#OK TO POST VerifyOpt1:= proc(n,G,B1,B2) local Edges, i, j, pair: for i from 1 to nops(B1) do: for j from 1 to nops(B1) do: if B2[B1*(i-1)+ j] = 1 then pair:= {B1[i],B1[j]}: if not member(pair, G) then: RETURN (false): fi: fi: od: od: RETURN(true): end: #ZKP1(n,G,pi,Opt) MODIFIED ZKP1:=proc(n,G,pi,Opt) local B1,B2,i,j,sig: sig:=randperm(n): for i from 1 to n do B1[i]:=sig[i]: od: for i from 1 to n do for j from i+1 to n do if member ({i,j},G) then B2[{sig[i],sig[j]}]:=1: else B2[{sig[i],sig[j]}]:=0: fi: od: od: if Opt=1 then RETURN (VerifyOpt1(n,G,B1,B2)): elif {seq(B2[{sig[pi[i]],sig[pi[i+1]]}],i=1..n-1),B2[{sig[pi[n]],sig[pi[1]]}]} = {1} then RETURN(true): else: RETURN(false): fi: end: ZKP:= proc(n,G,pi,K) local coin, i: for i from 1 to K do: if LD(1/2) = true then coin:=1: else coin:=2: fi: if ZKP1(n,G,pi,coin) <>true then RETURN(false): fi: od: RETURN(true): end: #OLD CODE #C25.txt: Zero-Knowledge Proofs. April 18, 2024 Help:=proc(): print(`LD(p), RG(n,p), RHG(n,p), ZKP1(n,G,pi,Opt)`): end: with(combinat): #LD(p): inputs a pos. rational number from 0 to 1 and outputs true with prob. p LD:=proc(p) local i:i:=rand(1..denom(p))(): if i<=numer(p) then true:else false:fi:end: #RG(n,p): inputs a pos. integer n and outputs a simple graph on n vertices where the #prob of an edge is p (independetly) RG:=proc(n,p) local i,j,G: G:={}: for i from 1 to n do for j from i+1 to n do if LD(p) then G:=G union {{i,j}}: fi: od: od: G: end: #RHG(n,p): inputs a pos. integer n and outputs a simple HAMILTONIAN graph on n vertices #where the #prob of an edge is p (independetly) together with the Hamiltonian path #The output is a pair [G,permutation] where the permutation of {1,...,n} #is the Hamiltonian cycle that you know and you don't want anyone else to know #BUT you do want to convince them that you DO know RHG:=proc(n,p) local i,j,G,pi: pi:=randperm(n): G:={seq({pi[i],pi[i+1]},i=1..n-1), {pi[n],pi[1]}}: for i from 1 to n do for j from i+1 to n do if LD(p) then G:=G union {{i,j}}: fi: od: od: [G, pi]: end: