#OK to post homework #Lucy Martinez, 02-16-2024, Assignment 9 with(numtheory): with(NumberTheory): # Problem 1: Write a procedure Hampcm(r,q) that outputs # the parity-check matrix (in standard form) of Ham(r,q), Hampcm:=proc(r,q) local M,M1,i,j,index,vec: M:=Fqn(q,r) minus {[0$r],seq([0$(i-1),1,0$(r-i)],i=1..r)}: M1:={}: for vec in M do index:=0: for i from 1 to nops(vec) do # checks and breaks the for loop as soon as an entry is non-zero if vec[i]<>0 then index:=i: break: fi od: # checks whether the first nonzero entry equals 1, if so, # it adds it to the set M1 if vec[index]=1 then M1:=M1 union {vec}: fi: od: TRA([op(M1),seq([0$(i-1),1,0$(r-i)],i=1..r)]): end: # Problem 2: Write a procedure Ham(r,q) that outputs # a generating matrix for Ham(r,q) Ham:=proc(r,q) : antiPCM(q,Hampcm(r,q)): end: # Problem 3: Using the bottom half of p. 88, # write a procedure DecodeHamming(q,r,v) that decodes # a received vector v if Ham(r,q) was used. # Experiment with it, by coding a random message vector, # getting a code-word, randomly changing ONE place, and # then decoding it. Did you get the same thing? ####################################### From Previous Classes Procedures: Help10:=proc(): print(`TRA(M), Ham2pcm(r), Encode(q,M,u), Decode(q,M,v)`): end: with(linalg): # TRA(M): inputs a matrix M and outputs the transpose of M TRA:=proc(M) local i,j: # this works but we will use double seq #M1:=transpose(M): #convert(M1,list): [seq([seq(M[j][i],j=1..nops(M))],i=1..nops(M[1]))]: end: # Ham2pcm(r): The parity check matrix of the binary Hamming code of order r Ham2pcm:=proc(r) local M,i: M:=Fqn(2,r) minus {[0$r],seq([0$(i-1),1,0$(r-i)],i=1..r)}: # we want the transpose matrix # we remove the zero vector, and the identity codewords # then, we put the identity matrix to the rightmost side of our matrix TRA([op(M),seq([0$(i-1),1,0$(r-i)],i=1..r)]): end: # Ham2(r): The generating matrix of the binary Hamming code of order r Ham2:=proc(r): antiPCM(2,Ham2pcm(r)): end: # Encode(q,M,u): Encode:=proc(q,M,u) local i: if nops(M)<>nops(u) then return(FAIL): fi: add(u[i]*M[i],i=1..nops(M)) mod q: end: # Decode(q,M,v): decodes the received vector v to the most likely original transmitted # vector message u Decode:=proc(q,M,v) local H,sy,cl: H:=PCM(q,M): sy:=Syn(q,H,v): cl:=SynT(q,M)[1][sy]: v-cl mod q: end: ####################################### added after C9.txt #Start Code by Joseph Koutsoutis #WtEnumerator(q,M,t): The weight-enumerator, in t, of the linear code generated by the basis M over GF(q) WtEnumerator := proc(q,M,t) local v,C,zero,n: n := nops(M[1]): zero := [0$n]: C := LtoC(q,M): add(t^HD(zero,v), v in C): end: ##end code by Joseph Koutsoutis #start code by Pablo Blanco # input q, the modulus and a parity check matrix H in standard form. H:= [-A^T | I_{n-k}] has k rows and n columns. # outputs M, the corresponding generating matrix. M := [ I_k | A] has n-k rows and n columns. A has k rows and n-k columns. antiPCM:=proc(q,H) local A,B,M,n,rows,k,co,tempCol: rows:=nops(H): # this is n-k n:=nops(H[1]): # number of H columns k:= n-rows: B:=extractMCols(1,k,H): # this is -A^T, we wish to return [I_k | A]. tempCol := extractMCols(1,1,B): # take the first column, negate it A:= [[seq(op(tempCol[k]), k=1..nops(tempCol))]]: # make the first column into a row for co from 2 to k do: tempCol := extractMCols(co,co,B): # take the (co)-th