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This project is a follow up to the paper “On Banzhaf and Shapley-Shubik
Fixed Points and Divisor Voting Systems” (https://arxiv.org/pdf/2010.
08672.pdf) by Alex Arnell, Richard Chen, Evelyn Choi, Miroslav Marinov,
Nastia Polina, and Aaryan Prakash.

Here, we are concerned with voting systems where each party can hold an
arbitrary amount of votes. Parties must seek to group up with each other,
and form coalitions, to combine their voting power and win the election. The
threshold amount of voting power required is called the quota, and a winning
coalition is any coalition that has combined voting power that strictly exceeds
the quota. In a winning coalition, a player is called a critical player, if the
coalition would not be winning without that player’s votes.

The Banzhaf and Shapely-Shubik power indices are two ways of describing
a player’s strength in the election. Direct quoting the paper:

“The Banzhaf power index of a player is the number of times that player is
a critical player in all winning coalitions divided by the number of total times
any player is a critical player. The Shapley-Shubik index looks at permutations
of all players in a system, called sequential coalitions. We sum each player’s
votes starting from the beginning of a sequential coalition, and see if the sum
reaches the quota as we progress. The player whose votes first cause this sum to
meet or exceed the quota is called a pivotal player. The Shapley-Shubik power
index of a player is the number of times that player is a pivotal player divided
by the total number sequential coalitions.”

The paper was divided into 2 main sections. The first dealt with divisor
games. For a fixed n, the divisor game for n has a player with voting power
equal to d for each divisor d of n. The quota is equal to σ(n), where σ(n)/2
is the sum of the divisors of n. The second section dealt with games with any
number of players so long as the voting powers added to 1. These games had
quota equal to 1/2. The paper looked for fixed points, games where each player’s
power index was equal to their voting power.
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1 Divisor Games

The first thing we did for this section was implement a clever way of calculating
the Banzhaf Power Index for a given system. This follows the same generating
function idea that Dr. Z. implemented in class for the Shapley-Shubik power
indices, which we also included in the code, of course. We also implemented
a quick function that outputs whether or not two lists are equal and at what
indices the values differ. In the PROMYS paper, they saw that for integers n
where σ(n) = 2n + i for i = 0, 1, . . . , 5, the SS and BB indices differ for some
divisor, but not a uniform one. For three of the cases they saw that the power
indices for the divisor 1 differed, but this will in general is likely not possible,
indeed not even for small divisors. Experimentally, we found that there are
many integers which equal SS and BB power indices for small divisors. These
can be found by running the code, enumerated, those in the first 2000 integers
were 18,100,162,196,738,748,846,954,968, 1062, 1098, 1206, 1278, 1314, 1352,
1422, 1458, 1494, 1602, 1746, 1818, 1854, 1926, 1962. Towards, the end, all
of these have 12 divisors. Indeed for most of these only the 5 largest divisors
differ in the power indices - but this is also because the smaller divisors actually
have no power in either setup. It is not infeasible to look beyond n = 2000,
we managed to calculate in sporadic intervals up to n = 10000, and further
is possible. It seems that, if the conjecture is true, that if trying to prove it
directly, one might want to look at the largest divisor’s power indices, generally
it seems those will be different. Unfortunately, it also seems a direct approach
might be difficult, because counting winning coalitions including n is highly
dependent on the factorization of n. By checking the differences in the power
indices of n compared to n, it is not clear that there is a uniform lower bound
on this difference.

We were also able to check for the first 719 integers that if the number was
abundant, the SS and BB values differed, and if not, they were the same. The
function BBvc takes very long to compute for highly abundant numbers like
240,360,480,540,600 so it is impractical to continue these calculations beyond
how far we did it, without some algorithmic improvement.

2 Fixed Points

The paper looked for fixed points where all the players except for 2 had the same
voting power. We deviated from this special case and opted to exhaustively
search for fixed points when the number of players was small. The approach
was to notice that the exact values of voting power does not influence the power
indices. It only matters which subsets of voters can surpass the threshold (1/2).
Once we fix which subsets are successful, we can compute the power indices,
and then check if the indices satisfy the criteria specified by the subsets. This
reduces the solution space from [0, 1]n to the set of subsets of the set of subsets of
n, which can be reduced further by symmetry. Our code was able to completely
enumerate the fixed points for up to 5 players. Here is the results:
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We note that a primitive fixed point is one in which none of the players
have 0 voting power. We only consider primitive fixed points, and note that the
non-primitive ones must contain a primitive one on a subset of the players. For
n = 1, 2, 3, the only fixed points are the trivial solutions
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For n = 4, in addition to the trivial (1/4, 1/4, 1/4, 1/4), we found two nontrivial
fixed points, that each worked for both the Banzhaf index and the Shapely-
Shubik index at once!
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For n = 5, in addition to the trivial (1/5, 1/5, 1/5, 1/5, 1/5) the Banzhaf and
Shapely-Shubik fixed points were different.

Shapely-Shubik:
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Banzhaf:
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In the attached maple code, you can try it for yourself. The function
fixed points(n) will perform the exhaustive search. In the future we hope to
optimize the code a little more so that it will work for n = 6, and also to neaten
up the maple package.
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