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ROADMAP We have a lot of stuff here. We can automatically find gener-
ating functions for p(n,k,m,C,DI) and we have some preliminary results on
the moments and moments about the mean of L(P), where L is the number
of parts of a partition and P is a random partition. We would like to “glue”
these together to automatically guess moments of restricted partitions, but this
is ill-defined. We’ll sort it out more directly soon.

1 Introduction

A partition of an integer n is a non-increasing sequence positive integers whose
sum is n. The entries of the sequence are called the parts of the partition. For
example, the three partitions of 3 are

3, 2 + 1, 1 + 1 + 1.

Some of the most difficult questions about partitions concern partition statis-
tics. How many parts, on average, will a partition of n have? How large, on
average, will the largest part of a partition be? What about the second largest
part? What are the standard deviations of these quantities? As n grows, do
these quantities have well-known distributions? These questions amount to ask-
ing about the behavior of the random variable f(Pn), where f is some function
and Pn is a partition sampled uniformly at random from some interesting col-
lection of partitions of n.

The first object of study for partition statistics are moments. The mth
moment of f(Pn) is

E[f(Pn)
m] =

1

N

∑
p

f(p)m,

where p ranges over all partitions of interest, and N is the number of partitions
of interest. For example, µ = E[f(Pn)] is the mean of f(Pn) and tells us how
large f(Pn) is, on average. The mth moment about the mean of f(Pn) is

E[(f(Pn) − µ)
m] =

1

N

∑
p

(f(p) − µ)m,
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Moments are thus composed of two parts: The weighted sums “on top”∑
p

f(p)m ;
∑
p

(f(p) − µ)m,

and the number of partitions N.
In the “classical” case, we sample Pn from all partitions of n. This gives

N = p(n) where p is the partition function. This is highly technical because the
generating function for p(n) is an analytically-complicated infinite product:∑

n>0

p(n)tn =
∏
n>1

1

1 − tn
.

We are interested in statistics that we can explore automatically and experimen-
tally. Generating functions expressed only as infinite products do not qualify.
The most direct remedy to this is to limit the largest part of a partition. The
generating function for number of partitions with largest part not exceeding K
is

K∏
n=1

1

1 − tn
.

This turns our infinite product into a finite object that we can automatically
analyze.

Our project attempts to study moments automatically with computer alge-
bra using this idea. Limit the number of parts, then look at interesting restric-
tions. The restrictions that we can handle automatically are as follows: Given
positive integers k and m, and sets C and DI, let Pk,m,C,DI be the set of integer
partitions where

• the largest part is k,

• all parts are congruent to elements of the set C mod m, and

• the difference between any two terms is not in the set DI.

2 Enumerating restricted partitions

The generating function of the sequence enumerating partitions of n in Pk,m,C,DI

is

P(x) =

∞∑
n=0

p(n,k,m,C,DI)xn,

where p(n,k,m,C,DI) is the number of partitions of n in our set. We can find
P(x) by looking at the “children” of the partitions, from which we form and
solve a system of algebraic equations.

If we remove one part k—which has weight xk—from any nonempty parti-
tion in Pk,m,C,DI, what remains is either an empty partition or a partition in
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Pk1,m,C,DI for some k1 ∈ {1, . . . ,k} such that k1 mod m ∈ C and k − k1 6∈ DI.
Thus, if S denotes the set of such k1, then

Pk,m,C,DI = x
k + xk

∑
k1∈S

Pk1,m,C,DI

and the “children“ of our original set are Pk1,m,C,DI, for k1 ∈ S. We apply this
procedure for each of our children sets, and each of their children sets, and so on.
Note that we will eventually remove all possible choices for k1 and will therefore
have finitely many “descendants”. Moreover, since we have an equation to find
the children for each “descendant” (i.e. variable), we have as many equations
as variables. Moreover, the variables in each equation have degree one, and the
last equation only has one variable. Given the way that we are generating our
system of equations, we can eliminate every variable except the one representing
our original family Pk,m,C,DI. This gives us the polynomial equation satisfied
by the generating function of Pk,m,C,DI, and we can solve this equation to get
our generating function.

