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Over the years, coding theory has amassed a wide
variety of results. Some of these give better construc-
tions of codes with faster algorithms. Others provide
theoretical upper limits on how well codes can per-
form. The theory uses an enormous variety of math-
ematical tools, many of them more advanced than the
ones described in this article. Most notable among them
are algebraic geometry and graph theory, which are
used to construct very good codes, and the theory .of
orthogonal polynomials, which is used to prove limits
on parameters of codes, such as their rate and relia-
bility. Most of the highlights of this vast literature are
covered in Pless and Huffman (1998).
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VIL.7 Mathematics and Cryptography
Clifford Cocks

1 Introduction and History

Cryptography is the science of hiding the meaning or
content of communications. The aim is that an adver-
sary who sees a message only in its enciphered state
cannot make sense of or derive useful information from
what is seen. On the other hand, the intended recip-
ient must be able to decipher the true meaning. For
most of history cryptography has been an art practiced
seriously only by a few—such as governments for mil-
itary and diplomatic communications—for whom the
consequences of unauthorized disclosure of informa-
tion are damaging enough to justify the expense and
inconvenience of enciphering messages. Recently this
has changed: one of the results of the information rev-
olution has been the need for instant and sécure com-
murgication for all on demand. Fortunately, mathemat-
ics has come to the rescue and provided theoretical
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and algorithmic developments to meet this need. It has
also provided entirely new possibilities, such as “digital
signatures” (which will be discussed later).

One of the oldest and most basic methods of cryptog-
raphy is simple substitution. Suppose that a message to
be enciphered consists of a piece of English text. Before
it is sent, the sender and recipient agree on a permu-
tation of .the twenty-six letters of the alphabet, which
they keep .private. An enciphered message might then
look sométhing like

ZPLKKWL MFUPP UFL XA EUXMFLP

For very short messages this method is reasonably
secure—it is just possible to work out the meaning
of the above example by matching letter patterns to
those commonly seen in English, but it is quite chal-
lenging! However, for longer messages, simply count-
ing the frequencies of each letter and comparing those
counts with the frequencies of letters in natural lan-
guage will almost always reveal the hidden permutation
sufficiently to allow the meaning to be easily recovered.

A major leap forward in cryptography came with the
advent of mechanical enéryption devices in the twenti-
eth century, of which the German Enigma used during
World War 1 is perhaps the most famous, example. An
account of the fascinating Enigma story and the role of
the code breakers of Bletchley Park appears in Simon
Singh's excellent book on cryptography (Singh 1999).
It is interesting that the principle on which Enigma
operates is a development of the simple substitution
method. Each letter of the input message is enciphered
exactly as a simple substitution, but with the addi-
tional rule that the permutation controlling the sub-
stitution changes after every letter. A complex electro-
mechanical device controls the substitution process in
a deterministic way. The recipient can decipher the
message only if he or she can set up another device
in exactly the same way as the originator. The informa-
tion needed to do this is called the key. Making sure
that keys are known only by the right people is called
key management. Until the advent of public-key cryp-
tography (to be discussed later), key management was
amajor inconvenience and expense for anyone wanting
to secure their communications.

2 Stream Ciphers and Linear
Feedback Shift Registers

Since the advent of computers, information has tended
to be transmitted as binary data: that is, as a stream
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Figure 1 Linear feedback shift register.
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of 0s and 1s. For such data there is a rather differ-
ent method of encipherment based on a device called
the linear feedback shift register, or LFSR (see figure 1).
The first step is to generate a random-looking séquence
of Os and 1s in a deterministic way, and this is done
by means of a recurrence forniula, of which a simple
example is
Xt = Xt-3 + Xt-4-

Here, addition is mod 2, so x; will be 1 if an odd num-
ber of the terms X3, Xt-4 is 1,-and it will be O other-
wise. We must also specify the first four values of the
sequence, 5o let us begin with 1000. The sequence then
continues as follows:

100110101111000100110101111....

More generally, one specifies some positive integers
ai,as,...,ar, called feedback positions—the numbers
3 and 4 in the above example—and defines a sequence
by means of the recurrence formula

Xt = Xt—ay + Xt—ag +*° -t Xt-ars

where again the addition is mod 2.

A sequence produced in this way usually looks fairly
random, but because there are only{initely many binary
sequences of length a, it must eventually repeat.
Notice that, in our example, the sequence is periodic
with period 15, which is actually the longest possi-
ble period, since there are sixteen binary sequences
of length 4, and after a moment’s thought one sees
that the sequence 0000 cannot occur (or else the whole
sequence up to then would have had to consist entirely
of zeros).

In general, the length of the sequence depends on
properties of the polynomial

P(xX)
over the FIELD {1.3 §2.2] F; of two elements. As we have
just seen in the case a, = 4, the maximum possible
sequence length is 2% — 1, and for this length to be
achieved the polynomial P(x) must be irreducible over
Fo: that is, it must not factorize into smaller polyno-
mials. For example, the polynomial 1 + x4 + x° is not

=14xM X% 4+ XY
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irreducible, because (1 + x + x3)(1 + x + x?) expands
out to

3 3

lex+x+x2+x2+x3+x3+x%+x°,

which equals 1 + x* + x5 since 1 + 1 = 0 in the field F».
TIrreducibility is a necessary condition for the se-
quence to have the maximum length, but it does not
guarantee it. For that we need a second condition: that
the polynomial is primitive. To see what this means, let
us take the polynomial x3 + x + 1 and calculate the
remainder when, for the first few positive integers m,
we divide x™ by x3 + x + 1 (with all coefficients in F3).
When mt goes from 1 to 7 we obtain the polynomials x,
x2, x +1,x2 +x,x% +x+1,x%+1, 1. For instance,

=03 +x+ D3 +x+1)+x2+1,

so the remainder on dividing x® by x3 +x +1is x2 +1.

Now the first time that we obtained the polynomial 1
was when m = 7, and 7 = 23 — 1. This shows that
the polynomial x3 + x + 1 is primitive. In general, a
polynomial p(x) of degree d is primitive if the first
time you obtain a remainder of 1 when you divide x™
by p(x) is when m = 24 — 1.

There are computationally efficient tests for deter-
mining whether a polynomial is irreducible and wheth-
er it is primitive. The advantage of using a primitive
polynomial as the basis of an LFSR is that, in the se-
quence it generates, no subsequence of length a, is
repeated until all nENzero sequences of length a, have
appeared exactly once.

How is all this applied in cryptography? A sim-
ple idea would be to take the stream of bits gen-
erated by an LFSR and add it term by term to the
message one is enciphering. For instance, if the LFSR
generated a sequence that began 1001101 and the
message was 0000111, then the encrypted message
would begin 1001010. To decipher such a message,
one could simply repeat the process: adding the two
sequences 1001101 and 1001010 gives the original
message 0000111. For this to work, the recipient would
need to know the details of the LFSR in order to  be able
to generate the same sequence 1001101, so one might
consider using the feedback positions (in this case 3°
and 4) as the’'secret key.

The above procedure is not good enocugh to be of
practical use because there is an efficient algorithm,
due to Berlekamp and Massey (1969), that can recover
the feedback rule from the stream of bits it generates.
It is better to use some predetermined nenlinear func-
tion of the successive sequences of 4, bits in order to
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Figure 2 Feistel round structure.

scramble further the sequence of bits produced by the
LFSR. Even then, such procedures ‘are simple enough
that, with careful design, they can be applied fo large
amountfs of data very quickly.

3 Block Ciphers and the Computer Age
3.1 Data Encryption Standard

When computers started to be used, an entirely dif-
ferent method of cryptography became practical: the
block cipher. The first example of this was DES: the
Data Encryption Standard (first published in 1977).
DES #vas adopted as a standard in 1976 by the Us.
National Bureau of Standards (now the National Insti-
tute odf Standards and Technology). This eénciphers a
block of 64 bits at a time, with a key of length 56 bits. It
has a particular structure, referred to as a Feistel cipher
(see figure 2).

This structure is as follows. Given a block of 64 bits,
you first divide it into two parts of 32 bits each,.and
call them L and R- Next, you take a subset of the 56 bits
of the key, according to some predetermined rule, and
use this subset to define a nonlinear function F, , again
according to some predetermined rule, which takes 32-
bit sequences to 32-bit sequences. You thenreplace the
pair [L,R] by the pair [R @ F(L),L]. (Here R & F(L)
denotes the result of taking the mod-2 sum of R and
F(L) one bit at a time.)

