Proceedings of the International Congress of Mathematicians
Berkeley, California, USA, 1986

How to Prove a Theorem
So No One Else Can Claim It

MANUEL BLUM

Goldwasser, Micali, and Rackoff [GMR] define for us what it means for a
theorem to have a “zero-knowledge proof.” In brief, a zero-knowledge proof
is an interactive probabilistic protocol that gives highly convincing (but not
absolutely certain) evidence that a theorem is true and that the prover knows a
proof (a “standard” proof in a given logical system), while providing not a single
additional bit of information about the proof. GMR formalize this idea. We do
not. Nevertheless, we hope that the reader who has not read their paper will
still understand our proofs.

Goldreich, Micali, and Wigderson [GMW] take another leap forward. They
show that if one makes a reasonable assumption (that one-way functions! exist),
then it is possible to convert any standard constructive proof of any of the the-
orems in a large natural class of theorems? into a zero-knowledge proof that the
theorem is true. GMW start by considering a particular NP-complete problem:

Graph 3-Colorabilsty.

Instance. A graph G.

Question. Can G be “properly” 3-colored (each node colored by one of 3 given
colors so that no two adjacent nodes receive the same color).

GMW show that a “prover” who knows how to 3-color a particular graph
G can convince a verifier that (1) G is 3-colorable, and (2) the prover knows a
3-coloring, without giving away any additional information. In particular, the
prover does not give away the slightest clue how to 3-color G.

Supported, in part, by National Science Foundation Grant DCR 85-13926.

"One-way functions are 1-1 functions from n-bit integers to n-bit integers that, informally,
are easy to compute in the forward direction, but hard to invert on all but a small fraction of
n-bit integers.

3These theorems, which arise frequently in mathematics and computer science, are the
yes-instances of decision problems x in NP. A good reference to NP and the theory of NP-
completeness is: Michael Garey and David Johnson, Computers and sntractabslity: a guide
to the theory of NP-completeness, Freeman and Company, 1979.

© 1987 International Congress of Mathematicians 1986

1444



HOW TO PROVE A THEOREM 80 NO ONE ELSE CAN CLAIM IT 1445

The essence of the GMW proof is to show the prover how to break up his
proof into several pieces in such a way that

(1) the verifier can tell, by looking at any one piece of the proof, whether or
not that piece has been properly constructed. Moreover, it should be clear to
the verifier that if all the pieces are properly constructed, then the proof is valid,
and

(2) the prover will not reveal any information about how the proof was con-
structed when he reveals any single piece of the proof.

To start, the prover hides each piece of the proof in its own locked safe, in
reality a one-way function applied to the piece of proof. The verifier is permitted
to point to any safe and ask the prover to open it. The fact that the piece of
proof inside the safe is properly constructed is evidence to the verifier that all
pieces are properly constructed, so the proof is valid. It will be evident to the
verifier that the pieces can all be properly constructed by any prover who knows
how to properly 3-color G, but at least one piece must be improperly constructed
by a prover who does not.

Now, proofs can be broken up into pieces in many ways. The prover must
select a sequence of breakups such that a piece from the first breakup plus
another from the second, and so on, does not accumulate evidence to provide the
slightest hint to the verifier about how to prove the theorem. It is even possible
to continue the process indefinitely without ever providing a single additional
bit of information about how to prove the theorem.

By repeatedly breaking up the proof and opening just one safe each time—
whichever the verifier requests—the prover convinces the verifier that he is not
cheating unless he is very very lucky.

GMW point out that because Graph 3-Colorability is an NP-complete prob-
lem, any problem in NP can be given a zero-knowledge proof, i.e., anyone who
knows a polynomial length proof of a yes-instance of an NP problem can give a
zero-knowledge proof of this fact. (For the reader familiar with the concepts of
NP-completeness, this result is a consequence of Cook’s theorem that satssfiabsi-
sty is NP-complete, the NP-completeness of 3-colorabslsly, and the fact that the
transformations used in these proofs are (many-one) Karp-reductions.)