This procedure is implemented in the Maple package IntParts.txt by the
procedure f PnkRest(k,m,C,DI,x). For example, say we want the generating
function of the sequence an

∞
n=0, where an is the number of integer partitions

of n with largest part 4 and only even parts. Then, running

f PnkRest(4,2,{0},{},x),

outputs the generating function

x4/(x6 − x4 − x2 + 1).

3 Number of parts in partitions with restricted
largest part

Given a partition p, let L(p) denote the number of parts of p. We are inter-
ested in the behavior of the random variable L(Pnk) where Pnk is sampled from
partitions of n with largest part exactly k. For instance, the average number of
parts over such partitions is exactly

E[L(Pnk)] =
1

p(n,k)

∑
p∈P(n,k)

L(p)),

where P(n,k) is the set of partitions of n with largest part k, and p(n,k) is the
number of such partitions. It makes sense to study the sum on its own terms
and introduce the normalizing factor p(n,k) later. To that end, let

S(n,k) =
∑

p∈P(n,k)

L(p).
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The cases k = 1 and k = 2 are delightful:

S(n, 1) = n

S(n, 2) =
3n2

8
+

(−1)n − 3

8
n−

(−1)n − 1

16
.

The sequence S(n, 2) has a more striking representation in terms of the pentag-
onal numbers qn:

S(n, 2) = q(−1)nbn/2c; qn =
n(3n− 1)

2
.

Proposition 1.

S(n, 2) =

{
k(3k−1)

2 , if n = 2k
k(3k+1)

2 , if n = 2k+ 1

Proof. Note there is an obvious one-to-one correspondence between partitions
of n with largest part 2, and pairs [a1,a2] such that a2 > 1 and

a1 + 2a2 = n.

The partition that corresponds to the pair [a1,a2] has a1 + a2 = n− a2 parts.
When n = 2k, clearly 1 6 a2 6 k. Thus, the total number of parts in all

partitions of n with largest part 2 is

S(n, 2) =

k∑
i=1

n− i

= 2k2 −
k(k+ 1)

2

=
k(3k− 1)

2

Similarly, when n = 2k+ 1, we have

S(n, 2) =

k∑
i=1

n− i

= k(2k+ 1) −
k(k+ 1)

2

=
k(3k+ 1)

2

Corollary 1. The average number of parts in a partition of n with largest part
2 is

E(Pn,2) =

{
3k−1

2 , if n = 2k
3k+1

2 , if n = 2k+ 1
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Proof. Since a partition of n with largest part 2 is defined by how many parts
are equal to 2, there are clearly k such partitions. Thus, the follows directly
from the previous proposition.

Corollary 2. The total number of parts in a partition with largest part at most
2 is

Z(n, 2) =

{
3k(k+1)

2 , if n = 2k,
k(3k+5)

2 , if n = 2k+ 1.

Corollary 3. The average number of parts in a partition with largest part at
most 2 is

A6(n, 2) =

{
3k
2 , if n = 2k,
k(3k+5)
2(k+1) , if n = 2k+ 1.

Proof. Since there are exactly k partitions with largest part 2 and 1 partition
with largest part 1, this follows from the previous corollary.

Proposition 2. The total number of parts in partitions of n > 3 with largest
part 3 are

S(n, 3) =



k(22k2−3k−1)
2 , if n = 6k

k2(11k+ 4), if n = 6k+ 1
k(22k2+19k+3)

2 , if n = 6k+ 2

11k3 + 15k2 + 7k+ 1, if n = 6k+ 3
(11k+4)(2k+1)(k+1)

2 if n = 6k+ 4

(k+ 1)(11k2 + 15k+ 5), if n = 6k+ 5

Proof. A partition of n with largest part 3 can be expressed as a1 + 2a2 +
3a3 = n, where ai denotes the number of times i appears in the partition.
Thus, the total number of parts in the partition given by a1 + 2a2 + 3a3 is
a1 + a2 + a3 = n− a2 − 2a3.

Note that if n = 6k + r, where 0 6 r < 3, then 1 6 a3 6 2k and 0 6 a2 6
bn−3a3

2 c, so

S(6k+ r, 3) =

2k∑
a3=1

b 6k+r−3a3
2 c∑

a2=0

6k+ r− a2 − 2a3.

For each r, we want to consider the odd and even values for a3 separately. Note
that when a3 = 2i for some i, we have a2 6 3k− 3i+ br/2c. When a3 = 2i− 1
for some i, we have a2 6 3k− 3i+ 1 + b(r+ 1)/2c.
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S(6k, 3) =

k∑
i=1

3k−3i∑
j=0

(6k− j− 4i) +

3k−3i+1∑
j=0

(6k− j− 4i+ 2)


=
k(22k2 − 3k− 1)

2
.

S(6k+ 1, 3) =

k∑
i=1

3k−3i∑
j=0

(6k+ 1 − j− 4i) +

3k−3i+2∑
j=0

(6k+ 1 − j− 4i+ 2)


= k2(11k+ 4).

S(6k+ 2, 3) =

k∑
i=1

3k+1−3i∑
j=0

(6k+ 2 − j− 4i) +

3k−3i+2∑
j=0

(6k+ 2 − j− 4i+ 2)


=
k(22k2 + 19k+ 3)

2
.

When 3 6 r < 6, we can now also have a3 = 2k+ 1. Note that when r = 3,
we have

a1 + 2a2 + 3(2k+ 1) := 6k+ 3 =⇒ [a1,a2,a3] = [0, 0, 2k+ 1].

Thus, there is one partition, and it has 2k+ 1 parts. When r = 4,

a1 + 2a2 + 3(2k+ 1) := 6k+ 4 =⇒ [a1,a2,a3] = [1, 0, 2k+ 1].

So, there is one partition, and it has 2k+ 2 parts. Finally, when r = 5,

a1 + 2a2 + 3(2k+ 1) := 6k+ 5 =⇒ [a1,a2,a3] = [2, 0, 2k+ 1] or [0, 1, 2k+ 1].

Hence, there is one partition with 2k + 2 parts and one partition with 2k + 3
parts.

S(6k+ 3, 3) = (2k+ 1) +

k∑
i=1

3k+1−3i∑
j=0

(6k+ 3 − j− 4i) +

3k+3i+3∑
j=0

(6k+ 3 − j− 4i+ 2)


= 11k3 + 15k2 + 7k+ 1

S(6k+ 4, 3) = (2k+ 2) +

k∑
i=1

3k+2−3i∑
j=0

(6k+ 4 − j− 4i) +

3k+3i+3∑
j=0

(6k+ 4 − j− 4i+ 2)


=

(11k+ 4)(2k+ 1)(k+ 1)

2

S(6k+ 5, 3) = (2k+ 3 + 2k+ 2) +

k∑
i=1

3k+2−3i∑
j=0

(6k+ 4 − j− 4i) +

3k+3i+4∑
j=0

(6k+ 4 − j− 4i+ 2)


= (k+ 1)(11k2 + 15k+ 5)
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These examples show that S(n, 1) and S(n, 2) are both C-finite. The se-
quence S(n, 3) is A308265 in the OEIS, and there Colin Barker conjectured in
2019 that it is C-finite as well. Our conjecture is that S(n,k) is C-finite for
every k, and we now have a constructive proof of this fact.

Theorem 1. The generating function Sk(t) =
∑

n>0 S(n,k)tn equals Zk(t) −
Zk−1(t), where

Zk(t) =

k∑
i=1

ti

(1 − ti)2

∏
16j6k
j6=i

1

1 − tj
.

The function Zk(t) is the generating function of the sum

Z(n,k) =
∑

p∈P ′(n,k)

L(p),

where P ′(n,k) is the set of partitions of n with largest part at most k. This
makes the relation Sk(t) = Zk(t) − Zk−1(t) obvious, and, as we shall see, this
sum is more natural from a generating function perspective.

Proof. Every partition in P ′(n,k) is uniquely specified by the length of its
“runs.” There are so many k’s, so many (k − 1)’s, and so on down to so many
1’s. Therefore every partition in P ′(n,k) is uniquely specified by a sequence of
nonnegative integers n(1),n(2), . . .n(k) such that n = kn(k)+(k−1)n(k−1)+
...+1 ·n(1). Written this way, the length of a partition is n(1)+n(2)+ ...+n(k).
This gives us an equivalent formulation for Z(n,k):

Z(n,k) =
∑

n(i)>0
n(1)+2n(2)+···+kn(k)=n

(n(1) + ... + n(k)).