Having done that,.you repeat the process a nym-
ber of times, choosing a different nonlinear function
F each time (but always deriving it in a predetermined
way from the 56-bit key). A complete encryption by
DES consists of 16 such rounds, together with some
permutation of the bits of the input and output.

One reason for using the Feistel structure is that
as long as one knows the 56-bit key it is quite easy
to reverse the encryption process. Given'a round that
performs the transformation

[L.R] — [Re@F(L),L],
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orie can invert it by means of the transformation
[L,R] ~ [R,L® F(R)].

This has the great advanfage that it does not require
us to invert F, so even if F is quite complicated the
procedure can be easy to carry out.

A number of what are called “modes of use” of DES
have Been developed. Simply using the algorithm to
encrypt each 64-bit block of data in turn is called ECB
(for- electronic codebook) mode. A disadvantage of this
mode jsthat if there is an exact 64-bit repeatin the data
then this resulls in an exact 64-bit repeat in the cipher.

Another mode is CBC, or cipher block chaining, mode.
Here, each'block of data is added mod 2 to the previ-
ous block before being encrypted as above. In OFB, or
output feedback, mode the block of data is added to the
DES encipherment of the previous block. It is an easy
exercise to see how to decipher in CBC and OFB modes,
and in practice these are the two most common modes
of use of DES.

3.2 Advanced Encryption Standard

The U.S. National Institute of Standards and Tech-
nology recently held a competition for a replacement
for DES, to be called the Advanced Encryption Stan-
dard, or AES. This was to be a 128-wide block cipher
with a variety of possible key lengths. Many compet-
ing designs were submitted and subjected to public
scrutiny, and the winning entry was called Rijndael,
after the designers Joan Daemen and Vincent Rijmeén.

The design is remarkable and elegant and makes use
of interesting mathematical structures (Daeman and
Rijmen 2002). The 128 bits in each block are thought
.0f"as 16 bytes (a byte consists of eight bits), arranged
inadx4 square. Each byte is then thought of as an ele-
ment of Fys¢, the field of order 256. Encryption consists
of ten or more rounds (the exact number depending
upon the key length); and each round mixes the data
and the key.

A round consists of a series of steps, typically as
follows. First, each byte, regarded as an element of
the finite field Fosg, is replaced by its inverse in the
field, except that 0 is left unchanged. Each byte is then
regarded as an element of the vector space of dimen-
sion 8 over the field F; and an invertible linear trans-
formation is applied. Each row of the 4 x 4 square is
then rotated, by a“different number of bytes for each
row. Next, the values of each column of the square are
taken to be the coefficients of a degree 3 polynomial
over Forzs and this is muitiplied by a fixed polynomial
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;and reduced modulo x? + 1. Finally, the key for the
round, which is derived linegrly from the encryption
key. is added modulo 2 to the 128 bxts

1t can be seen that all of these steps are reversible,
which makes decipherment straightforward. It is likely
that AES will take over. from DES as the most widely
used block cipher.

4 One-Time Key

The various encryption methods described above rely
on the computational difficulty of recovering some
secret-that protects the enciphered data. There is one
classic encryption method that does not rely pn this
property This is the “one-time key.” Imagine that the
message to be enciphered is encoded as a sequence
of bits (for example, the standard ASCII encoding that
represents each character as elght bits). Sgppose that
ahead of time the sender and recipient have shared
a sequence of random key bits 71,...,7, at least as
long as the message. Suppose that the message bits are
P1s P2+ s Pne

The enciphered message is then x3, X2, ..., Xn, Where
Xi = pi + 7. Here, as usual, addition is mod 2 addition
in each bit. If the bits 7; are fully random, then knowing
the sequience x; gives no information whatsoever about
the message sequence p;. This system is called one-time
key. It is very secure as long as the fces{’is used only once.
However, it is impractical to use this method except
in very specialized situations because of the need for
sender and recipient to share and keep safe possibly
large quantities of key material.

