive integers not exceeding 2m -1. The occurrence of no
 error can be designated by all m digits of b zero. As an example, let m =4 and
 hence n = 15. Then the four-place binary numbers starting with 0001 and ending
 with 1111 represent all integers from 1 to 15. The above remarks suggest that it
 may be possible to correct a single error in the transmission of an n-vector,
 where n=2m-1, if r=m and hence k=n-m. A feasible method for doing so
 was discovered by Hamming [4]. Suppose again that m = 4 so that n = 15 and
 r =4; hence k =11. All vectors which will be considered from here on will be
 column vectors which (for typographical reasons) may also be written in row
 form. Denote the code vectors by C= (C1, C2, . . . , Cm5), where the C1 are binary
 digits. Let H be a matrix of 15 columns, each column a binary vector with four
 entries, all columns distinct, and none identically zero:

 '0 0 0 0 0 0 0 1 ... 1

 0 O 0 1 1 1 1 0 1
 H =

 0 1 1 0 0 1 1 0 1

 1 0 1 0 1 0 1 0.. 1

 (If a column of H is written as a row, then that row considered as a binary num-
 ber, represents the column number. This is convenient but not essential.)

 Let the eleven entries Cs, CS, C6, C7, C9, C10, * * * , C1s of C be the entries of
 the message k-vector. Determine C1, C2, C4, and C8 so that

 (3.1) HC = 0.

 This is possible because the square matrix made up of the eighth, fourth, second,

This content downloaded from 
������������128.6.37.90 on Thu, 29 Feb 2024 16:43:48 +00:00������������� 

All use subject to https://about.jstor.org/terms



 252 NORMAN LEVINSON [March

 and first columns of H is nonsingular. (Indeed it is the unit matrix.) By (3.1)
 all code vectors C are orthogonal to the rows of H. Since the arithmetic above
 is all modulo 2, Ci, C2, C4, and C8 are of course binary digits. This determination'
 of the code vector C completes the encoding process.
 Suppose for the moment that errors occur in several of the digits in the trans-

 mission of C so that the received binary n-vector R does not coincide with C.
 Performing addition mod 2 componentwise, let the binary n-vector E be
 defined by

 (3.2) E=R-C=R+C.

 If the jth entry of R, namely R,, and that of C, namely C,, coincide, then Es = 0.
 But if Rd 0 C,, then E,= 1. Hence the vector E has entries differing from 0 at
 precisely those positions where an error in transmission occurs. Consider now

 HR = HC + HE = HE,

 where use is made of (3.1). If no error has occurred in transmission, then E = 0,
 and so HR = 0. If exactly one error has occurred in transmission and this error
 is in the jth term, then Es= 1 and so

 HR = Hli

 where HU') is the jth column of H. Clearly knowledge of the vector HU) deter-
 mines j. (Indeed with the H above, writing HW') in row form gives the binary
 representation of j.) Hence if at most one error occurs, HR determines at which,
 if any, entry the error occurs. Thus the binary n-vector E is determined, and
 since C=R+E, the vector C is now available. If the entries C,, C2, C4, and C8
 are discarded, the resulting binary k-vector is the original message. This process
 of reconstructing the message from R is the decoding process. Of course if more
 than one error occurs, that is, if E has two or more entries which are 1, the
 above procedure is not valid.

 To correct more than one error in R, the received binary n-vector, one would
 expect to increase r, the number of redundant digits, and hence to decrease k.
 Moreover, for HR then to yield the error locations in R, one would expect H
 to have more rows. The decoding process can be expected to be least compli-
 cated if H has a structural pattern based on a reasonably simple mathematical
 algorithm. A comparatively simple mathematical scheme for locating, at least
 in principle, up to a prescribed number of errors is used in the BCH codes men-
 tioned earlier. The BCH codes make use of finite fields.

