#OK to post homework #Blair Seidler, 2021-04-18 Assignment 23 with(combinat): Help:=proc(): print(`SYTpairs(n),RS(pi),InvRS(P)`): end: # 2. #SYTpairs(n): inputs a positive integer n and outputs #the set of pairs of standard Young tableaux of the same shape [S,T] each with n cells. SYTpairs:=proc(n) local P,SP,L,p,s,t: P:=Pn(n): SP:=[]: for p in P do L:=SYT(p): SP:=[op(SP),seq(seq([s,t],s in L),t in L)]: od: SP: end: # 3. #RS1b(Y,m): ONE STEP OF THE RS algorithm #Also returns row to which cell was added RS1b:=proc(Y,m) local i,Y1: Y1:=Ins(Y,1,m): if Y1[2]=0 then RETURN(Y1[1],1): fi: #continued after class for i from 2 to nops(Y)+1 while Y1[2]<>0 do Y1:=Ins(Y1[1],i,Y1[2]): od: Y1[1],i-1: end: #RS(pi): The pair (S,T) that is the output #of the Robinson-Schensted mapping RS:=proc(pi) local S,T,Y,i: S:=[[pi[1]]]: T:=[[1]]: for i from 2 to nops(pi) do Y:=RS1b(S,pi[i]): S:=Y[1]: Y:=Ins(T,Y[2],i): T:=Y[1]: od: [S,T]: end: # 4. #InvRS(P): inputs a pair [S,T] of standard Young tableaux of the same shape and outputs a #permutation of 1,2,...n (where n is the number or cells of S (or T)) InvRS:=proc(P) local pi,S,T,i,j,k,b,b1: S:=P[1]: T:=P[2]: pi:=[]: while nops(S[1])>0 do for i from 1 to nops(T) do if max(T[i])=max(T) then break: fi: od: if i=1 then pi:=[S[1][-1],op(pi)]: S:=[[op(1..nops(S[1])-1,S[1])],op(2..nops(S),S)]: else b:=S[i][-1]: if nops(S[i])=1 then #Only one item in last row, kill row S:=[op(1..i-1,S)]: else S:=[op(1..i-1,S),[op(1..nops(S[i])-1,S[i])],op(i+1..nops(S),S)]: fi: for j from i-1 to 1 by -1 do for k from nops(S[j]) to 1 by -1 while b=Y[1][-1] then RETURN([[op(Y[1]),m], op(2..nops(Y),Y)],0): fi: fi: for j from 1 to nops(Y[i]) while m>Y[i][j] do od: if j=nops(Y[i])+1 and (i=1 or nops(Y[i])=2 if j+1<=nops(Y[i]) then RETURN ([op(1..i-1,Y),[op(1..j-1,Y[i]),m,op(j+1..nops(Y[i]),Y[i])], op(i+1..nops(Y),Y)],0): else RETURN ([op(1..i-1,Y),[op(1..j-1,Y[i]),m], op(i+1..nops(Y),Y)],0): fi: else RETURN([op(1..i-1,Y),[op(1..j-1,Y[i]),m,op(j+1..nops(Y[i]),Y[i])], op(i+1..nops(Y),Y)],Y[i][j]): fi: end: #RS1(Y,m): ONE STEP OF THE RS algorithm RS1:=proc(Y,m) local i,Y1: Y1:=Ins(Y,1,m): if Y1[2]=0 then RETURN(Y1[1]): fi: #continued after class for i from 2 to nops(Y)+1 while Y1[2]<>0 do Y1:=Ins(Y1[1],i,Y1[2]): od: Y1[1]: end: #RSleft(pi): The left tableau,S of the pair (S,T) that is the output #of the Robinson-Scheastead mapping RSleft:=proc(pi) local Y,i: Y:=[[pi[1]]]: for i from 2 to nops(pi) do Y:=RS1(Y,pi[i]): od: Y: end: #AllSYT(n): The set of all Standard Young Tableau with n cells AllSYT:=proc(n) local S: S:=Pn(n): {seq(op(SYT(S[i])),i=1..nops(S))}: end: #OLD STUFF #C22.txt Help22:=proc(): print(` Pn(n), AP(Y,i,m), SYT(L) , AllSYT(n) `): end: #Ap(Y,i,m):write a procedure that inputs a Standard Young Tableau #and an integer i between 1 and nops(Y)+1 and inserts the #entry m at the end of the i-th row, or if i=nops(Y)+1 make #a new row with 1 cell occupied with m AP:=proc(Y,i,m): if i=nops(Y)+1 then RETURN([op(Y),[m]]): fi: if i>1 and nops(Y[i])=nops(Y[i-1]) then RETURN(FAIL): fi: [op(1..i-1,Y),[op(Y[i]),m],op(i+1..nops(Y),Y)]: end: #SYT(L): inputs an integer partion (given as a weakly decreasing #list of POSITIVE integers OUTPUTS the LIST of #Standard Young Tableax of shape L (n=Number of boxes of L) #(A way of filling 1, ..., n in the boxes such that horiz. and #vertically they are increasing SYT:=proc(L) local n,L1,S,S1,i,j: option remember: n:=add(L): if n=1 then RETURN([[[1]]]): fi: S:=[]: for i from 1 to nops(L)-1 do if L[i]>L[i+1] then L1:=[op(1..i-1,L),L[i]-1,op(i+1..nops(L),L)]: S1:=SYT(L1): S:=[op(S), seq(AP(S1[j],i,n),j=1..nops(S1))]: fi: od: if L[-1]>1 then L1:=[op(1..nops(L)-1,L), L[nops(L)]-1 ]: else L1:=[op(1..nops(L)-1,L)]: fi: S1:=SYT(L1): S:=[op(S), seq(AP(S1[j],nops(L),n),j=1..nops(S1))]: S: end: #syt(L): inputs an integer partion (given as a weakly decreasing #list of POSITIVE integers OUTPUTS the NUMBER of #Standard Young Tableax of shape L (n=Number of boxes of L) #(A way of filling 1, ..., n in the boxes such that horiz. and #vertically they are increasing syt:=proc(L) local n,L1,S,S1,i,j: option remember: n:=add(L): if n=1 then RETURN(1): fi: S:=0: for i from 1 to nops(L)-1 do if L[i]>L[i+1] then L1:=[op(1..i-1,L),L[i]-1,op(i+1..nops(L),L)]: S:=S+syt(L1): fi: od: if L[-1]>1 then L1:=[op(1..nops(L)-1,L), L[nops(L)]-1 ]: else L1:=[op(1..nops(L)-1,L)]: fi: S:=S+syt(L1): S: end: ##FROM C11.txt #Pnk(n,k): The LIST of integer partitions of n with largest part k Pnk:=proc(n,k) local k1,L,L1: option remember: if not (type(n,integer) and type(k,integer) and n>=1 and k>=1 )then RETURN([]): fi: if k>n then RETURN([]): fi: if k=n then RETURN([[n] ]): fi: L:=[]: for k1 from min(n-k,k) by -1 to 1 do L1:=Pnk(n-k,k1): L:=[op(L), seq([k, op(L1[j])],j=1..nops(L1))]: od: L: end: #Pn(n): The list of integer partitions of n in rev. lex. order Pn:=proc(n) local k:option remember:[seq(op(Pnk(n,n-k+1)),k=1..n)]:end: #END FROM C11.txt #END OLD STUFF