5 Public’Key Cryptography

All of the examples of encryption methods that we
have seen so far have had the following structure. Two
communicators, agree on an algorithm or method for
encryption. The choice of method (e.g., simple subst-
tution, AES, or one-time key) can be made public with-
out the security of the system being compromised. The
two communicators also agree on a sécret key in the
form required by the chosen encryption method. This
key needs to be kept secure and never revealed to any
adversary. The communicators encipher and dec1pher
messages using the algorithm and secret key.

This presents a major problem: how can the commu~
nicators securely share the secret key? It would be inse-
cure to exchange this over the same system that they
will later use to send enciphered messages. Until s0-
called pubhc-key methods were discovered this issue
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limited the use of encryption to those organizations
that could afford the physical security and separate
communication channels necessary for distributing
keys reliably.

The following remarkable, counterintuitive proposi-
tion forms the basis of public-key cryptography: it is
possible for two entities to communicate information
in such a way that they start with no secret shared
in[ormation; an adversary has access to all commu-
nications between them; at the end the entities have
shared secret knowledge that the adversary is unable
to determine.

It is easy to see.how useful such a capability could
be. Consider, for example, someone making a pur-
chase over-the Internet. Having identified a product one
wishes to buy the next step is to send personal infor-
mation such as credit card details to the vendor. With
public-key cryptography it is possible to do this in a
secure inanner straightaway.

How might public-key cryptography be possible? The
structure of a sohition was proposed by James Ellis in
1969,1 with the first public descriptien by Diffie and
Hellman (1976). The critical idea is to use a function
that is hard to invert unless you have an “inverse key”
that helps you to do so.

More formally, a ohe-way function H is a mapping
from a set X to itself, with the property that if you are
told the value y'= H(x) for some x € X, then it is
computationally hard ‘to determine x. The inverse key
is a secret value, z, say, used in creating the function H,
with the’property that if you know z then it becomes
computationally easy to recover x from H(x).

We can use this to solve the problem of secure key
exchange as follows. Let us suppose that Bob wishes to
send some data securely to Alice. (Particularly useful
would be a shared secret that they can use later as a
key for subsequent communications.) Alice begins by
generating a one-way function H with an inverse key
z. She then communicates thefunction H to Bob, but
the inverse kéy remains her personal secret, which she
reveals'to no one—not even to Bob. Bob takes the data
x that he wishes to send, computes H{x), and returns
the result of his computation to Alice. Because Alice
has the inverse key z,'she can reverse the function H
and thereby recover x.

Now suppose that an adversary manages to read all
-the communications between Alice and Bob. Then the

1. See “The possibility of secure non-secret digital encryption,”
available at www.cesg.gov.uk/site/publications/media/possnse.pdf.
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adversary will know the function H and the value H (x).
However, Alice has not communicated the inverse key
2, so the adversary is faced with the computationally
intractable problem of inverting H. Therefore, Bob has
successfully transmitted the secret x to Alice without
the adversary being able to work out what it is. (For
a more précise idea of what computational intractabil-
ity is and a further discussion of one-way functions,
see COMPUTATIONAL €OMPLEXITY [IV.20], especially
section 7.)*

it can be helpful to imagine the one-way function H
as a padlock and the inverse key as the key that unlocks
the padlock. Then if Alice wants to receive an enci-
phered message from Bob, she sends him her padlock,
retaining the key. Bob locks (enciphers) the message
into a box with the padlock, and returns it. Only Alice,
who is in possession of the padlock key, can unlock
(decipher) the message.

5.1 RSA

it is all very well to have such a framework, but it
leaves open an obvious question: how can one produce
a onf-way function with an inverse key? The following
method was published by Rivest, Shamir, arid Adleman
(1978). It relies on the fact that it is relatively easy to
find lhrge prime numbers and multiply them to pro-
duce a composite number, but it is much harder, if you
are given that composite number, to determine its two
prime factors.

To create a one-way function by their method, Alice
first finds two large prime numbers P and Q. She then
calculates the integer N = PQ and sends it to Bob,
together with another integer ¢ called the encryption
exponent. The values N and e are called the public
parameters because it does not matter if an advérsary
knows what they are.

Bab then expresses the secret value x that he wishes
to send to Alice as a number modulo N. Next, he com-
putes H(x), which is defined to be x® mod N, that is,
the remainder when x* is divided by N. Bob sends H (x)
to Alice.

Upon receipt of Bob’s message, Alice needs to recover
x from xe mod N. This she can do by first calculating
the number d that satisfies the equation

.de=1 mod (P --1)(Q ~ 1).

To do this efficiently, Alice can use EUCLID’S ALGO-
RITHM [I1.22]. Notice, however, that this‘would not be
possible if she did not know the values of P and Q.In
fact, the ability to calculate the correct value of d can
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be shown to be equivalent to the ability to factorize N.
The value of d is Alice’s private key (or “inverse key” in
the terminology above): it is the secret that can undo
the encryption function H.

This is because H(x)4 mod N can be shown to equal
x.Indeed, the significance of the number (P-1)(Q-1)
is ‘that it equals ¢(N), the mumber of integers less
than N and coprime to N. EULER'S THEOREM [l11.58]
states that x*™) = 1 mod N whenever x is coprime
to N. Therefore, x™®W) = 1 mod N as well, so0 if de
has the form m¢(N) + 1, as we are assuming, then
H(x)% = x%¢ = x mod N. In other words, if you raise x
to the power e mod N and then rajse that to the power
d mod N you get back to x. (An important point is that
raising numbers to powers mod N is computationally
easy by the method of “répeated squaring.” This is dis-
cussed in COMPUTATIONAL NUMBER THEORY [IV.3 §2].)

While it has not been proved that the only way for
an adversary to defeat the RSA encryption system is to
factorize N, no other general attack has been found.
This has created interest in finding improved factor-
ization methods. A number of new subexponential
methods—elliptic curve factorization (Lenstra 1987),
the multiple polynomial quadratic sieve (Sllverman.
1987), and the number field sieve (Lenstra and Lenstra
1993)—have been discovered in the years since the RSA
algorithm was found. See COMPUTATIONAL NUMBER
THEORY [IV.3 §3] for discussions of some of them.

5.1.1 Implementation Details

The security of the RSA system depends on the primes
P and Q being large enough to make factorization hard.
However, the larger they are, the slower the encryption
process is. Thus, there is a trade-off between security
and the speed of encryption. A typical choice that is
often made is to use primes that are each of 512 bits.

For the deciphering method to work, the encryp-
tion exponent ¢ must have no factors in common with
either (P — 1) or (@ — 1). This assumption was needed
when we applied Euler's theorem, and if it does not
hold then the encryption function is not invertible.
Values such as 17 or 216 + 1 are often used in prac-
tice, because making e small reduces the amount of
computation needed to calculate the encrypted value
x¢ mod N. (These two values of e are also well-suited
to calculation by repeated squaring.)

5.2 Diffie-Hellman

Another approach to generating a shared secret was
published by Whitfield Diffie and Martin Hellman. In
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their protocol Alice and Bob jointly create a shared
secret, which can then be used as the key for one of
the conventional cryptographic systems such as AES.
To do this, they agree on a large-prime number P and a
primitive element g modulo P, which means a number
g such'that gF~! = 1 mod P, but g™ # 1 mod P for any
m<P-1.

Alice then creates her own private key a, a number
randomly chosen between 1 and P - 1, and calculates
ga = g% mod P and sends this to Bob.

Bob similarly creates his own private key b between
1 and P - 1 and calculates and sends g, = g° mod P
to Alice.

Alice and Bob can now create the shared secret
g% mod P. Alice calculates this as gf mod P and Bob
caltulates this as g2 mod P. Note that all of these terms
canbe calculated in time logarithmic in a and b through
repeated squaring.

An adversary, however, would see only-g? mod P and
g? mod'P, and would also know g and P. How could
g% mod P be determined from this? One method is
to solve what is called the discrete logarithm problem.
This is the problem of calculating a if you know P, g,
and g% mod P. For large P this appears to be a com-

-putationally intractable problem. It.is not known for

certain whether there is a faster way for the adver-
sary to calculate g?? mod P than computing discrete
logarithms—this is called the DiffiezHellman problem—
but at present no better method is known.

