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Abstract

Abstract: One of the famous open problems in number theory
is Lehmer’s Conjecture. It wants to prove that the Ramanujan’s tau-
function never vanishes. By adding Euler’s pentagonal numbers theo-
rem and J.C.P Miller recurrence as two new ingredients, we investigate
several generalized problems with our experimental mathematics ap-
proach.

1 Introduction

Ramanujan introduced τ(n) in his famous paper ”On certain arithmetical
functions”

∞∑
n=1

τ(n)qn := q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + . . . (1.1)

Surprisingly, Lehmer’s Conjecture[2] that τ(n) is never zero remains open.
This has been verified for n less than 816212624008487344127999 by comput-
ing Galois representations and equations for modular curves, [1]. In this pa-
per, we will investigate generalized Lehmer conjecture experimentally
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This article is accompanied by a Maple package, Lehmerconj.txt , which
can be found on the front of the article

https://sites.math.rutgers.edu/ zeilberg/EM21/projs.html.

Readers are encouraged to download the package and use the procedures to
experiment.

2 Basic Algorithm

Since our algorithm does not rely on the degree number 24 in Ramanujan
function (1.1), we can work on a larger family of functions

∞∑
n=1

τr(n)qn := q
∞∏
n=1

(1− qn)r (2.1)

In this section, we will show how we make the algorithm work to find the the
first place where the coefficient τr(n) is zero looking at the first N coefficients
of q ·η(q)r using the J.C.P. Miller recurrence, where η(q) =

∏
n≥1

(1−qn). Since

by Euler Pentagonal number theorem

η(q) =
∏
n≥1

(1− qn) = 1 +
∑
k≥1

(−1)k(xk(3k+1)/2 + xk(3k−1)/2) (2.2)

The J.C.P Miller recurrence[5] is actually one way to compute the power of
a polynomial. Given a polynomial

P (x) =
L∑
i=1

pix
i, (2.3)

we can find the coefficients of its m-th power by recurrence.

P (x)m =
mL∑
i=1

a(m, k)xk, a(m, k) =
1

kp0

L∑
i=1

pi[(m+ 1)i− k]a(m, k− i). (2.4)

By applying the J.C.P Miller recurrence to η(q)r, we can get τr(n). This is
a very useful since it will allow us to calculate faster than just using Taylor
expansion for the formula to find the coefficients. Also, it will allow us to
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calculate for any r-th power of η(q), for example, if r = 24, we get the famous
Ramanujan Tau Function. We can use this algorithm to see for various r how
the coefficients act. Does it never vanish? We can compute first N coefficients
of the q · η(q)r by this algorithm.

Using the procedure FZ(r,N) in the Maple package, we examine the for
r ∈ [1, 100]. Due to our performance of our computers, we examine the first
2 millions coefficients for r ∈ [1, 40]. The rest r, we only check for the first
one million coefficients. And some of them vanish at some place.

r 1 2 3 4 5 6 7 8 10 14 15 26
n 4 8 3 10 1561 6 28018 4 7 5 54 10

Table 1: List of pairs (r,n) verifying τr(n) = 0,r ≤ 40, n ≤ 2 ∗ 106

Also, after r > 26, the coefficients won’t vanish at least in their first 1 million
terms. So we can conjecture that when r > 26, the coefficients of the function
never vanish.

3 Congruence properties

With the genes of number theory, the tau function has many well-known
results about the congruence. As a generalization of Lehmer’s Conjecture,
the question whether the equation τ(p) ≡ 0(mod p) has infinitely many
solutions remains open. Also, we can ask what about τr(p)?

3.1 Congruence of τ(p)

To investigate congruence properties of original Ramanujan tau function, we
can simplify our algorithm in the last section. This simplification comes from
some well-known arithmetical properties proved by Mordell [4]:

τ(nm) = τ(n)τ(m) for n,m relatively prime integers;

τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1) for p prime and r an integer ≥1.
(3.1)

It turns out that the value of τ(n) for an integer n can be easily derived from
the values τ(p) for all prime divisors p of n. Then we can use J.C.P. Miller
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recurrence for prime numbers only and use Mordell properties for the rest.
Then, to compute τ(p) up to p < N , the time-complexity is roughly

∑
p∈Π,p≤N

√
p ∼

∫ N

e

√
tdt

ln(t)
, (3.2)

which is slightly smaller than N3/2. The space-complexity is N, since we
need the whole list of τ(p). The Maple code for this algorithm are given as
taup(N) and taupcheck(N,k).

The complexity here is similar to the work of Nik Lygeros and Olivier Rozier[3].
They discovered some new solutions to τ(p) ≡ q(mod p) for |q| ≤ 100
and prime p < 1010. The main result is the discovery of a new prime
p = 7758337633 such that τ(p) is divisible by p. With similar complexity and
different approach, we can use our algorithm to check their results.

3.2 Congruence of τr(p)

If r 6= 24, there is no multiplicative property for τr(n), We will fully use
J.C,P Miller recurrence again. To compute all τr(n) for n from 1 to N , The
time- and space- complexity are N3/2 and N respectively. Then, we can use
this algorithm, the procedure tauF(r,k) in the Maple package, to investigate
congruence of τr(p).

If we assume that the values τr(p) are randomly distributed modulo p for
all prime numbers p, then we can evaluate the number of p less than n such
that τr(p) ≡ 0(mod p):

∑
p<N,p∈Π

1

p
∼

∫ N

e

dt

t log t
= log logN (3.3)

This is the log log philosophy[3]. A natural question is whether the number
of prime p ≤ N such that τr(p) ≡ 0(mod p) is about log logN . We can use
the procedure pmodseqzero(r,N) in the Maple package. According to log
log philosophy, the number of prime p ≤ 105 such that τr(p) ≡ 0(mod p)
should be approximately

log log 105 ∼ 2.44 (3.4)



5

r 21 22 23 24 25 26 27 28 29 30
k 4 4 3 5 3 2927 3 5 6 6

Table 2: the number k of prime p ≤ 105 such that τr(p) ≡ 0(mod p)

A general question is here. For which r, does the following statement hold?∑
p∈Π,p≤N,τr(p)≡0(mod p)

1 ∼ log logN (3.5)

According to the experiment above, for r ∈ [21, 30], everyone except 26 is a
good candidate. For r = 26, the reason is τ26(n) = 0 for a large family of n.
See the sequence A322433 in OEIS.
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