Isaac Lam, HW25, April 21st 2024 #C25.txt: Zero-Knowledge Proofs. April 18, 2024 Help:=proc(): print(`LD(p), RG(n,p), RHG(n,p), ZKP1(n,G,pi,Opt)`): end: with(combinat): #LD(p): inputs a pos. rational number from 0 to 1 and outputs true with prob. p LD:=proc(p) local i:i:=rand(1..denom(p))(): if i<=numer(p) then true:else false:fi:end: #RG(n,p): inputs a pos. integer n and outputs a simple graph on n vertices where the #prob of an edge is p (independetly) RG:=proc(n,p) local i,j,G: G:={}: for i from 1 to n do for j from i+1 to n do if LD(p) then G:=G union {{i,j}}: fi: od: od: G: end: #RHG(n,p): inputs a pos. integer n and outputs a simple HAMILTONIAN graph on n vertices #where the #prob of an edge is p (independetly) together with the Hamiltonian path #The output is a pair [G,permutation] where the permutation of {1,...,n} #is the Hamiltonian cycle that you know and you don't want anyone else to know #BUT you do want to convince them that you DO know RHG:=proc(n,p) local i,j,G,pi: pi:=randperm(n): G:={seq({pi[i],pi[i+1]},i=1..n-1), {pi[n],pi[1]}}: for i from 1 to n do for j from i+1 to n do if LD(p) then G:=G union {{i,j}}: fi: od: od: [G, pi]: end: #ZKP1(n,G,pi,Opt): Does ONE ROUND of the Blum protocol. Inputs a graph n,G, #a Hamiltonian pi, and Opt=1 or 2 Opt=1 you show all the n+binomial(n,2) boxes #Opt2, you show the contents of the n boxes correponsing to the mapping of #your Hamiltonian ZKP1:=proc(n,G,pi,Opt) local B1,B2,i,j,sig: sig:=randperm(n): for i from 1 to n do B1[i]:=sig[i]: od: for i from 1 to n do for j from i+1 to n do if member ({i,j},G) then B2[{sig[i],sig[j]}]:=1: else B2[{sig[i],sig[j]}]:=0: fi: od: od: if Opt=1 then [op(B1),op(B2)]: else {seq(B2[{sig[pi[i]],sig[pi[i+1]]}],i=1..n-1),B2[{sig[pi[n]],sig[pi[1]]}]}: fi: end: VerifyOpt1 := proc(n, G, B1, B2) local edge, faithful; faithful := true; for edge in G do if B2[B1[edge[1]], B1[edge[2]]] = false then faithful := false; end if; end do; faithful; end proc; ZKP1 := proc(n, G, pi, Opt) local B1, B2, i, j, sig; sig := randperm(n); for i to n do B1[i] := sig[i]; end do; for i to n do for j from i + 1 to n do if member*({i, j}, G) then B2[{sig[i], sig[j]}] := 1; else B2[{sig[i], sig[j]}] := 0; end if; end do; end do; if Opt = 1 then VerifyOpt1(n, G, B1, B2); else if {B2[{sig[pi[1]], sig[pi[n]]}], seq(B2[{sig[pi[i + 1]], sig[pi[i]]}], i = 1 .. n - 1)} = {1} then return true; else return false; end if; end if; end proc; ZKP := proc(n, G, pi, K) local i; for i to K do if LD(1/2) then if ZKP1(n, G, pi, 1) = false then return false; end if; else if ZKP1(n, G, pi, 2) = false then return false; end if; end if; end do; true; end proc;