OK to post Nuray Kutlu #1: Small sample of 91-end of Frank Garvan's awesome Maple booklet with(LinearAlgebra); A := Matrix(3, 3, [1, 4, 5, 6, 3, 6, 7, 3, 4]); Determinant(A); 51 B := Transpose(A); [1 6 7] B := [4 3 3] [5 6 4] Rank(A); 3 combine(x*x); 2 x floor(3.5); 3 #2: form a matrix with 0-1 whose number of rows and number of columns are both prime numbers and "draw" your initials 10001001001 11001001010 10101001100 10011001010 10001001001 Then turn it into a 1-dimensional vector: 1000100100111001001010101010011001001100101010001001001 #3:Use RC(q,n,d,K) with q=2, d=3,5,7, and 5 ≤ n ≤16 and K very big (say 10000), and each time run it several times and pick the one with the most elements (to get M as big as possible). How do the codes that you got compare to the best possible values in table 2.4 on p.14 of Hill's book? After running the lines multiple times, I got the following results. Compared to the values in Hill's book, the small numbers are pretty similar but Hill's numbers are a lot greater when it comes to larger numbers. temp := RC(2, 5, 3, 10000); nops(temp); 4 temp := RC(2, 6, 3, 10000); nops(temp); 6 temp := RC(2, 7, 3, 10000); nops(temp); 9 temp := RC(2, 8, 3, 10000); nops(temp); 16 temp := RC(2, 9, 3, 10000); nops(temp); 29 temp := RC(2, 10, 3, 10000); nops(temp); 47 temp := RC(2, 11, 3, 10000); nops(temp); 88 temp := RC(2, 12, 3, 10000); nops(temp); 156 temp := RC(2, 13, 3, 10000); nops(temp); 264 temp := RC(2, 14, 3, 10000); nops(temp); 453 temp := RC(2, 15, 3, 10000); nops(temp); temp := RC(2, 16, 3, 10000); nops(temp); 743 1179 temp := RC(2, 5, 5, 10000); nops(temp); temp := RC(2, 6, 5, 10000); nops(temp); temp := RC(2, 7, 5, 10000); nops(temp); temp := RC(2, 8, 5, 10000); nops(temp); temp := RC(2, 9, 5, 10000); nops(temp); temp := RC(2, 10, 5, 10000); nops(temp); temp := RC(2, 11, 5, 10000); nops(temp); temp := RC(2, 12, 5, 10000); nops(temp); temp := RC(2, 13, 5, 10000); nops(temp); temp := RC(2, 14, 5, 10000); nops(temp); temp := RC(2, 15, 5, 10000); nops(temp); temp := RC(2, 16, 5, 10000); nops(temp); 2 2 2 4 4 8 10 19 28 45 66 106 temp := RC(2, 5, 7, 10000); nops(temp); temp := RC(2, 6, 7, 10000); nops(temp); temp := RC(2, 7, 7, 10000); nops(temp); temp := RC(2, 8, 7, 10000); nops(temp); temp := RC(2, 9, 7, 10000); nops(temp); temp := RC(2, 10, 7, 10000); nops(temp); temp := RC(2, 11, 7, 10000); nops(temp); temp := RC(2, 12, 7, 10000); nops(temp); temp := RC(2, 13, 7, 10000); nops(temp); temp := RC(2, 14, 7, 10000); nops(temp); temp := RC(2, 15, 7, 10000); nops(temp); temp := RC(2, 16, 7, 10000); nops(temp); 1 1 2 2 2 2 4 4 6 10 13 19 #4:The binary Hamming codes (to be studied later) have n=2r-1 (where r is a positive integer), and minimal distance 3. They are known to be perfect. How big are they? (i.e. what is there M?) (Hint: use the Sphere Packing Bound) since we are using the binary hamming code, q =2 since n= 2^r -1, and we have d = 3 so t=1 use sphere packing bound, <= (2^(2^r -1))/ (sum i form 0 to 1 (bi(2^r -1, i) * (2-1)^i)) = (2^2^r/2)/ (1 + 2^r -1) <=2^(2^r -1 -r)