column A:= [op(A), [seq(op(tempCol[k]), k=1..nops(tempCol))]]: # add the co-th column as a row od: A:= -A mod q: # we took the transpose, now we negate. co:=1: M:=A: for co from 1 to k do: #we will append the identity matrix row by row M[co] := [0$(co-1), 1, 0$(k-co),op(A[co])]: od: M: end: # a few helper functions: # extracts rows i through j of matrix M, returns a matrix with those rows extractMRows := proc(i,j,M) local colN,k: colN:=nops(M[1]): # number of columns of M [seq(M[k][1..colN] ,k=i..j)] end: # extracts columns i through j of matrix M, returns a matrix with those columns extractMCols := proc(i,j,M) local rowN,k: rowN:= nops(M): # number of rows of M [seq( M[k][i..j] , k=1..rowN)]: end: # DecodeLT(q,M): inputs a generating matrix M (note that n=nops(M[1])), # and uses the Syndrom Table to construct a table that sends every vector in Fqn(q,n) # to the member of LtoC(q,M) that it is mapped to, i.e. the "closest vector". DecodeLT := proc(q,M) local T,n,V,S,v,syn,H: option remember: n:=nops(M[1]): T:= SynT(q,M)[1]: V:= Fqn(q,n): S:=table(): H:=PCM(q,M): for v in V do: syn:= Syn(q,H,v): S[v]:= v-T[syn] mod q: od: op(S): end: #End code by Pablo Blanco # SynT(q,M): inputs q (modulus) and a basis (in standard form) M of some linear code # over GF(q), outputs the syndrom table: mapping each possible syndrom to its # corresponding coset leader in its standard array SynT:=proc(q,M) local n,T,A,H,S,s,i: if SFde(q,M)<> M then return(FAIL): fi: n:=nops(M[1]): A:=SAah(q,n,M): H:=PCM(q,M): # S is the set of syndroms S:={}: # T is the syndrome table for i from 1 to nops(A) do s:=Syn(q,H,A[i,1]): S:=S union {s}: T[s]:=A[i][1]: od: op(T),S: end: #PCM(q,M): inputs the mod. q and a non-empty basis (a list of lists) #n=nops(M[1]) M is k by n matrix and H=PCM(q,M) is an n-k by n matrix #describing the basis of some linear code over GF(q)^n outputs of dimension k=nops(M) #the (n-k) by n PCM:=proc(q,M) local k,n,i,j,H: k:=nops(M): n:=nops(M[1]): if [seq([op(1..k,M[i])],i=1..k)]<>[seq([0$(i-1),1,0$(k-i)],i=1..k)] then print(`Not standard form , please use SFde(q,M) first `): RETURN(FAIL): fi: for i from 1 to n-k do for j from 1 to k do H[i,j]:=-M[j][i+k] mod q: od: for j from k+1 to n do if j-k=i then H[i,j]:=1: else H[i,j]:=0: fi: od: od: [seq([seq(H[i,j],j=1..n)],i=1..n-k)]: end: #DP(q,u,v): DP:=proc(q,u,v) local i,n: n:=nops(u): add(u[i]*v[i],i=1..n) mod q: end: #Syn(q,H,y): The syndrom of the transmitted vector y if the PCM is H #(a row vector of length n-k) Syn:=proc(q,H,y) local i: [seq(DP(y,H[i]),i=1..nops(H))]: end: #################################From students # gets a row from a matrix GetRow:=proc(M,r) local v,i,n: v:=[]: n:=nops(M[1]): for i from 1 to n do v:=[op(v),M[r,i]]: od: v: end: # sets a row in a matrix SetRow:=proc(M,r,v) local i,M1: M1:=copy(M): for i from 1 to nops(v) do M1[r,i]:=v[i]: od: M1: end: # gets a column from a matrix GetCol:=proc(M,c) local v,i,n: v:=[]: n:=nops(M): for i from 1 to n do v:=[op(v),M[i,c]]: od: v: end: # sets a column in a matrix SetCol:=proc(M,c,v) local i,M1: M1:=copy(M): for i from 1 to nops(v) do M1[i,c]:=v[i]: od: M1: end: # returns matrix M in standard form SFde:=proc(q,M) local k,n,i,j,S,rj,cj,ri: k:=nops(M): n:=nops(M[1]): S:=copy(M): for i from 1 to k do: # algorithm is iterated from 1 to k # if S_ii = 0, then we need to perform a swap: if S[i,i] = 0 then for j from i+1 