 4. The fields GF(2m). (The reader familiar with finite fields can skim this
 section.) A column of an m-rowed matrix H may be regarded as a binary
 m-vector (where of course m2 1). If x is an indeterminate and the aj are all
 in GF(2), then the polynomial m-I as xi of degree m -1 can be used to repre-
 sent a binary m-vector with entries aj, where Ogj _< m -1. (Here it is convenient
 to start the index j at 0.) Since each as, for Oj 6rn -1, can be either 0 or 1,
 there are a total of 2m of these polynomials of degree not exceeding mr-I. Addi-
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 1970] CODING THEORY 253

 tion of these polynomials is equivalent to vector addition in GF(2) and leads
 again to one of the 2m polynomials.

 These rather trivial observations become profound if one further requires
 that the product of any two of the polynomials is again such a polynomial.
 Since the degree of the product of two polynomials is the sum of the degrees
 of each, the degree of the product will be at most mr-1 only if some artifice is
 used. One way to achieve this is to compute polynomials modulo a fixed poly-
 nomial of degree m which we shall call f(x). Thus if P(x) is a polynomial, then
 P(x) is equivalent to P1(x) where Pi(x) is the remainder obtained in dividing
 P(x) by f(x); thus

 P(x) = Pi(x) (modf)

 if

 P(x) = J(x)f(x) + P1(x),

 where J(x) is a polynomial and the degree of Pi(x) is at most mr-1. The arith-
 metic in the division of course is performed in GF(2). In particular P(x) =0
 (mod f) if and only if f(x) is a divisor of P(x).

 As already stated there are exactly 2m polynomials of degree not exceeding
 mr-I and with coefficients in GF(2). In this paragraph we shall exclude the null
 polynomial for which all aj = 0. Thus there remain n = 2m -1 polynomials. The
 manipulation of the m-vectors represented by these polynomials becomes par-
 ticularly simple if the sequence

 (4.1) {IxiJ 0 !j < n-1, (modf)
 generates all n nonnull polynomials.

 Example: mr=2, f(x) =x2+x+i; hence n=3. Then the sequence 1 x, x2,
 (modf) is 1, x, I+x, which are the three nonnull polynomials of degree not
 exceeding m -1 = 1 with coefficients in GF(2).

 We shall show that the sequence (4.1) generates all n of the nonnull poly-
 nomials if

 (4.2) = 1 (modf) and xv $ 1 (modf) for 1 ; k < n.

 (This is the statement that (4.1) should form a cyclic group of order n.) The
 xi, 0 fj ! n-1, are distinct (mod f). Indeed suppose that

 xi = xk (modf), 0 -<j < k i n-1.

 Then multiply the above equation by Xn-k and use the first equation of (4.2)
 to get

 Xn-(kJ)= 1 (modf).

 Since k >j this violates (4.2). Furthermore no xi= 0 (mod f), since multiplying
 by xn-i, we should have 1 = 0 (mod f) orf(x) divides 1, which is impossible since
 degree f = m ?1. Hence the sequence (4.1) of n elements are all distinct (mod f)
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 254 NORMAN LEVINSON [March

 and none is the null element. Therefore the sequence (4.1) generates all n of the
 nonnull polynomials if (4.2) holds.

 If y =xi for some fixed i2 1, then the least positive integer X for which
 y = 1 (mod f) is called the order of y. If yk = 1 (mod f) for some k > 1, then k is
 a multiple of X. Indeed let k=qX+s where q_O and O<s<X. Then l=yk
 =YX q+8 = ye (modf). From the definition of X, since s <X, this implies s =0 and
 proves the following special case of a classical result:

 LEMMA 4.1. Let y be a power of x and let y be of order X. If yk- 1 (mod f), then
 k is a multiple of X.

 From (4.2), f(x) must be a factor of Xn -1. Let us now again take the case
 m = 4 (so that n =15) and enumerate certain particularly relevant factors of
 X"6-1. We revert to ordinary arithmetic, and note that if x3 = 1 or if x5 = 1, then
 certainly x16 = 1. Hence x3-1 and x5-1 are factors of x15-1. Of course x-1
 is a factor of all of these. We now write the obvious identity

 X16 _ 1 (X-1)X3-1 X6-1 ((X15-1)(x-1)\
 X-1 X-1 (X3-1)(X1-1)

 (4.3) Q Q(1) (X)Q(3)(X)Q(5)(X)Q(15)(X),
 where

 Q(1)(X) = X- Q(3)(X) = X2+ + 1, Q(5)(X) = X4 + X3 + X2+ + 1,

 and (as can be verified) Q(15)(X) =X8-x7+x5-X4+X8-X+1.
 REMARK: The,polynomials Q(i)(x) above are examples of the cyclotomic

 polynomials of Gauss, Eisenstein, etc. A root of unity p is said to have order
 j> 1 if j is the least exponent for which pi= 1. As in Lemma 4.1, the roots of
 x15 -1 must all have orders which are factors of 15. The above factorization
 (4.3) involves the roots of orders 1, 3, 5, and 15, and these occur precisely in
 Q(1), Q(3), Q(5), and Q(1) respectively. The polynomial Q(i)(x) has roots all of
 which are of order j.

 REMARK: The choice m = 4 is not entirely an accident. Note that the cases
 m = 3 and m = 5 would not serve nearly as well as illustrative examples because
 7 and 31 are prime numbers, and so the analogue of (4.3) would be too simple
 to be revealing. The case m = 6 becomes computationally rather long to serve
 as a suitable example.

 Return again to GF(2); there Q(l), Q(8), and Q(M) remain the same in (4.3).
 But as can be readily verified,

 Q(15)(X) = (X4 + X3 + 1)(x4 + X + 1).

 Now take f(x) as one of the two quartic factors of Q(1U), say

 (4.4) f(x) = X4 + XI + 1.

 Then since f(x) is a factor of Q(15)(x), it is a factor of x15- 1; therefore x15=
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 19701 CODING THEORY 255

 (modf). By Lemma 4.1, the order of x must be a divisor of 15, so it is 1, 3, 5, or
 15. But f(x) is obviously not a divisor of x -1 or x3 -1 and can easily be shown

 not to be a divisor of x5-1. Hence the order of x is not 1, 3, or 5, so it must be
 15. (This is in fact a particular instance of an easily proved general property of
 the cyclotomic polynomials.) Therefore (4.2) is satisfied, so 1, x, x2, * * *, x14
 (mod f) are the 15 cubic polynomials with coefficients in GF(2), none of which
 is the null polynomial. Given any xi, 1 <j < 14, then xl-i is obviously its inverse

 (mod f). Thus these polynomials form a group under multiplication (mod f).
 (It is of course the cyclic group.) If the null polynomial is adjoined, then the 16
 polynomials obviously form a group under addition. It follows readily that

 mod f these 16 cubic polynomials with coefficients in GF(2) form a field of 16
 elements. This field is known as GF(16).

 REMARK: The polynomial (4.4) is irreducible, that is, it cannot be written as

 the product of two lower degree polynomials in the arithmetic of GF(2). Indeed
 if it could, we should have

 fl(x)f2(x) = f(x).

 Butfi(x) is a member of GF(16), hence has an inverse; the same is true of f2(x).

 If we multiply by these, we obtain 1 = 0 (mod f), which is impossible.
 REMARK: In principle the entire above procedure can be carried out to es-

 tablish the existence of GF(2m) for any m, and to specify an appropriate f(x)
 of degree m. Actually to treat the general case it is necessary to develop a little
 more theory concerning Q(i) (x) and the irreducible polynomials with coefficients

 in GF(2), [I].
 A more convenient way to indicate that we are working mod f(x) is to let

 a denote a root of f(x). Therefore a44+a3+ 1=0 and so any polynomial in a is

 automatically equivalent to a binary cubic in a. It is the cubic which one com-

 putes working mod f since the only property of a that is used is f (a) = 0. Thus
 the elements of GF(16) may be designated by the binary cubics in a.