It is not obvious how to find primitive elements in
general, but it is ‘much easier if, as is usually the case,
the prime P has.been constructed so as to ensure that
the factorization of P — 1 is known. For instance, if P is
of the form 2Q + 1, where @ is also a prime (such num-
bers are called Sophie Germain primes), then it can be
shown that for any &, exactly one of a and —a has the
property that its Qth poweér is congruent to —1 mod P,
and this one is a primitive element. In practice, one can
find such primes by a process of trial and error: for
example, one can chodse a number 'Q randomly and
use randomized primality tests to see whether Q and
2Q + 1 are prime. Assuming that, as everyone believes,
such pairs occur with the “expected” frequency, the
probability of finding one on any given attempt is large
enough for this approach to be feasible.

5.3 Other Groups

The Diffie-Hellman protocol can be expressed-in the
language of GROUP THEORY [L.3 §2.1). Suppose we have
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a group G and some element g € G. We will require
the group to bé Abelian and will use “+” tg denote the
group operation. (In the examples so far, the groups
under consideration were multiplicative groups con-
sisting of elements coprime to some integer N, so by
using additive notation we are taking a “logarithmic”
perspective.)

To execute the protocol.Alice computes some pri-
vate integer ¢ and computes and sends ag to Bob. Note
that Alice can compute this sum of a elements of G in
time of order logarithmic in a by successive doubling
and adding. (In the multiplicative groups considered
earlier, “doubling” is squaring, “adding”’ is multiplying,
and “multiplying by a” is raising to the power a.)

Similarly, Bob computes a private integer b and
computes and sends bg to Alice.

‘Both Alice and Bob can calculate the shared value
abg. An adversary will know anly G, g, ag, and bg.

The question is: which groups can be used in practical
cryptographic systems? The critical property is that the
discrete logarithm problem in G must be hard; in other
words, given G, g, and ag it should be a hard problem
to determine 4.

One type of group that has aroused interest for cryp-
tographic purposes is"the additive group generated by
points on an ELLIPTIC CURVE [[I1.21]. An elliptic curve
has an equation of the form

3

y2=x*+ax+b.

It is an interesting exercise to sketch this curve over
the real numbers--the shape depends upon how many
times the curve

y=x>+ax+b

crosses the x-axis.

Itis possible to define an “addition rule” (often called
a group law) on the points of this curve, as follows.
Given two poifits A and B on the curve, the straight
line joining them must meet the curve in a third point,
C say. This is because a straight line must meet a cubic
in three places pre&sdy. Define A + B to be the mirror
image of Cin the x-axis (see figure 3).

It is obvious that A +B = B + A from this definition.
What is rather more surprising is that the associative
law holds. That is, for any threé points A, B, and C we
have ({(A+B) +C) = (A + (B + C)). There are some deep
reasons why thig is true, but of course it can be verified
by just doing the algebra.

To use this for cryptography the group is formed
from the set of points on an elliptic curve defined over
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Figure 3 Addition of points on an elliptic curve.

d finite field. The graphica] image for the sum of two
points is no longer valid, but the algebraic definition
still holds, so addition still obeys the:associative law.
We need to add one further point to the set of points
on the curve to function as the zero of the group: this
is the “point at infinity” on the.curve.

For optimal security it turns out to be best to find
a curve defined over Fp for which the number of ele-
ment$ in the group is a prime number. In fact it is
guaranteed—by a deep result on the theory of elliptic
curves——that the number of points on a curve defined
over F willliebetween p + 1 -2 /Fand p + 1 + 2/P.
(See THE WEIL CONJECTURES [V.35].)

The reason this group is used is that for general
curves the discrete logarithm problem appedrs to be
particularly hard. If the group has n elements and if we
are given group elements g and ag, then the mumber
of steps needed to determine a, by the best algorithms
that are currently known, is around /7. Since thére is
a so-called birthday attack that allows one to solve this
problem in any group with n elements in around 7
computational steps, this means that the problem for
elliptic curve groups is as hard as it can be. Therefore,
whatever level of security you require, the public key is
as short as it can be: This is important when there are
constraints on the number of bits that can be sent as
it allows the protocol to be executed in the minimum
possible time.