to k while S[j,i] = 0 do od: # look for available row if j<=k then # swap rows rj:=GetRow(S,j): S:=SetRow(S,j, GetRow(S,i)): S:=SetRow(S,i,rj): else # look to swap columns for j from i+1 to n while S[i,j] = 0 do od: # look for available col # swap cols cj:=GetCol(S,j): S:=SetCol(S,j, GetCol(S,i)): S:=SetCol(S,i,cj): fi: fi: # scale row to have leading entry 1 ri:=GetRow(S,i): ri:=(ri*(ri[i]&^(-1) mod q)) mod q: S:=SetRow(S,i,ri): for j from 1 to k do if j <> i then rj:=GetRow(S,j): rj:=(rj - (rj[i] * ri mod q)) mod q: S:=SetRow(S,j,rj): fi: od: od: S: end: # finds a vector of smallest weight among A (collection of given vectors) minW := proc(A) local n,v,w,minw,minv: n:= nops(A[1]): minw := HD(A[1],[0$n]): minv := A[1]: # initialize min weight vectors for v in A do w:= HD(v,[0$n]): if w < minw then minw := w : minv := v : fi: od: minv; end: #SAah(q,n,M): inputs a basis M of a linear [n,nops(M),d] code outputs Slepian's Standard Array #as a matrix of vectors containing all the vectors in GF(q)^n (alas Fqn(q,n)) such that #the first row is an ordering of the members of the actual code (LtoC(q,M)) with #[0$n] the first entry and the first columns are the coset reprenatives SAah:=proc(q,n,M) local SL,C,A,a,r1,r,j: C:=LtoC(q,M): C:=C minus {[0$n]}: r1 := [[0$n],op(C)]: SL := [r1]: A:=Fqn(q,n) minus {op(r1)}: while A<>{} do #find coset representative of min weight a := minW(A) : #build next row r := []: for j from 1 to nops(r1) do r := [op(r), a + r1[j] mod q]: od: # add new row to array SL := [op(SL), r]; # print(SL); # update available vectors A := A minus {op(SL[-1])}: od: SL: end: #################################### # C7.txt, Feb. 8, 2024 Help7:=proc(): print(`NN(C,v),DecodeT(q,n,C),GLC1(q,M,d),GLC(q,n,d),SA(q,n,M)`): end: # NN=Nearest Neighbor # NN(C,v): inputs a code C (subset of Fq(q,n) where n:=nops(C)) # and a vector v, and finds the set of members of C closest to v NN:=proc(C,v) local i,rec,cha: # extracts first element of C, set of champions cha:={C[1]}: # the recurrent hamming distance which will be updated rec:=HD(v,C[1]): for i from 2 to nops(C) do if HD(v,C[i])FAIL do M:=M1: M1:=GLC1(q,M,d): od: M: end: # SA(q,n,M): inputs a basis M of a linear [n,nops(M),d]-code, and ouputs # Slepian's Standard Array as a matrix of vectors containing all the vectors # in GF(q)^n (aka Fqn(q,n) ) such that the first row is an ordering of the # members of the actual code ( LtoC(q,M) ) with [0$n] as the first entry and the # the first columns are the coset representatives #SA:=proc(q,n,M) local SL,C,A: #C:=LtoC(q,M): #C:=C minus {[0$n]}: #SL:=[[0$n],op(C)]: # removes first row of SL #A:=Fqn(q,n) minus {op(SL[1])}: # look at page 58 in the book (page 35 in pdf) # write a function that finds the minimum weight, call it minW(A) where A # is the list of vectors and finds a vector of smallest weight # (min number of zero entries) # Then, we will need to use minW(A) to choose the next coset representative a1 # The next row (of SL) is a1+SL[1] # keep updating A until you run out of vectors in Fqn(q,n) #end: ##################################### From previous classes #Feb. 5, 2024, C6.txt#C5.txt, Feb. 1, 2024 Help6:=proc(): print(`LtoC(q,M), MinW(q,M)`):end: Help5:=proc(): print(`Nei(q,c), SP(q,c,t), GRC(q,n,d), GRCgs(q,n,d) , MinD(C), CV(S,n)`): print(`BDtoC(BD,n)`): end: #Old code #Jan. 29, 2024 C4.txt