This expression of Z(n,k) is almost a convolution, and we can make it com-
pletely so by breaking it into k terms:

Z(n,k) =

k∑
i=1

Z(n,k, i), (1)

where
Z(n,k, i) =

∑
n(1),n(2),...,n(k)>0

n(1)+2n(2)+···+kn(k)=n

n(i).

The sums Z(n,k, i) are special convolutions. Here’s the lemma that we need:∑
n(i)>0

n(1)+2n(2)+···+kn(k)=n

b1(n(1))b2(n(2)) · · ·bk(n(k)) = [tn]f1(t)f2(t
2)f3(t

3)...fk(t
k),

(2)
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where
fi(t) =

∑
n>0

bi(n)t
n.

We can recognize Z(n,k, i) by taking every bj(n) to be identically 1 except
for the case j = i, where we take bj(n) = n. The generating function of the
identically-1 sequence is (1 − t)−1, and the generating function of the identity
sequence is t/(1 − t)2. Therefore our lemma gives

Z(n,k, i) = [tn]
ti

(1 − ti)2

∏
16j6k
j6=i

1

1 − tj
, (3)

and summing over i yields the result for Zk(t).

This theorem is both a theoretical and a computational “win.” Theoretically,
the generating functions Sk(t) and Zk(t) are rational, so the sums S(n,k) and
Z(n,k) are C-finite with respect to n. This resolves at least one conjecture in the
OEIS. Computationally, everything is expressible in terms of finite operations
on “known” generating functions, so a computer can easily manipulate these
generating functions to generate interesting identities.

Here are the first few cases:

S1(t) =
t

(1 − t)2

S2(t) =
t2(t2 + t+ 1)

(1 − t)3(1 + t)2

S3(t) =
t3
(
2 t4 + 3 t3 + 3 t2 + 2 t+ 1

)
(1 − t)4 (t2 + t+ 1)2 (t+ 1)2

.

Maple can translate these generating functions into closed forms by using convert

with FormalPowerSeries. Inspecting these closed forms reveals the following
asymptotics:

S(n, 1) ∼ n

S(n, 2) ∼
3

8
n2

S(n, 3) ∼
11

216
n3.

It seems as though S(n,k) ∼ Ckn
k for some rationals Ck. Not only is this true,

but we even know Ck.

Theorem 2. As n→∞,

S(n,k) ∼
Hk

k!2
nk

where Hk =
∑k

j=1
1
j

is the kth harmonic number.
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FIRST STEP: PARTIAL FRACTIONS By abstract nonsense, we know
the generating function Sk(t) has a partial fraction decomposition. That is, after
writing it as a rational function and factoring the denominator into linear terms,
we may express it as a linear combination of reciprocal powers of these linear
terms. For instance:

S2(t) =
13

16(1 − t)
+

1

8 (1 + t)2
−

3

16(1 + t)
+

3

4 (1 − t)3
−

3

2 (1 − t)2
. (4)

This is particularly interesting for asymptotics, because each term of the expan-
sion has a simple closed-form expression:

[tn]
C

(1 − at)m+1
= C

(
n+m

m

)
an

∼
C

m!
annk.

Using this idea in (4) shows that

S(n, 2) ∼
13

16
n0 +

1

8
(−1)nn−

3

16
(−1)n +

3

8
n2 −

3

2
n

∼
3

8
n2.

This is our general strategy: If there is a term of the form C/(1−t)m+1, and
m+ 1 is strictly larger than any other power that appears, then the sequence is
asymptotically C

m!n
m.

This does happen with Zk(t):

Zk(t) =

k∑
i=1

ti

(1 − ti)2

∏
16j6k
j6=i

1

1 − tj
.

The denominators of each term split into roots of unity. In particular, the term
(1− t) will appear exactly k+ 1 times, and every other linear factor will appear
no more than k times. (Because 1 is the only root of unity that is an nth root
for every n.) Thus, the partial fraction expansion of Zk(t), and therefore that of
Sk(t), will contain a term of the form C/(1− t)k+1, and this is the largest term
as far as asymptotics are concerned. It suffices to compute C, the coefficient on
this term.