Outline of the talk. In this talk we show the following:

(1) How a prover can give a zero-knowledge proof that he knows a Hamilton
cycle in a graph. Since the proof is zero-knowledge, the prover does not give the
verifier the slightest idea how to construct that cycle. The zero-knowledge proof
is interactive (the prover breaks his proof up into pieces and the verifier requests
to see a particular piece) along the lines of GMW'’s proof. It is, however, more
efficient than GMW in terms of the number of requests the verifier must make
to achieve any fixed level of confidence. To ensure that a cheater will pass the
test with probability of cheating < 1/2*, we require just k requests rather than
the k - E requests required by GMW for graphs with E edges.

(2) How a prover can give a zero-knowledge proof that a graph G is 3-colorable.
This serves to show that the Hamilton cycle problem is not special so far as zero-



1446 MANUEL BLUM

knowledge is concerned. Again, the standard proof of 3-colorability is broken into
just 2 pieces in every round, though at the price of polynomial growth in each
piece. The reader who knows the GMW proof may find it instructive to compare
their proof with ours.

(3) How the proof of any theorem whatsoever (e.g., Fermat’s Last Theorem)
whose proof has been formalized in a standard logical system (such as Whitehead
and Russell’s Principia Mathematicae), together with any integer upper bound
on the length of the proof, can be translated into a zero-knowledge proof. The
zero-knowledge proof shows that the theorem is very probably true and that the
prover almost certainly knows a proof in the given logical system. It gives away
no other information whatsoever.

Some zero-knowledge proofs. Let G be a graph. A Hamilton cycle in G
is a cycle that passes through all the nodes of G exactly once. We show how a
prover can convince a verifier that he knows a Hamilton cycle in graph G without
giving the slightest additional clue about how to construct that cycle.

The theorem to be given a zero-knowledge proof is one of a class of theorems
asserting the existence of a Hamilton cycle in a graph. Although we do not
formalize it, the logical proof system in which the theorem is proved is one in
which each proof is just a sequence of edges in the graph. If the edges form a
cycle through all the nodes of G, then the proof (that G has a Hamilton cycle)
is valid; otherwise, it is not.

In the following protocols, we assume that lockable boxes are available to the
prover, and that only the prover has the key. Instead of locking information
in a box, however, one can encrypt it. One-way functions serve this purpose,
providing us the equivalent of digital lockable boxes. The one-way functions
make it possible to pursue the following interactive protocol entirely on paper
rather than by using the hardware of lockable boxes and keys.

A zero-knowledge protocol for proving that a graph G has a Hamil-
ton cycle. The protocol is interactive and probabilistic. It is probabilistic be-
cause (1) both prover and verifier must have the capability of generating se-
quences of independent unbiased random bits, and (2) the successful outcome
of the protocol ensures to the verifier that the prover is probably not cheating.
On the other hand, the protocol absolutely—not just probably—guarantees the
prover that no hint of the proof is divulged to the verifier.

Begin.
. ___The n nodes_of G_are labeled Ny, ..., Np. .. S

Prover: Fix one Hamiltonian cycle.
The protocol has k rounds. Each round proceeds as follows:
Begin. ‘

Prover: In secret (i.e., without letting the verifier know what you are doing),
encrypt G with the boxes. Do this by randomly mapping n labeled nodes
Ni,..., N, 1-1 into n labeled boxes By,..., By, in such a way that every



HOW TO PROVE A THEOREM 80 NO ONE ELSE CAN CLAIM IT 1447

one of the n! permutations of the nodes into the boxes is equally probable.
For every pair of boxes (B;, B;) prepare a box labeled B;;. This box is
to contain a 1 if the node placed in B; is adjacent (linked by an edge) to
the node in Bj; 0 otherwise. All n + (3) boxes are then to be locked and
presented to the verifier.

The verifier receives n + (3) labeled boxes. He is now given a choice:

(1) If he wishes, the prover will unlock all the boxes. In this case, the
verifier may check that the boxes contain a description of G. (For
example, if Ny is adjacent to both N3 and Ny but to no other nodes
of G, and if Ny is in B;, N3 in B;, and Np in B, then there should
be a 1 in both B;; and By, and a 0 in By, for every other value of
z.)

