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where the prime denotes that, for a given graph, only the pmf S 
the count proportional to JV must be included 
M Ddferentiate eqn (6.22) to show that the zero-field suscepti-

X =/3JV + 2/JS^.
(iv) List the low order graphs with two odd vertices to .h

X = I3N + 2/3{2v + 6v^ + ISu^

«See eqn (6.7) for an explicit example of how this works,

Monte Carlo simulations

It could be argued that current physics research can be divided into 
three areas—theoretical, experimental, and computational. Numerical 
approaches, in which systems are mimicked as accurately as possible 
using a computer or in which computer models are set up to provide 
well-behaved experimental systems are increasingly providing a bridge 
between theory and experiment. The limitations on what can be done 
are set by the computational resources available.

A powerful numerical approach is the Monte Carlo method. It was 
introduced in 1953 at the dawn of the computer age and its range of 
applicability cind accuracy have continued to increase with the develop
ment of more advanced computer technology. One of the simplest and 
most natural applications, which we shall focus on here, is to discrete 
spin models. However the technique is very widely used: to study con
tinuous spin systems, fluids, polymers, disordered materials, and lattice 
gauge theories. Some examples are given at the end of this chapter.

7.1 Importance sampling

A common aim in statistical mechanics is to find the value of a ther
modynamic variable, such as the energy or the magnetization, which 
is a weighted sum over all states in phase space

(T.l)

For an Ising model on a lattice of N sites the sum is over 2^ configu
rations. This is a number which increases very quickly with N and a 
direct evaluation is feasible only for N ~ 40.
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flipping one or more spins. The probability that the system is allowed j 
to move from z to / is

P({s}i -» {s}/) = e-m 
= 1

Ei)
(7.3)

where Ei and Ef are the energies of the initial and final states respec
tively.

There is a physically intuitive argument that shows that with this 
choice of transition probabilities the system tends asymptotically 
(n -+ oo) to a steady state in which the probability of a given con
figuration is Consider rrir systems in a state {s}r and mt in
a state {s}t such that Et < Er- Using random numbers it is possible 
to construct a move such that the a priori probability of moving from 
state r to t is the same as that to move from t to r. (This is feasible but 
not always the case in realistic simulations.) Then, using eqns (7.3), 
the number of transitions from r to t and from f to r are

Mr_yt «: TOp

Mt^r oc ~

(7.4)

(7.5)

respectively. The net number of transitions is

AMp-vt oc {mr — (7.6)

The system will converge to a steady state where AMp_( = 0 or

mt -fiEt'
(7.7)

7.2 Practical details

i

The steps involved in setting up a Monte Carlo simulation for a simple 
spin model are listed in the flow chart in Table 7.1. This is the basis 
of the program used to generate the spin configurations in Fig. 1.8. 
The procedure can be thought of in three parts. We concentrate in 
this section on the details of how to set up the program and return 
in the next to a fuller discussion of the problems inherent in the data 
analysis.

Setting up. The first task is to define a lattice of N sites, z, each of 
which is occupied by a spin, Si- This needs to be done in such
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7.2"Table 7 i j*

number of steps is

Practical details 9S
a way that a record is kept of the neighbours of each spin as 
Its energy will be needed later. The parameters in the problem
such ^ the temperature and exchange interactions, should also 
be defined here.

Because N is necessarily finite thought must be given as to what 
to do with the spins on the boundaries of the system. These can 
either be left with fewer bonds than usual (free boundary condi
tions) or assumed to interact with the corresponding-spin on the 
opposite face of the lattice (periodic boundary conditions) The 
latter option often gives the best results, but care must be taken 
that the system is not subject to false constraints. For example 
simulations on a simple antiferromagnet with periodic boundary 
conditions can be expected to give inaccurate or spurious results 
It the length of the lattice is an odd number of spins.
Another consideration is the choice of initial values for the spins. 
Usually any choice will eventually lead to thermal equilibrium but 
It IS helpful if this happens sooner rather than later. For a simple 
ferromagnet a ferromagnetically ordered state is likely to provide 
the most efficient initial configuration at low temperatures; at 
igher temperatures a random state provides the best starting 

point. We return to the problems of convergence to equilibrium 
and finite system size in Sections 7.3.1 and 7.3.3 respectively.

Generating the Markov chain. This is the heart of the program.
It IS summarized in the centre portion of Table 7.1. The steps 
are listed below

1. Select a spin, either randomly or sequentially. Calculate
r — e where AE = Ef - Ei is the change in energy
associated with a possible spin flip (to a randomly chosen 
final state if the spin has more than two states).

2. Compare r to a random number 0 < z < 1.
3. Flip the spin^ if r > 2:.

4. Use the final configuration (whether the test spin was flipped 
or not) to generate the value of any thermodynamic quantity 
to be averaged. Store this value.

Ht is not hard to convince oneself that this procedure reproduces 
the transition probability given by eqn (7.3); for AF) < 0 r > 1 and 
hence the spin is always flipped; for AE < 0, the probability that 2 < r 
IS r and hence the spin is flipped with probability r =
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An example of raw data from a simulation.
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______________ I______________ I______________ I______________ I______________ I
0 30 000 60 000 90 000 120 000 150 000

Number of configurations

Fig. 7.1. Magnetization of an Ising ferromagnet on a cubic lattice of 
size 10 X10 X10 with periodic boundary conditions plotted as a function 
of the number of Monte Carlo configurations for different temperatures. 
Open circles denote averages taken over the three preceding Monte 
Carlo steps per spin. Full curves give a running average if no initial 
configurations are excluded. The dashed lines are the final estimates 
of the magnetization where initial configurations have been excluded. 
After Binder, K. and Rauch, Z. (1969). Zeitschrift fur Physik, 219, 
201.

configurations is shown in Fig. 7.1. Note that equilibrium is attained 
after a few Monte Carlo steps per spin for temperatures sufficiently far 
from the critical point but a slower relaxation and larger fluctuations 
are observed closer to Tc {J/kTc = 0.22).

7.3.2 Statistical errors

To obtain reliable results for ,the equilibrium value of an observable, 
the average must be taken over a time much longer than that 

over which the Monte Carlo states are correlated. This becomes more 
difficult near the critical point or if there are metastable states in the 
system. It can be shown that the deviation of An from is normally 
distributed in the limit n oo. Thus standard data analysis can be 
applied to determine the statistical error.

Dividing the equilibrium configurations into independent blocks
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figures from a machine at Santa Barbara, USA^. This can update 10' 
spins each second. Lattice sizes of up to AT = 64 x 64 x 64 were usee 
and data for 10^-10® Monte Carlo steps per spin collected for each size 
At the critical temperature on the largest lattices the time to come tc 
equilibrium was of the order of 7000 Monte Carlo steps per spin.

Using these data the result for the critical temperature was Kc = 
J/kTc — 0.221650(5) where the figure in brackets is the estimate of the 
error in the last digit. This agrees with, and is comparable in accuracy 
to, the best estimate from series expansions, Kc = 0.221655(5)^. The 
Vcilue obtained for the exponent ratio 7/1/ = 1.98(2) is considerably less 
precise because of the problems of finite-size effects. Better results can 
be obtained using the Monte Carlo renormalization group, a technique 
which combines the strengths of the renormalization group arid Monte 
Carlo simulations. This will be described in Chapter 9.

7.4.2 More complicated systems

Although Monte Carlo is particularly well suited to simulations of the 
Ising and other discrete spin models it was originally introduced in 
relation to fluids and has proved useful both here and in many other 
contexts. The most fundamental difference between simulations on 
different systems is in the choice of test configuration.

For example, for fluids, one possibility is to choose a molecule at 
rcindom and allow it to move through a distance chosen at random 
between 0 and A in a random direction. The most accurate results 
are obtained if A is chosen so that approximately half the trials are 
accepted. Many different models have been considered in the literature, 
ranging from a gas of hard sphere molecules to attempts to incorporate 
realistic interatomic potentials. Common alms are to calculate the 
equation of state or the pair correlation function.

With today’s computational power it is feasible to obtain realistic 
results for even more complicated systems. One example is solutions 
of polymers, long chain molecules, where Monte Carlo has been par
ticularly useful in looking at properties which depend on the polymer 
topology rather than the details of the chemistry. Here the so'-CEilled 
reptation technique is one of the mogt efficient ways of generating suit
able sequences of states. Starting from an Eirbitrary configuration the 
end of one of the chains is removed at random and added to the other

®Barber, M. N.', Peeirson, R. B., Toussaint, D., and Richardson, J. 
L. (1985). Physical Review, B32, 1720.

Adler, J. (1983). Journal of Physics A: Mathematical and General, 
16, 3585.



7.5
Monte Carlo simulations

suits have been obtained tor such diverse pr^leTf diT' ^

of tangled polymers. rfaces, and for the dynamics

7.5 Problem

, Ising model on a squam latdce Choos 7 7 ^
to the power of the Z JZ ^ appropriate
results Ln be oUained illustrative

Discuss ^ ««iall as 6 X 6.
(i) the initial conditions used
(ii) the boundary conditions
W the number otsteps required to achieve thermodynamic equi-

M the rfr'’T" f'Tn*'? temperature
( ) the effect of the finite system size.

tu»';y-y.

'■ 'A-.'i/sns

1»

1 . b

s' ,’V^ 
' ’ ''“fiiiI' it

'' -Egiai?'

-'"EE -bSii''! 
'b' I ■"■■'^ ..jf

: !• ' ')S!.|Kv\i,f.V -y ' '■

*

8

The renormalization group

The approaches described so far in this book have given a broad 
nomenological understanding of critical phenomena. However, altho 
a substantial framework of results and connections has been built | 
we have, as yet, no explanations for the following:

1. Continuous phase transitions fall into universality classes char| 
terized by a given value of the critical exponents.

2. For a given universality class there is an upper critical dimensil 
above which exponents take on mean-field values.

3. Relations between exponents, which follow as inequalities fro| 
thermodynamics, hold as equalities.

4. Critical exponents take the same value as the transition tempel 
ature is approached from above or below.

5. Two-dimensional critical exponents often appear to be rations 
fractions.

What is needed is a theory, bcised on the physics of what is hap
pening at the critical point. We argued in Chapter 1 that the special 
feature of criticality is that the correlation length is infinite and thatl 
the critical system is invariant on all length scales. The aim is to writel 
down a (hopefully short, elegant, and comprehensible) mathematical 
theory which embodies this physics and explains all the observations 
listed above. A useful theory will also allow the calculation of critical 
exponents and transition temperatures, if not exactly, then within an 
accurate and well-controlled approximation scheme.
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