6 Digital Signatures

Aswell as secure transmission of data, there is another
very useful capability that is provided by public-key
cryptography. That is the concept of a digital signature.
A digital signature is a string of symbols that an author
attaches to the end of a message that certifies the
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authenticity of the message. In other words, it proves
that the message was written by the attested author
and that it has not been modified. Once the necessary
frameworks are in place, this opens up the possibility
of much legal business being conducted online,

There are a number of ways that public-key methods
can be used to create digital signatures. The one based
on the RSA system is perhaps the simplest. Suppose
Alice wants to sign documents. Just as she does for
encryption, she generates two large prime numbers P
and Q and calculates her public modulus N = PQ and
her public exponent e. She also generates her private
key—the deciphering exponent d with the property that
x% = x mod N for any x. She will use the same param-
eters both for encryption and for the creation of digital
signatures.

Alice can assume that the recipients of her signed
messages know her N and e values. In practice she may
have these values themselves signed and certified by a
trusted authority or organization that the prospective
recipient of a signed message will recognize.

One other component of this system is an object
called a one-way hash function, which takes as its input
the message to bé signed, which may be rather long,
and outputs a number between 1 and N — 1:The impor-
tant property that a hash function must have is that
for any value y between 1 and N it is computation-
ally hard to construct a message x that hashes to that
value. This is similar to a one-way function except that
we are no longer assuming that for each y there is
exactly one x that maps to . However, the hash func-
tion should ideally also be collision free, which means
that, even though there are many pairs of messages that
hash to the same value, it is not easy to find any. Such
hash functions need to be carefully designed, but there
are some recognized standard hash functions (two of
which are called MD5"and SHA-1). Suppose that x is the
message to be signed, and let X be the output when you
apply the hash function to x. The digital signature that
Alice appends to the message is ¥ = X% mod N.

Observe that anyone in possession of Alice’s public
key can verify the signature by following thesé¢ §teps.
First, calculate the hashed value X of the message x,
which is possible because the hash function is made
public. Next, compute Z = Y*® mod N, which-can be
done because the parameters N and e are also pub-
lic. Finally, verify that X equals Z. In order to fake
such a signature, you have to find Y with the prop-
erty that Y2 = X mod N. That is, you must know how
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to calculate X4, which is computationally intractable if
you do not already know d.

It is also possible to construct digital signatures
using a public key based on discrete lpgarithms (Diffie-
Hellman type) rather than on factorization (RSA type).
The U.S, standards body has published such a proposal:
the Digital Signature Standard (1994).

7 Some Current Research Topics

Cryptography remains an active and fascinating area
for research—there are undoubtedly more results and
ideas to be discovered. For a good overview of current
-activity one should look at recent proceedings of the
main conferences, such as Crypto, Eurocrypt, or Asia-
crypt (these are published in the Springer series Lecture
Notes in Computer Science). The comprehensive book
on cryptography by Menezes, van QOorschott, and Van-
stone (1996) is-a good way to get up'to speed on present
theory. In this final section I outline just a few of the
directions in which the subjett is moving.

7.1 New Public-Key Methods

One important area of investigation is the search
for new public-key methods and signature schemes.
Recently some interesting new ideas have come from
the use of pairings on elliptic curves (Boneh and
Franklin 2001). These are maps w from pairs of points
on the curve to either the finite field over which the
curve is defined or an extensionr-field.

A pairing w is bilinear, in the sense thatw(A+B,C) =
w(A, Qw(B,C) and w(A,B + C) = w(A,B)w(A,Q),
where addition is the group operation defined on points
of the curve and multiplication takes place in the field.

One way that such a map can be used is to create-an
“identity-based cryptosystem.” Here, a user's identity
serves as his or her public key, which eliminates the
need for directories or other public-key infrastructure
in order to store and propagate public keys.

In such a system, a central authority decides upon
a curve, a pairing map w, and a hash function that
maps identities to points on the curve. All of this is
made public, but there is also a secret parameter, an
integer x.

Suppose that the hash function maps Alice’s identity
to the point A on the curve, The authority calculates
Alice’s private key xA and issiies it to her when she
registers, after making appropriate checks on her iden-

Jtity. Similarly, Bob would receive his private key xB,
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where B is the point on the curve corresponding to his
identity.

Alice and Bob are now able to communicate with-
out-any initial key exchange, using the common key
w(xA,B) = w(A,xB). The important point is that
unlike other public-key systems this can be done with-
out any need to share public keys.