(2) On the other hand, if the verifier so chooses, the prover will open
exactly n boxes By, Bjk,Bki,...,Byi (note the cyclic subscripts),
those containing the Hamilton cycle that the prover selected in G,
and show that these boxes all contain a 1. This proves the existence
of a Hamilton cycle (in whatever graph, if any, is represented by the
boxes). Since the B; are not opened, the sequence of node numbers
defining the Hamilton cycle in G is not revealed.

Verifier: Select one of the 2 options (graph or Hamilton cycle) at random
in such a way that both choices are equally likely.

Prover: Open the appropriate boxes.
End.
Verifier: Accept the proof if the prover complies and, in every case, correctly

exhibits either the requested G or the requested Hamilton cycle. Otherwise,
reject the proof.

End.

THEOREM 1 (PROVER PROBABLY CANNOT CHEAT VERIFIER). If the
prover does not know a proof of the theorem, his chances of convincing the verifier
that he does know a proof are < 1/2F when there are k rounds.

PROOF. If the prover does not know a proof, then to pass the test, he must
quess in advance what the provee will request. He fails the test if he quesses
wrong even once. Q.E.D.

THEOREM 2 (VERIFIER CANNOT CHEAT PROVER). The verifier gets not
the slightest hint of the proof (other than that “the theorem s true and the prover
knows a proof in the given logical proof system”). In particular, the verifier
cannot turn around and prove the.theorem to anyone else without proving it
from scratch himself.

PROOF. (1) When the prover reveals G, what does the verifier get? Just one
of the n! random mappings of the n nodes of G into n labeled boxes, each instance



1448 MANUEL BLUM

of G having exactly the same probability as any other. The verifier could have
constructed such instances for himself with the same probability distribution.
So the prover is not giving the verifier any additional information.

(2) When the prover reveals the Hamilton cycle, what does the verifier get?
Just a random n-cycle, every n-cycle being exactly as likely as any other. This
is because (a) the prover is required to select a particular Hamilton cycle in
G and to always reveal this particular cycle when so requested, and (b) every
permutation of the n nodes into the n boxes is equally likely. Thus the verifier
is being shown a random cycle. He could have created random cycles with this
uniform distribution himself. Q.E.D.

The above theorem does not prove that the protocol is zero-knowledge. The
formal definition of zero-knowledge requires one to show that a verifier can simu-
late the prover, that is, take the prover’s part in the dialogue with the verifier. If
so, then any efficient® probabilistic algorithm that enables the verifier to extract
useful information from his conversation with the prover could just as well be
used without the prover to obtain that information efficiently. Here is how a
proof of zero-knowledge would go:

THEOREM 3. The protocol above for proving that a graph G has a Hamilton
cycle 13 zero-knowledge.

PROOF. Suppose the verifier has an efficient probabilistic algorithm A to
extract useful information from his conversation with the prover. Then the
verifier can use his algorithm to extract the information even without the aid of
the prover. In each round he does the following:

Begin.

Verifier simulates the prover: The verifier flips a fair coin and, according to

the outcome of the coin, encrypts either the graph G or an arbitrary n-cycle.

G is (randomly) encrypted the same way the prover would have done so. A

cycle is (randomly) encrypted just the way the prover would have encrypted an

n-cycle (in G). Then, acting as prover, he presents the encrypted information
to the verifier. Now he takes the other side.

Verifier simulates the verifier: The verifier uses his algorithm A to compute

(perhaps probabilistically) whether to request a graph or a cycle. Because the

algorithm has no way to guess with any advantage whether the boxes contain

a graph or a cycle, there is a 50% chance that A requests an option (graph or

cycle) that the verifier, in the guise of prover, can supply. If not, the verifier

-—backs-up- algorithm-A-to-the-state-it-was-in-at-the-start-of-this~round-and—
restarts the entire round (verifier simulating the prover).

End.

In an expected 2 passes through .each round, the verifier will obtain the ben-
efit of algorithm A without the help of the prover. Thus the algorithm does

3An efficient (probabilistic) algorithm is one that computes its output in (expected) time
polynomial in the length of the input.



