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Abstract

As a case study and class project of experimental mathematics, we implemented ef-
ficient programs to compute truncated Riemann Zeta functions and find minimums for
the absolute value of Truncated Riemann Zeta Function. The details of programs and
results are discussed. Future work may include approximation by continued fraction
and the asymptotic estimates which are briefly mentioned here.

Accompanying Maple Packgages

This article is accompanied by the Maple packages, TruncatedRiemannZeta.txt, available
from the front, the web-page

http://sites.math.rutgers.edu/~yao/Truncated/TruncatedRiemannZeta.txt

Introduction

As is well known, Riemann Zeta Function ζ(s) =
∑∞

n=1
1
ns . In this article, we consider

truncated Riemann Zeta Function, and especially the square of its absolute value ZNtR on
the critical line Re(z) = 1/2, which is defined to be

ZNtR(N, t) =

∣∣∣∣∣
N∑

n=1

1

n1/2+it

∣∣∣∣∣
2

for a positive integer N and a real number t.
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Generally our method, as an experimental mathematics approach to number theory, is
finitistic and numeric. With powerful Maple, we use numeric programs to compute the
square of absolute value of truncated Riemann Zeta function at first and then try to find the
approximation of its minimum points, which are candidates for zeroes of truncated Riemann
Zeta function.

We note that
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The truncated Riemann Zeta function is not necessarily a good approximation for the
Riemann zeta function on the critical line. To begin with, |ζ(1/2)|2 ≈ 2.132635292 (according
to Maple). However,

lim
t→0
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which tends to infinity as N →∞. This implies that the truncated Riemann Zeta functions
ZNtR(N, t) are not good approximations for ζ(1/2 + it) when t is small.

However, the truncated Riemann Zeta function, by itself, is an interesting topic to ex-
plore. And compared to Riemann Zeta function, it is more accessible from experimental
mathematics viewpoint.

Following is a picture of normalized zeroes of the fifth partial sum of Riemann Zeta
function from [1].
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Figure 1: 10,000 normalized zeros of ζ5(s)

Minimum Points and Values

To find out the minimal points points and values of truncated Riemann Zeta function, at first
we will need an efficient program to calculate the truncated Riemann Zeta function. With
the ZNtR function mentioned in last function, we can calculate the square of absolute value
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of truncated Riemann Zeta function without involving imaginary numbers. The following
is the naive Maple procedure ZNt for the real part of truncated Riemann Zeta function
zeta N(1/2+I*t)*zeta N(1/2-I*t) where zeta N means the truncated Riemann Zeta function
up to N.

ZNt:=proc(N,t) local n:

Re(add(1/n**(1/2+I*t),n=1..N)*add(1/n**(1/2-I*t),n=1..N));

end:

Here is a picture of ZNt(5,t):

Figure 2: Picture of ZNt(5,t)

To get rid of imaginary numbers, we have another Maple procedure ZNtR which outputs
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the real part of zeta N(1/2+I*t)*zeta N(1/2-I*t) without using imaginary numbers.
ZNtR:=proc(N,t) local n1,n2:

add(evalf(1/n),n=1..N)+2*add(add( evalf(1/sqrt(n1*n2)*cos((log(n2)-log(n1))*t)),

n2=n1+1..N), n1=1..N):

end:

Here is a picture of ZNtR(10,t):

Figure 3: Picture of ZNtR(10,t)

From the above pictures we can see that the graph oscillates above (and on) the x-axis
and there are lots of local minimums. Those minimums which are very close to the x-axis are
candidates for zeros of the truncated Riemann Zeta function. So we need numerical methods
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to find out local minimums and possible zeros.
For instance, in our package, there is a procedure FindIC(f,t,T,res) which inputs

a non-negative function f of t, and a positive number T and a resolution res, and finds
approximation minimum.

FindIC:=proc(f,t,T,res) local i,ej,L:

ej:=evalf([seq(subs(t=res*i,f),i=0..trunc(T/res))]):

L:=[]:

for i from 2 to nops(ej)-1 do

if ej[i]<ej[i-1] and ej[i]<ej[i+1] then

L:=[op(L),i*res]:

fi:

od:

L:

end:

FindIC(ZNtR(10, t), t, 100, 0.01) outputs [2.24, 4.54, 7.11, 10.01, 14.50, 20.98,
25.14, 30.50, 33.05, 37.52, 40.97, 43.39, 47.96, 49.80, 52.91, 56.35, 59.22, 60.62, 65.36, 67.06,
69.45, 72.00, 76.19, 78.58, 83.56, 86.01, 88.33, 92.95, 95.34, 98.97].

With RN(f,t,t0,N,err), we can also estimate the closest zero of f of t to t0 as soon
as two consecutive iterations are less than err apart, or we reached N iterations and return
FAIL.

RN:=proc(f,t,t0,N,err) local t1,t2,t3,i:

t1:=t0:

t2:=evalf(OneS(f,t,t1)):

for i from 2 to N do

t3:=evalf(OneS(f,t,t2)):

t1:=t2:

t2:=t3:

if abs(t1-t2)<err then

RETURN(t2):

fi:

od:

FAIL:

end:

RN(ZNtR(10, t), t, 14, 10000, 1) returns 14.440145425364838529.
There are additional numeric procedures in our Maple package and readers are welcome

to explore by themselves.

Asymptotic Estimates and Higher Moments

To estimate the summation when N and t are large, we use integrals instead of finite sums.
Following is the Maple procedure AsyTRZ which inputs large N and t and estimate truncated
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Riemann Zeta function using integral.
AsyTRZ:=proc(N,t) local n, n1, n2,ans:

ans:=int(1/n, n=1..N) + 2*int(int(1/sqrt(n1*n2)*cos(t*(ln(n2)-ln(n1))), n1=1..n2),

n2=1..N):

Re(evalf(ans)):

end:

For instance, AsyTRZ(100, 100) = 4.6158105011697512898.

Figure 4: Picture of AsyTRZ(100, t) for t from 100 to 200

Similarly, for fixed t, we can look at the trend when N gets larger. For higher moments,
the method is similar, but the integrand will be more complex and the calculation will take
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Figure 5: Picture of AsyTRZ(100, t) for t from 500 to 5000

longer.
More sophisticated numerical and experimental analysis of truncated Riemann Zeta

function can be performed. For example, since abs(Zeta N(1/2+I*t))**2 is “almost” a
trigonometic polynomial, but with irrational (in fact transcendental) frequencies, (involv-
ing log(n) for n small positive integers), we may use continued fractions to approximate the
log by rational numbers, and make approximations for ZNtR(N,t) (for a given N) that is
a linear combination of cos(rational*t). These are periodic (with large, but finite, period),
so its absolute minimum should be calculable. Then by bounding the “error” possibly we
can establish rigorously the absolute minimum of ZNtR(N,t), and in particular prove that

8



is strictly positive. We leave this as an exercise for readers.

Figure 6: Picture of AsyTRZ(N, 100) for N from 100 to 500
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