SECOND STEP: RESIDUES Elementary complex analysis gives us a nice
way to compute the coefficients of a partial fraction expansion into linear terms.
If

f(t) =
∑
j

∑
v

cjv

(rj − t)v
,

then
cjv = Resrj(rj − t)

v−1f(t),
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where Resz f(t), the residue of f(t) at t = z, is the coefficient on (t − z)−1 in
the series expansion of f(t) about t = z. In particular, the coefficient that we
seek is

C = Res1(1 − t)kZk(t)

Fortunately, this residue is simple to compute. Let

Pm(t) =
1 − tm

1 − t
= 1 + t+ · · ·+ tm−1.

Then we can write

(1 − t)kZk(t) =
1

1 − t

k∑
i=1

ti

Pi(t)

k∏
j=1

1

Pj(t)
,

which implies

Rest=1(1 − t)kZk(t) =

k∑
i=1

1

Pi(1)

k∏
j=1

1

Pj(1)

=

k∑
i=1

1

i

1

k!

=
Hk

k!
.

It follows that the highest order term in the partial fraction expansion of Zk(t)
is

Hk

k!

1

(1 − t)k+1
,

and this contributes Hk

k!2n
k to the asymptotics of the coefficients of Zk(t). Since

Sk(t) = Zk(t) − Zk−1(t), we have

S(n,k) ∼
Hk

k!2
nk −

Hk−1

(k− 1)!2
nk−1

∼
Hk

k!2
nk.

AVERAGES Now that we have an asymptotic formula for the sum S(n,k),
it’s time to get asymptotics for the averages S(n,k)/p(n,k). Fortunately the
partition function is very well understood:

p(n,k) ∼
nk−1

(k− 1)!k!
.

Therefore
S(n,k)

p(n,k)
∼
Hk

k
n.
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NEXT STEPS Our technique here gave us a lot of information. We should
take stock of what else it might give us.

Here’s an example: Rather than number of parts, why not study 2number of parts?
Then the sum which defines S(n,k) is directly a convolution. Who knows what
we’ll get out!

Define a new sequence of functions:

Q(n,k) =
∑

p∈P(n,k)

2L(p).

This is equivalent to

Q(n,k) =
∑

n(k)>1
n(1),n(2),...,n(k−1)>0

n(1)+2n(2)+···+kn(k)=n

2n(1)+...+n(k),

and this is nearly a convolution! In fact, if we let E(n,k) be the same sum but
we write n(k) > 0 rather than n(k) > 1, then Q(n,k) = E(n,k) − E(n,k − 1)
and most of the important properties will be preserved.

What’s the generating function of E(n,k) with respect to n? It is

f1(t)f2(t
2) · · · fk(tk),

where

fi(t) =
∑
n>0

2ntn =
1

1 − 2t
.

Therefore the whole thing has generating function

k∏
i=1

1

1 − 2ti
.

This generating function is much nicer than the first one we considered. Its
smallest pole is at t = 1/2, and the next one is t = 1/

√
2. The residue at t = 1/2

is

Rk =

k∏
i=2

1

1 − 21−i
.

Therefore ∑
n>0

E(n,k)tn −
Rk

1/2 − t

has radius of convergence 1/
√

2, which implies E(n,k) = Rk2n + O(
√

2 + ε)n

for every ε > 0. Picking a small enough ε will show that

E(n,k) ∼ Rk2n.

(Or something like that. Maybe I’m off by a constant factor.)
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We can do another example. Let

T(n,k) =
∑

n(i)>0
n(1)+2n(2)+···+kn(k)=n

1n(1)2n(2) · · ·kn(k).

For example, the partition (3, 3, 2) of 8 would contribute 32 ·21 = 18 to the sum.
It is clear that

T(n,k) = [tn]f1(t)f2(t
2) · · · fk(tk),

where

fi(t) =
∑
n>0

(it)n =
1

1 − it
.

Therefore the generating function of T(n,k) with respect to n is

k∏
i=1

1

1 − iti
.

The asymptotics here are more difficult! The smallest poles are no longer simple,
meaning that we have to work harder to get a nice formula.

IMPORTANT REMARK It seems more natural to consider partitions
with largest part at most k rather than exactly k. That’s what this shift to
E(n,k) is, and what the shift to Z(n,k) was before.
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