HOW TO PROVE A THEOREM SO NO ONE ELSE CAN CLAIM IT 1449

not help the verifier do something with the prover in expected polynomial time
that he could not as well have done without the prover in expected polynomial
time. Q.E.D.

What is the difference between Theorems 2 and 3?7 Theorem 2 asserts that the
verifier gets no hint of the proof of a theorem from the protocol (though he may
get other information). Theorem 3 asserts that the verifier not only gets no hint
of the proof but actually gets no information (that he couldn’t equally well have
generated efficiently for himself) whatsoever. It may be helpful to observe that a
proof of zero-knowledge will be difficult if not impossible to obtain (i.e., I do not
know how to obtain it) if the protocol for proving that G has a Hamilton cycle
is modified so that its rounds are executed in parallel. In parallel means that
the prover first presents all k graphs to the verifier, then the verifier makes his k
requests all at once, and finally the prover opens the requested boxes. To prove
that this parallel protocol is zero-knowledge is difficult because it is unclear how
the verifier can simulate the prover’s role in this interaction efficiently.

The Hamilton cycle problem is not the only one with zero-knowledge proofs.
In fact, any logical proof of length n can be split into two pieces of length
polynomial(n) along the lines shown above, so that k rounds will catch all but
1 in 2% attempts to cheat. Moreover, as GMW have shown, and as we indicate
in our own way in Theorem 4, the process of transforming logical proofs into
zero-knowledge proofs can be entirely mechanized so that a computer program
could do it efficiently. We now give another simple example of how to transform a
standard proof, in this case a proof of 3-colorability, into a zero-knowledge proof.
The reader who knows GMW's method for breaking up a proof of 3-colorability
into E pieces, £ being the number of edges in G, may find it interesting to
compare that protocol to ours, which breaks a proof into just 2 pieces.

A zero-knowledge protocol for proving that a graph G is 3-colorable.
The n nodes of G are labeled Ny,..., N,. The colors of the nodes will be red,
white, and blue. To start, the prover knows a proper 3-coloring of G, which we
call the “standard” 3-coloring. If node N; is colored red, we call it N,.R; if white,
NY; if blue, NP. A triangle might therefore have the proper coloring scheme
NE,NE,NY.

Begin.

The protocol has k rounds. Each round proceeds as follows:

Begin.

Prover: Prepare 3n pairs of boxes (B, By ), (B§, Ba),. . ., (B$§,, Bsn). With-
out revealing to the verifier what you are doing, randomly map 3n nodes
Nf,...,NE N}V, ..,NV NE,...,NB 1-1 onto the 3n pairs of boxes. Do
this in such a way that every one of the (3n)! permutations mapping the
{Nf} onto the {(Bf, B;)} is equally probable. Next, insert Ngolgr .
into the associated (B;',B,-) by putting color into Bj and node-number
into B,'.



1450 MANUEL BLUM

For every pair of number-containing boxes (B;, B;), prepare a box labeled
B;;. This box is to contain a 1 if the prover’s proper 3-coloring of G has
colored the node of G in B; with the color in Bf, the node of G in B; with
the color in B}, and if the node in B; is adjacent in G to the node in B;; 0
otherwise. '

All boxes are then to be locked and presented to the verifier.

The verifier is now given a choice:

(1) If the verifier so wishes, the prover will unlock all the boxes B;; and
all the number-containing boxes B;, but none of the color-containing
B{. In this way, the prover reveals the graph G without revealing
its coloring. The verifier checks that the baxes contain a correct
description of G.

(2) On the other hand, if the verifier so chooses, the prover will open the
3n boxes {B{} to reveal the colors they contain, and then open just
those boxes B;; (joining B; to B;) such that Bf contains the same
color as Bj. The opened boxes B;; will all contain a 0 if and only if
any 2 nodes that are colored the same are not adjacent in the graph
represented by the boxes. This allows the verifier to check correct
3-coloring.

Verifier: The correct thing to do is select one of the 2 options at random in
such a way that both choices are equally likely.