 Summary: Let a be a root of ao 4+a3+1 =0. (Only this equation, and not the
 actual numerical value of a, is used.) Then each polynomial in a with coeffi-
 cients in GF(2) is equal to a binary cubic polynomial in a. There are 24 =16
 binary cubics. These form the field GF(16). Moreover {ai}, for 0?j_ 14,
 generates the 15 nonnull binary cubics which together with the null polynomial
 make up GF(16). A binary cubic may be viewed as a binary 4-vector.

 5. A multiple error correcting code. To show how finite fields enter into

 coding, let us continue with the case m = 4, 21 = 16. Suppose now it is desired
 to correct up to 3 errors in the transmission of the encoded vector C with n = 15
 entries. Since with n = 15 the correction of one error required a 4-rowed matrix,
 as displayed above (3.1), it seems plausible to try to correct three errors with a
 12-rowed matrix. This operating on R leads to a 12-vector which can be viewed
 as three 4-vectors and hence contains sufficient information to determine three
 integers between 1 and 15 and thereby locate up to three errors in R. A sys-

 tematic way to construct H is with its twelve rows arranged in three blocks of
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 256 NORMAN LEVINSON [March

 four rows as follows:

 CZ CZ a2 3 . . .a314

 11 = cx<a3 al6 a . . .a42

 a5 a o a16 . . . a70

 Each power of a of course represents a binary 4-vector belonging to GF(16).

 Why the row blocks a2i and a4i, 0 5j 5 14, can be omitted will soon be apparent.
 (Since a4=al3+1 in GF(2), the first block of four rows can be computed from
 a a2* * . .a14 and is

 0 O 0 1 1 1 1 0 1 0 1 1 0 0 1

 O 0 1 0 0 0 1 1 1 1 0 1 0 1 1

 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0

 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0.

 The second block of four rows of H, namely 1 a3 a6 a a42, consists of the first,
 fourth, seventh, tenth, and thirteenth columns of the above displayed matrix
 repeated three times. The third block of four rows consists of the first, sixth, and
 eleventh columns of the above displayed matrix repeated five times.)

 The received binary 15-vector R with entries R1, 0 <j14, has the poly-
 nomial representation

 14

 R(x) - Rjxi.
 0

 (Here we are not computing R(x) mod f.) The application HR of H to R is the
 column vector with 12 entries

 R(a), R(al), R(a5)

 which is represented in row form as a triple of 4-vectors, each 4-vector being an
 element of GF(16).

 As in (3.2), let R = C+E. If E= 0, then it is desirable that HR = 0 and there-
 fore we should have HC= 0. Let

 14

 C(x) = S Clxi.
 0

 In terms of a, HC is the binary 12-vector C(a), C(a3), C(a5). For this 12-vector
 to be zero, the polynomial C(x) of degree 14 should vanish for x =a, ao8, and a15.
 To make C(x) vanish for x = o, we can require that f(x) be a factor of C(x) in
 GF(2). It will be convenient now to designate f(x) by Ml2(x). To find a poly-
 nomial, say M3(x), which has a3 as a root, note that a3 has order 5 and hence
 will be a root of Q(5)(x) of (4.3), where

 Q(5)(x) = 1 + X + X2 + X3 + X4.
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 1970] CODING THEORY 257

 Denote Q(5)(x) by M3(x). Similarly as has order 3 and hence is a root of Q(3)(x)

 -1 +x+x2, which we shall denote by M5(x). (The polynomials M1, M3, and Ms
 are all minimum polynomials in the sense that no polynomials of lower degree

 with coefficients in GF(2) have ox, a3, and a5 respectively as roots.) Let

 g(x) = Mi(x)MS(x)M5(x).