Help4:=proc(): print(`Fqn(q,n), HD(u,v), RV(q,n) , RC(q,n,d,K), SPB(q,n,t), BDfano(), BDex212() `):end: #Alphabet {0,1,...q-1}, Fqn(q,n): {0,1,...,q-1}^n Fqn:=proc(q,n) local S,a,v: option remember: if n=0 then RETURN({[]}): fi: S:=Fqn(q,n-1): {seq(seq([op(v),a],a=0..q-1), v in S)}: end: #Def. (n,M,d) q-ary code is a subset of Fqn(q,n) with M elements with #minimal Hamming Distance d between any two members #It can detect up to d-1 errors # #If d=2*t+1 correct t errors. # # Hamming distance between u and v: counts the number of places in which # u and v differs #HD(u,v): The Hamming distance between two words (of the same length) HD:=proc(u,v) local i,co: co:=0: for i from 1 to nops(u) do if u[i]<>v[i] then co:=co+1: fi: od: co: end: #SPB(q,n,d): The best you can hope for (as far as the size of C) for q-ary (n,2*t+1) code SPB:=proc(q,n,t) local i: trunc(q^n/add(binomial(n,i)*(q-1)^i,i=0..t)): end: #RV(q,n): A random word of length n in {0,1,..,q-1} RV:=proc(q,n) local ra,i: ra:=rand(0..q-1): [seq( ra(), i=1..n)]: end: #RC(q,n,d,K): inputs q,n,d, and K and keeps picking K+1 (thanks to Nuray) random vectors #whenver the new vector is not distance <=d-1 from all the previous one RC:=proc(q,n,d,K) local C,v,i,c: C:={RV(q,n)}: for i from 1 to K do v:=RV(q,n): if min(seq(HD(v,c), c in C))>=d then C:=C union {v}: fi: od: C: end: BDfano:=proc(): {{1,2,4},{2,3,5},{3,4,6},{4,5,7},{5,6,1},{6,7,2},{7,1,3}}: end: BDex212:=proc(): {{1,3,4,5,9}, {2,4,5,6,10}, {3,5,6,7,11}, {1,4,6,7,8}, {2,5,7,8,9}, {3,6,8,9,10}, {4,7,9,10,11}, {1,5,8,10,11}, {1,2,6,9,11}, {1,2,3,7,10}, {2,3,4,8,11} } end: #end of old code #Nei(q,c): all the neighbors of the vector c in Fqn(q,n) Nei:=proc(q,c) local n,i,a: n:=nops(c): {seq(seq([op(1..i-1,c),a,op(i+1..n,c)], a=0..q-1) , i=1..n)}: end: #SP(q,c,t): the set of all vectors in Fqn(q,n) whose distance is <=t from c SP:=proc(q,c,t) local S,s,i: S:={c}: for i from 1 to t do S:=S union {seq(op(Nei(q,s)),s in S)}: od: S: end: # GRC(q,n,d): outputs q-ary codes with minimum distance d, length n GRC:=proc(q,n,d) local S,A,v: A:=Fqn(q,n): S:={}: while A<>{} do: v:=A[1]: S:=S union {v}: A:=A minus SP(q,v,d-1): od: S: end: #GRCgs(q,n,d): George Spahn's version GRCgs:=proc(q,n,d) local S,A,v: print(`Warning: use at your own risk`): A:=Fqn(q,n): S:={}: while A<>{} do: v:=A[rand(1..nops(A))()]: S:=S union {v}: A:=A minus SP(q,v,d-1): od: S: end: #MinD(C): The minimal (Hamming) distance of the code C MinD:=proc(C) local i,j: min( seq(seq(HD(C[i],C[j]),j=i+1..nops(C)), i=1..nops(C))): end: #CV(S,n): the characteristic vector of the subset S of {1,...,n} CV:=proc(S,n) local v,i: v:=[]: for i from 1 to n do if member(i,S) then v:=[op(v),1]: else v:=[op(v),0]: fi: od: v: end: BDtoC:=proc(BD,n) local s, C: C:={seq(CV(s,n),s in BD)}: C:=C union subs({0=1,1=0},C): C union {[0$n],[1$n]}: end: ##end of old stuff #LtoC(q,M): inputs a list of basis vectors for our linear code over GF(q) #outputs all the codewords (the actual subset of GF(q)^n with q^k elements LtoC:=proc(q,M) local n,k,C,c,i,M1: option remember: k:=nops(M): n:=nops(M[1]): if k=1 then RETURN({seq(i*M[1] mod q,i=0..q-1) }): fi: M1:=M[1..k-1]: C:=LtoC(q,M1): {seq(seq(c+i*M[k] mod q,i=0..q-1),c in C)}: end: #MinW(q,M): The minimal weight of the Linear code generated by M over GF(q) MinW:=proc(q,M) local n,C,c: n:=nops(M[1]): C:=LtoC(q,M): min( seq(HD(c,[0$n]), c in C minus {[0$n]} )): end: