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1 Introduction

Consider an election between n candidates with v voters. Rather than a single vote, each voter
casts a ranking of all n candidates. The “Condorcet winner” of an election is the candidate which
is higher ranked than any other voter when compared in a head-to-head contest. For example, if
there are three candidates (n = 3) and three voters (v = 3), then the ballots

(1, 2, 3)

(3, 1, 2)

(2, 1, 3)

declare candidate 1 to be the Condorcet winner. Across all three ballots, candidate 1 is ranked above
candidate 2 twice and the opposite situation only happens once, therefore candidate 1 "wins" this
match-up. Similarly, candidate 1 beats candidate 3, so candidate 1 is the Condorcet winner of the
election.
There can only be one Condorcet winner of an election—two potential winners would have to beat
each other—but some elections have no Condorcet winner. For example, consider the ballots

(1, 2, 3)

(2, 3, 1)

(3, 1, 2)

In this case, 1 beats 2, 2 beats 3, and 3 beats 1. Every candidate loses to at least one other, so
there’s no Condorcet winner.
The Condorcet paradox is the observation that, in this head-to-head election method, majorities
can be in disagreement with each other. In the above hypothetical election, a majority preferred
candidate 1 to 2, a majority preferred candidate 2 to 3, and a majority preferred candidate 3 to 1.
The classical “game” is to determine how often the Condorcet paradox occurs. Given an election
with n candidates and v voters, exactly how many possible ballots would not elect a Condorcet
winner? This is computationally difficult to answer. With n candidates and v voters, there are n!v

distinct collections of ballots. Going over all of these is nearly impossible for even moderately large
values of n and v. We can alleviate this if we declare voters to be indistinguishable, and instead
go over all possible ways to assign v votes to the n! possible candidate rankings. This is equivalent
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to enumerating nonnegative compositions of v into n! parts, a set of size
(
v+n!
n!

)
≈ vn!/n!. This is

both much smaller than n!v and quite large. Naturally, much of the existing literature is dedicated
to avoiding this brute-force search.

Definition. Let C(n, v) be the number of collections of ballots with n candidates and v voters which
do not elect a Condorcet winner. Let P (n, v) = C(n, v)/m!v be the probability that a collection
of v ballots for n candidates chosen uniformly at random does not elect a Condorcet winner. Let
E(n, v) be the number of ballots with n candidates and v indistinguishable voters which do not
elect a Condorcet winner.

The bulk of previous results have focused on finding exact formulas, recurrences, and asymptotic
estimates for the functions C and P . Useful overviews can be found in [3] and [1]. For asymptotics,
we have the general result

P (n,∞) =
n!

2n+1

(n−1)/2∑
k=0

1

(n− 1− 2k)!4kθk

where θ = (4 sin−1(1/3))−1. For recurrences, the equation

P (4, v) = 2P (3, v)− 1

is known as May’s theorem. More generally, there is a recurrence of the form

P (2n, v) =
∑

0≤k<n

ckP (2k + 1, v)

where the ck are computed through an inclusion-exclusion argument.
There is a comparatively smaller literature on the function E. The sequence E(3, 2k−1) is A277935
in the OEIS, and begins

0, 2, 12, 42, 112, 252, 504, 924, 1584, 2574, 4004, 6006, 8736, . . .

Amazingly, it turns out that

E(3, 2k − 1) = 2

(
k + 3

5

)
. (1)

Using sledgehammers from the theory of diophantine equations, this is “routine” to prove, but in
this paper we will provide an elegant bijective proof which extends to other cases. The sequences
E(n, 2k − 1) do not appear in the OEIS for n > 3, though the diophantine sledgehammers suggest
that they might have simple representations.
In the following sections we will give our bijective proof of (1), give an overview of a Maple package
to explore the Condorcet paradox, and provide some early thoughts on the sequence E(4, 2k − 1).