7.2 Communication Protocols

A second area of activity is the study of proposed pro-
tocols, especially those likely to become international
standards. When public-key methods are to be used
in practical communication the sequence of bits to be
transmitted needs to be clearly defined, so that both
communicating parties understand the same thing by
each bit sent. For example, if an n-bit number is
transmitted, are the bits transmitted in increasing or
decreasing order of significance? The rules or proto-
cols are often efishrined in public standards, and it is
important that they do not introduce any weakness into
the system.

An example of the sort of weakness that can be intro-
duced in this way is one discovered by Coppersmith
(1997) in a seminal paper. He showed that in a low-
exponent RSA system (for example, one with encryp-
tion exponent equal to 17) a weakness arises if too
many of the bits of the number that is to be enciphered
are set to publicly known values. This is something
that is natural to want to do, if, as is often the case,
a large public-key modulus is being used to transmit a
much shorter commuinication key. As a result of Cop-
persmith’s discovery such fields are nowadays usually
padded out before they are encrypted, with bits that
vary unpredictably.

7.3 Control of Information

Using public-key methods, one can control very pre-
cisely how information is released, shared, or gener-
ated. Research in this area is usually focused on finding
elegant dnd efficient ways of achieving different sorts
of control in a variety of situations. As a simple exam-
ple, we might want to create a secret that is shared
between N people in.such a way that if any K people
combine their share (where K < N) they can reconstruct
the secret, but no information can be gained about the
secret by any smaller number than K collaborating.
Another example of this type of control is a protocol
that allows two participants to create an RSA modulus
(a product of two primes) in such a way that neither

Y
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participant gets to know the primes that were used
to produce the modulus. To decipher a message enci-
phered under this modulus the two participants have
to collaborate—neither can achieve this on their own
(Cocks 1997).

A third and more amusing example is a protocol that
allows Alice and Bob to replicate tossing a coin, but to
do it over the telephone. Obviously, it would not be sat-
isfactory for Alice to toss the coin and for Bob to make
the call “heads” or “tails”"—for how does Bob know that
Alice is telling the truth about how the coin actually
fell? This problem turns out to have a simple solu-
tion. Alice and Bob choose large random sequencés.
Alice then appends either a 1 or a 0 to her sequence
and Bob does the same for his. Alice’s extra bit rep-
regents the outcome of the coin toss, and Bob’s rep-
resents his guess. Next, they send one-way hashes of
their sequences (with the extra bits appended). At this
point, because of the nature of one-way hashes, nei-
ther has any idea what the other’s sequence is, so, for
example, if Alice reveals her hashed sequence first, Bob
cannot use this information to increase his chance of
guessjhg correctly. Alice and Bob then exchange the
unhashed sequences to see whether Bob's guess was
correct. If either does not trust the other, they cah hash
the other’s sequence to check that it really does give the
right answer. Since itishard to find a different sequence
that gives the right answer, they can each be confident
that the other has not cheated. More complicated proto-
cols of this type have been designed—it is even possible
to play poker remotely in this way.
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1 Two Girls
1.1 Becky's World

Becky, who is ten years old, lives with her parents and
an older brother Sam in a suburban town in America’s
Midwest. Becky’s father works in a law firm special-
izing in small business enterprises. Depending on the
firm's profits, his annual income varies somewhat, but
it is rarely below $145 000. Becky's parents met in col-
lege. For a few years her mother worked in publishing,
but when Sam was born she decided to concentrate on
raising a family. Now that both Becky and Sam attend
school, she does voluntary work in local education.
The family live in a two-story house. It has four bed-
roorns, two bathrooms upstairs and a toilet downstairs,
a large drawing-cum-dining room, a modeérn kitchen,
and a family room in the basement. There is a small
plot of land in the rear, which the family use for leisure
activities.

Although they have a partial mortgage on their prop-
erty, Becky’s parents own stocks and bonds and have a
savings account in the local branch of a national bank.
Becky’s father and his firm jointly contribute to his
retirement pension. He also makes monthly payments
into a scheme with the bank that will cover college edu-
cation for Becky and Sam. The family’s assets and their
lives are insured. Becky’s parents often remark that,
federal taxes being high, they have to be careful with



