Partition Project Notes

Robert Dougherty-Bliss

May 2, 2021

AJ and I began studying the average number of parts over partitions of n with largest part k. The average is exactly

$$
\frac{1}{p(n, k)} \sum_{p \in P(n, k)} L(p),
$$

where $P(n, k)$ is the set of partitions of n with largest part $k, p(n, k)$ is the number of such partitions, and $L(p)$ is the number of parts of p. It makes sense to study the sum on its own terms and introduce the normalizing factor $p(n, k)$ later. To that end, let

$$
S(n, k)=\sum_{p \in P(n, k)} L(p) .
$$

The cases $\mathrm{k}=1$ and $\mathrm{k}=2$ are delightful:

$$
\begin{aligned}
& S(n, 1)=n \\
& S(n, 2)=\frac{3 n^{2}}{8}+\frac{(-1)^{n}-3}{8} n-\frac{(-1)^{n}-1}{16} .
\end{aligned}
$$

The sequence $S(n, 2)$ has a more striking representation in terms of the pentagonal numbers q_{n} :

$$
S(n, 2)=q_{(-1)^{n}\lfloor n / 2\rfloor} ; \quad q_{n}=\frac{n(3 n-1)}{2} .
$$

We know quite a bit about the sequences $S(n, k)$. In particular, we have very direct proofs of the following theorems. The OEIS does not seem to know about these.

Theorem 1. The generating function $S_{k}(t)=\sum_{n \geqslant 0} S(n, k) t^{n}$ equals $Z_{k}(t)-Z_{k-1}(t)$, where

$$
Z_{k}(t)=\sum_{i=1}^{k} \frac{t^{i}}{\left(1-t^{i}\right)^{2}} \prod_{\substack{1 \leqslant j \leqslant k \\ j \neq i}} \frac{1}{1-t^{j}} .
$$

This tells us that $S(n, k)$ is C-finite with respect to n for every fixed k. This resolves at least one conjecture in the OEIS. (See A308265, which is $\mathrm{S}(\mathrm{n}, 3)$.)

Theorem 2. As $\mathfrak{n} \rightarrow \infty$,

$$
S(n, k) \sim \frac{H_{k}}{k!^{2}} n^{k},
$$

where $\mathrm{H}_{\mathrm{k}}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \frac{1}{j}$ is the k th harmonic number.
It turns out that

$$
p(n, k) \sim \frac{n^{k-1}}{(k-1)!k!}
$$

so we get an asymptotic formula for our average almost immediately:

$$
\frac{\mathrm{S}(\mathrm{n}, \mathrm{k})}{\mathrm{p}(\mathrm{n}, \mathrm{k})} \sim \frac{\mathrm{H}_{\mathrm{k}}}{\mathrm{k}} \mathrm{n} .
$$

This checks out:

$$
\begin{aligned}
\frac{1}{100} \frac{\mathrm{~S}(100,3)}{\mathrm{p}(100,3)} & =\frac{297}{490} \approx 0.6061 \\
\frac{\mathrm{H}_{3}}{3} & =\frac{11}{18}=0.61111 \ldots
\end{aligned}
$$

NEXT STEPS Our technique to prove these theorems was to apply a touch of generatingfunctionology. That inspired a few other sums. For example, we can show that

$$
A(n, k)=\sum_{p \in P(n, k)} 2^{L(p)}=\Theta\left(2^{n}\right)
$$

For another one, we can write down a rational generating function for the "Schur-like" polynomials

$$
T_{n}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\substack{n(i) \geqslant 0 \\ n(1)+2 n(2)+\cdots+k n(k)=n}} x_{1}^{n(1)} x_{2}^{n(2)} \cdots x_{k}^{n(k)} .
$$

This is still thinking small. We should try thinking BIG. I want to perform an automated search for restrictions (DI, congruences, largest part, etc.) that result in sums where gfun can guess a generating function. That, however, is for another time.