2 Counting Condorcet scenarios with 3 candidates

We first present an efficient method for counting the number of Condorcet voting-profiles with 3
candidates and 2n − 1 voters. This method was established in [2] and the relevant results are
repeated here.
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Denote the three candidates 1, 2, and 3. Every voter must decide on some complete ranking of the
three candidates. Let x123 denote the number of voters who choose the ranking 1, 2, 3, and define
x132, x213, x231, x312, and x321 similarly, where x123 + x132 + x213 + x231 + x312 + x321 = 2n − 1.
We call the resulting 6-tuple,

[x123, x132, x213, x231, x312, x321],

a vote-count profile with 3 candidates, 2n− 1 voters.
For a vote-count profile to be Condorcet, it must admit a cycle: 1 beats 2, 2 beats 3, 3 beats 1 or
vice-versa, 1 beats 3, 3 beats 2, 2 beats 1.
Given a vote-count profile, this profile admits the cycle 1 beats 2, 2 beats 3, 3 beats 1 if and only
if it satisfies the following three inequalities:

x123 + x132 + x312 > x213 + x231 + x321 (1 beats 2)

x123 + x213 + x231 > x132 + x312 + x321 (2 beats 3)

x231 + x321 + x312 > x213 + x123 + x132 (3 beats 1)

We then establish a bijection between compositions of n−2 into 6 non-negative parts and Condorcet
vote-count profiles admitting a 1 beats 2, 2 beats 3, 3 beats 1 cycle. Let [x1, x2, x3, x4, x5, x6] be a
composition of n− 2 into 6 non-negative parts.
We can define an affine-linear mapping from compositions of n − 2 into 6 non-negative parts to
Condorcet vote-count profiles with 3 candidates, 2n− 1 voters as follows:

[x1, x2, x3, x4, x5, x6] 7→ [x1 + x4 + x6 + 1, x2, x3, x2 + x4 + x5 + 1, x3 + x5 + x6 + 1, x1]

It can be verified that the sum of the entries in this vote-count profile is 2n − 1, and that they
satisfy the three given inequalities.
The inverse of the mapping is given by:

[x123, x132, x213, x231, x312, x321] 7→ [x1, x2, x3, x4, x5, x6]

Where,
x1 = x321, x2 = x132, x3 = x213,

x4 =
(x123 + x213 + x231)− (x132 + x312 + x321)− 1

2

x5 =
(x231 + x321 + x312)− (x213 + x123 + x132)− 1

2

x6 =
(x312 + x132 + x123)− (x321 + x231 + x213)− 1

2

It can be checked that x1 + x2 + x3 + x4 + x5 + x6 = n− 2, and the three inequalities imply that
each of x4, x5, x6 are non-negative.
This bijection gives rise to the following theorem.
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Theorem 1. The number of Condorcet vote-count profiles with three candidates and 2n− 1 voters
is

2

(
n+ 3

5

)
.

A voting-profile is defined to be a mapping of {1, . . . , 2n − 1} into S3, i.e., each voter chooses a
complete ranking of the three candidates. Our bijection above then gives rise to the following
theorem.

Theorem 2. The number of Condorcet voting-profiles with three candidates and 2n − 1 voters is
given by the following 5-fold sum:

2

n−2∑
i1=0

n−2−i1−i2∑
i2=0

n−2−i1−i2∑
i3=0

n−2−i1−i2−i3∑
i4=0

n−2−i1−i2−i3−i4∑
i5=0

(2n− 1)!

(n− 1− i2 − i3 − i5)!i2!i3!(i2 + i4 + i5 + 1)!(n− 1− i1 − i2 − i4)!i1!
.

[Should have a note about the recurrence relation here, but I don’t fully understand the math
behind it so not sure how to type it up.]

3 E(4, 2k − 1)

As mentioned in the introduction and proven in the previous section,

E(3, 2k − 1) = 2

(
k + 3

5

)
.

The theory of diophantine equations tells us that E(n, k), as a sequence of k, will always be a
quasipolynomial. That is, there exists some m such that j 7→ E(n,mj + i) is a polynomial in j
for each i ∈ {0, 1, . . . ,m − 1}. In the case of n = 3, it turns out m = 2 and E(3, 2k − 1) is the
genuine polynomial 2

(
k+3
5

)
. It remains open to determine whether E(4, 2k − 1) is a polynomial, a

quasipolynomial, or even to give a hypergeometric representation of the sequence.
The sequence E(4, 2k − 1) begins as follows:

0, 12480, 4081200, 351006480, 13752612000, 315501790560, . . .

This does not appear in the OEIS. The sequence E(4, k) begins as follows:

0, 256, 12480, 283200, 4081200, 42731088, 351006480, 2377644912, 13752612000, . . .

The difference is that the latter includes even as well as odd numbers of voters. Based on computer
experiments, we suspect that either E(4, k) or E(4, 2k−1) are themselves polynomials, but we have
been unable to prove this so far. We have computer E(4, k) up to k = 28, but we need more terms
to be confident in what Maple is giving us. In particular, Maple can produce an explicit polynomial
of degree 23 that it thinks fits E(4, k) up to k = 28. This is appealing, since the polynomial for three
candidates had degree 5 = 3! − 1 and 23 = 4! − 1, but the polynomial contains a lot of nonsense.
We need more terms to be sure of anything.
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4 Maple Package

with(combinat):

Tour := proc(P)
local n, i, j, T, ballot, x, y, sgn:
n := nops(P[1]):
for i from 1 to n do
for j from 1 to n do

T[i, j] := 0:
od:
od:

for ballot in P do
for i from 1 to nops(ballot) do

for j from i + 1 to nops(ballot) do
x := ballot[i]:
y := ballot[j]:
T[x, y] := T[x, y] + 1:
T[y, x] := T[y, x] - 1:

od:
od:

od:

sgn := x -> ifelse(x = 0, 0, sign(x)):

[seq([seq(sgn(T[i,j]),j=1..n)],i=1..n)]:
end:

IsCondorcet := proc(P) local i:
local T:
T := Tour(P):
not TourWinner(T):

end:

TourWinner := proc(T)
local size, row:
size := nops(T[1]):
for row in T do

if add(row) = size - 1 then
return true:

fi:
od:

false:
end:
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ExactCond := proc(n, v)
option remember:
local S, count, d, comp, R, i:
S := permute(n):

count := 0:
for d in Iterator[Composition](v + n!, parts=n!) do

d := convert(d, list) - [1 $ n!]:
R := [seq(S[i] $ d[i], i=1..n!)]:
if IsCondorcet(R) then

count := count + 1:
fi:

od:

count:
end:

CompToCond:=proc(c):
([1,0,0,1,1,0]+
[c[1]+c[4]+c[6],c[2],c[3],c[2]+c[4]+c[5],c[3]+c[5]+c[6],c[1]]):
end:

NuVC4 := proc(n) local C,Cnew,c:
option remember:
total := 0:
for c in Iterator[Composition](n - 2 + 6, parts=6) do

c := CompToCond(convert(c, list) - [1 $ 6]):
total := total + 4*(binomial(c[1]+3,3)*binomial(c[2]+3,3)*
binomial(c[3]+3,3)*binomial(c[4]+3,3)*binomial(c[5]+3,3)*
binomial(c[6]+3,3)):

od:

total:
end:

#NuCo(N): The first N terms of the sequence
# "number of Condorcet vote-profiles" with 2v-1
# voters and three candidates.
NuCo:=proc(N) local L,n,kha:

L:=[0,12,540]:
if N<=3 then

RETURN(L[N]):
fi:

for n from 4 to N do
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kha := (4*(19*n^2-57*n+45)/(n-1)^2*L[-1]-36*(2*n-3)*
(22*n^2-99*n+111)/(n-2)/(n-1)^2*L[-2]
+1296*(n-3)*(2*n-3)*(2*n-5)/(n-2)/(n-1)^2*L[-3]):
L:=[L[2],L[3],kha]:

od:

L[-1]:
end:

#NuCo4: given an integer n, outputs the number of Condorcet
# voting profiles with 4 candidates, 2*n-1 voters using May’s theorem
NuCo4:=proc(n)

2 * 4^(2*n-1) * NuCo(n):
end:
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