Assignment 8
Lucy Martinez

$$
2-17-22
$$

2. Prove that (Defect,Defect) is always the unique Nash Equilbria, (including mixed one) of the version of Prisoner's dillema (called the "donation game" in Sigmund's book) Show that if $\mathrm{T}=\mathrm{R}+0.01, \mathrm{R}=10000 \mathrm{P}, \mathrm{S}=\mathrm{P}-0.01, \operatorname{In}(1.1))$ how tragic it is.

Problem 2: Player 2
(i)

$R=$ Reward
$T=$ Temptation
C= Cooperate
$D=$ defect
We have $T>R>P>S$.
If Player 1 chooses row 1 then Player 2 chooses T since $T>R$ so we mark T in $(1,2)$
If player 1 chooses row 2 then Player 2 chooses P since $P \geqslant S$ so we mark P in $(2,2)$
If player 2 chooses column 1 then player l chooses T since $T>R$. so we mark T in $(2,1)$
If player 2 chooses column 2 then player 1 chooses P since $P>S$. so we mark P in $(2,2)$.

Hence, Nash equilibra is (P, P) which is (Defect, Defect).
(ii) $T=R+0.01, \quad R=1000 P, \quad S=P-0.01$

We have $T>R>P>S$.

$$
1000 P+0.01>1000 P>P>P-0.01
$$

Since the Nash Equilibrium is (Defect, Defect) $=(P, P)$

So, it will be 1000 times worse than choosing $(R, R)=$ (Reward, Reward).
3. Prove that in the version of the Snwodrift game in section 1.4, with $T>R>S>P$, (Refuse ,Pay) and (Pay,Refuse) are two pure Nash equilibria. Either by hand, or using Maple, prove that in addition there is a mixed Nash equilibrium. Find an explicit expression for that additional Nash equilibrium, in terms of the parameters T,R,S,P, and check it for random numerical values using $\operatorname{MNE}(\mathrm{G})$.

Problem 3:
(i)

C
R, R
$R \quad S^{*}, T^{*}$
T^{*}, S^{*}

$$
T>R>S>P
$$

We use the same process as before and we notice that we have two Nash Equilibrium. They are

$$
\begin{aligned}
& (S, T)=(C, D)=\text { (Pay, Refuse) } \\
& (T, S)=(D, C)=\text { (Refuse, Pay). }
\end{aligned}
$$

(ii), (iii) Player 2

Suppose player 1 has probability p and player 2 has probability q of winning.

So,

$$
\begin{gathered}
U_{1}(c)=U_{1}(D) \\
R p+S(1-p)=T_{p}+P(1-p) \\
R p+S-S p=T_{p}+P-P p \\
R p-S p-T p+P p=P-S \\
P(R-S-T+P)=P-S \\
p=\frac{P-S}{R-S-T+P}
\end{gathered}
$$

and

$$
\begin{aligned}
& u_{2}(C)=U_{2}(D) \\
& R q+S(1-q)=T q+P(1-q) \\
& R q+S-S q=T q+P-P q \\
& R q-S q-T q+P q=P-S \\
& q(R-S-T+P)=P-S \\
& q=\frac{P-S}{R-S-T+P}
\end{aligned}
$$

So there is a mixed Nash Equilibrium'.

$$
\begin{gathered}
\left(\frac{P-S}{R-S-T+P}, \frac{P-S}{R-S-T+P}\right) \\
\text { (iv) } \quad\left[\begin{array}{ll}
{[4,4]} & {[3,5]} \\
{[5,3]} & {[1,1]}
\end{array}\right]=\left[\begin{array}{ll}
{[R, R]} & {[S, T]} \\
{[T, S]} & {[P, P]}
\end{array}\right]
\end{gathered}
$$

So, $T>R>S>P$ where
$T=5, R=4, S=3, P=1$. This means our mixed nash equilibrium is

$$
\begin{aligned}
\left(\frac{P-S}{R-S-T+P}, \frac{P-S}{R-S-T+P}\right) & =\left(\frac{1-3}{4-3-5+1}, \frac{1-3}{4-3-5+1}\right) \\
& =\left(\frac{-2}{-3}, \frac{-2}{-3}\right) \\
& =\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

which matches with MNE22 (6) in maple.