Prover: Open the requested boxes.

End.

Verifier: Accept if the prover correctly complies with all requests; reject other-
wise.

End.

This protocol is zero-knowledge, and the probability that a fake prover can
cheat a verifier is 1/2*.

A zero-knowledge protocol for proving any theorem. Impagliazzo I
has given direct zero-knowledge protocols along the lines shown above for several
problems including the subset sum problem, satisfiability, and the very general
problem of proving that a given polynomial-time nondeterministic Turing ma-
chine accepts a given input.

THEOREM 4. Given any logical proof system (such as Russell and White-
head’s very general system within which it is generally acknowledged that all
mathematical theorems can be formulated and proved), given any theorem prov-
able in that system, and given an upper bound, L, on the length of some proof of
the theorem in the system, st i3 possible to efficiently transform that proof into a
zero-knowledge proof of the theorem. This is an interactive probabilistic protocol



HOW TO PROVE A THEOREM SO NO ONE ELSE CAN CLAIM IT 1451

whereby the prover persuades the verifier that with high probabilsty,

(1) the theorem has a proof in the given proof system of length < L, and

(2) the prover knows such a proof.
The probabilsty that a cheater, i.c., a prover who does not know a proof, will pass
this test < 1/2* for a protocol with k rounds.

IDEA OF PROOF. The proof system is defined by a nondeterministic TM
(Turing machine) which, on input (statement of theorem, 1™), guesses a proof of
the theorem of length < n, checks if it is a valid proof within the system, and
accepts if it is, rejects if not.

The prover gives the verifier a zero-knowledge proof that he, the prover, knows
an accepting path for this TM for some n. The protocol for this is along the
same lines as for Hamslton cycle in a graph [I]: one splits the computations into
two pieces. The integer n must be chosen by the prover to be an upper bound
on the length of his proof in the system. Q.E.D.

REFERENCES

[GMR] Shafi Goldwasser, Silvio Micali, and Charles Rackoff, The knowledge complezity
of interactive proof-systems, Proc. 17th ACM Sympos. on Theory of Computing,* 1985, pp.
291-304.

[GMW] Oded Goldreich, Silvio Micali, and Avi Wigderson, Proofs that yield nothing
but the validity of the assertion, and the methodology of cryptographic protocol design,
presented at a Workshop on Probabilistic Algorithms (Marseille, March 1986) organized by C.
P. Schnorr; Proc. 27th IEEE Sympos. on the Found. of Computer Science,® 1986, pp. 174-187.

[1) Russell Impagliazzo, A collection of direct zero-knowledge protocols for NP-complete
problems, Berkeley Computer Science Division Rept., Univ. of Calif., Berkeley, Calif., 1986.

[BC] Gilles Brassard and Claude Crepeau, Non-transitive transfer of confidence: a per-
fect zero-knowledge interactive protocol for SAT and beyond, Proc. 27th IEEE Sympos. on
the Found. of Computer Science,5 1986, pp. 188-195.

[BCR] Gilles Brassard, Claude Crepeau, and Jean-Marc Robert, Information theoretic
reductions among dssclosure problems, Proc. 27th Sympos. on the Found. of Computer
Science,5 1986, pp. 168-173.

[Y] Andrew Yao, How to generate and ezchange secrets, Proc. 27th Sympos. on the
Found. of Computer Science,® 1986, pp. 162-167.

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720, USA

4The ACM Symposium on Theory of Computing (STOC) is held yearly in May. Its pro-
ceedings, which are refereed by a distinguished 10-member committee, contain the best of the
previous six months computer science research in all areas of theoretical computer science.
Proceedings may be ordered from the ACM Order Dept., P.O. Bax 64145, Baltimore, MD
21264.

5The IEEE Symposium on Foundations of Computer Science (FOCS) is held yearly in
October. Its proceedings, like STOC, are refereed by a distinguished 10-member commitiee.
They contain the best of the previous six months computer science research in all areas of
theoretical computer science. Proceedings may be ordered from IEEE Comp. Soc., P.O. Box
80452, Worldway Postal Center, Los Angeles, CA 90080.