 Then the degree of g(x) is 10, since Ml and M3 are of a degree 4 and Ms of de-
 gree 2. Moreover g(x) vanishes for x = a, a3, and as because M1x(a), M3(a3), and
 M5(a5) are each zero. We now require that g(x) be a factor of C(x) to assure
 that C(x) has ax, ac3, and a5 as roots. Recall that C is a vector with 15 entries.

 Let C10, Cll, C12, C13, C14 be a message vector of k =5 binary digits. Choose
 9 Cj xi as the negative of the remainder of the quotient

 C14x'4 + C13x13 + * + C1oX10

 g(x)

 so C(x) will indeed have g(x) as a factor and hence a, a3, and as as roots. The
 above arithmetic is of course in GF(2). This is the encoding process with
 n = 15, k =5, and r = 10. The binary polynomial g(x) is known as the generator
 polynomial of the code. Indeed a code-vector C is characterized by the fact that

 C(x) is divisible by g(x).
 It will now be shown in principle at least that the 12-vector HR can be used

 to correct up to a maximum of 3 errors in transmission. Since HC= 0, therefore
 HR =HE, and the 12 vector HE regarded as a triple of 4-vectors determines
 E(a), E(a3), and E(a5). We recall that the entries of E are 1 where an error
 occurs and 0 otherwise. Suppose 3 errors occur say at the entries i1, i2, and i3
 of E. Then

 E(a) = ail + ai2 + ai,

 E(as) = a8il + aSi2 + a S4

 E(a5) = aSi + cx5i2 + C5i8.

 It will be convenient to note that with the aj in GF(2),

 (5.1) (aajC')2= E2a2 = a 2j

 because all cross products have 2 = 1 + 1 as a factor. Suppose now that 3 errors
 occur at the positions i4, i5, and i6, all distinct from i', i2, and i3 above, and

 suppose these errors lead to the same values for E(a), E(o%3), and E(a5) as do
 il, i2, and is. Then this leads to

 ajil + aji2 + au3 = a"4 + ajic + aii j = 1 3, 5

 or

 6

 (5.2) E ayi =O j= 1,3,5.
 dl1
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 258 NORMAN LEVINSON [March

 But now applying (5.1) to the case j= 1, (5.2) holds for j= 2. Applying (5.1) to
 the case j=2 and then to j = 3 gives (5.2) for j=4 and j-6. (That is why we

 omitted the even powers of a from the rows of H.) Thus

 6

 (5.3) E sajid = 0 j = 1, 2, 3, 4, 5, 6.
 d-1

 The determinant of the above system is a Vandermonde determinant equal to

 (5.4) ail+i2+' +j6 [I (aid - aie)
 6g d>eg 1

 Each factor of (5.4) is

 aid _ = aie(aiiie - 1).

 Since 0? <d < 14, it follows that 0 < I id-fe < 14. Hence, since the order of a is
 15, no factor of (5.4) is zero so the determinant is not zero. Thus the homo-
 geneous system (5.3) is impossible. If the other cases-such as two sets of three
 errors but with some in common, or where one set or both sets have less than
 three errors-are considered, there are now fewer columns in the analogue to
 (5.3); hence some rows may be discarded leading again to a Vandermonde

 situation. Thus if there are at most three errors, then HR determines their
 locations uniquely.

 Of course for successful decoding, the above uniqueness result, while re-
 assuring, must be replaced with a reasonably simple constructive procedure for

 determining which entries of the vector E, if any, are 1. It is the simple orderly
 structure of H in terms of powers of a that mnakes the mechanization of such a
 decoding procedure feasible [1, Chap. 7].

 The BCH codes, based on conceptions from pure mathematics, are not

 unique in using unexpected parts of pure mathematics for coding. Among the
 codes there are for example euclidean-geometry codes [1, p. 375], projective-
 geometry codes [1, p. 376], tensor product codes [1, p. 346], and quadratic
 residue codes [1, p. 354].

 The preparation of this paper was supported in part by the Office of Naval Research and by
 the National Science Foundation NSF GP-13778.
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