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0 Introduction

A children’s card game perhaps not known to some is the game ’War.’ It is typically played with a standard deck
of 52 cards split between two players. Players then take turns flipping their respective top cards and the winner is
whomever has the higher valued card. The winner then places both cards at the bottom of their pile. In the instance
where both cards are the same, players then flip the top four cards and compare between their fourth flipped card.
Again, the winner is whoever has the higher valued card and they then take all of the flipped cards and place them
in the bottom of their pile.

This paper analyzes a simplified card game inspired by ’War.’ Namely, suppose two players have a deck of 2n
cards labeled accordingly by 1, . . . , 2n. Note already that there will never be a tie between players. Consequently,
players take turns as in ’War,’ flipping their top cards and comparing values, and we stipulate that when the winner
places the two cards at the bottom of their pile, the losers’ card must go last. This consistent placement of cards
will greatly simplify later proofs. In fact, it will be prominent enough that this restriction is titled the ’winning
restriction;’ the reason for this name will be made clear later.

Given that there are never any ties, this variant of ’War’ will be called ’Strict War.’ The aspects of ’Strict War’
which we concern ourselves with are the following properties:

1. Number of terminating and periodic games.

2. Expected duration of a terminating game and the expected period of periodic game play.

3. Which hands can actually occur during game play.

Before proceeding to address these questions and more, allow us to establish some terminology and notation.
First, it is assumed that Strict War is played with a deck of cards of size 2n, hence the game begins with each

having n cards. A round of game play consists of both players comparing their current card, to which a winner
is determined and then places both cards at the bottom of their pile with the lower card placed at the bottom. A
game then consists of several rounds of game play until no more rounds can be played or the game becomes periodic.
To the former, a game is said to terminate if one player has all 2n cards in some permutation. The initial cards the
players begin with are called their starting hands, while in general during any round, if both players have the same
amount of cards, then they are said to have a pair of n-hands. The pairs with unequal sizes that occur during
game play are then just called a pair of hands. Lastly, a pair of hands is said to be playable if there exists another
pair of hands such that the outcome of that round is the initial pair of hands; in this case, the initial pair of hands
is also said to have been played to by the previous pair of hands.

With the terminology established, we introduce some notation. First, denote the total set of all ordered subsets
of {1, . . . , 2n} by T2n. Then, denote the i-th player by Xi and their starting hand of n cards by Hi(0). After l rounds
of game play, denote the hand of Xi by Hi(l), and define the state of the game after l moves to be the ordered
pair (H1(l), H2(l)). Consequently, for each l, the state (H1(l), H2(l)) can be identified as an element of T2n; but note
that not every element of T2n can actually occur (see the first Lemma).

1 The Graph

The primary tool used in studying Strict War is the following graph associated to it. Let G2n be the directed graph
with set of vertices V2n = T2n and edge set consisting of all ordered pairs

E2n := {[(x1, y1), (x2, y2)] | (x1, y1) plays to (x2, y2)}

Then the graph G2n := (V2n, E2n) precisely demonstrates all possible games of Strict War played on 2n cards.
Questions about game play can be posed as questions about the graph. For instance, a terminating game is then a
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directed path as a subdiagram of G2n. Moreover, periodic games are not necessarily cycles. Instead, they may be
cycles or cycles with ray pointing inward to a node on a cycle; this observation leads to the distinction of periodic
games and quasi-periodic games, respectively.

The graph also shows which hands may actually appear as game play. These are clearly the nodes which have a
directed edge pointing to it. Moreover, define the directed degree of a node v to be a tuple (p, q) where p is the
number of edges pointing to v and q is the number of edges pointing out of v. Denote this by

ddeg(v) := (p, q)

Then

Lemma 1. For all v ∈ V
ddeg(v) ∈ {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)}

That is, a node can have at most 2 edges pointing to it and at most 1 edge pointing out of it.

Proof. Let v0 ∈ V . By definition of the directed edges, v0 can only be pointing to another node v1 if one can play
from v0 to v1. Since each pair of hands has only one outcome each round, either player 1 wins or player 2 wins, then
either v0 is connected to another node or it is the final pair of hands i.e. the game has terminated at v0. Hence,
indeed 0 ≤ q ≤ 1.

Similarly, consider the possible nodes that may point to v0. Again by definition, any such connected node then
plays to v0. However, as v0 is a pair of hands of the two players, if a node is connected to v0, then either player
1 won or player 2 won the game before. However, both events are possible, so indeed there are at most two nodes
pointing to v0.

Of particular importance is when there are no nodes pointing to v0. In which case, either the pair of hands
represented by v0 are of the same size or they are not. If they are, then these nodes represent starting hands for
Strict War which cannot be obtained by playing from a different pair of starting hands; or they are of different
lengths, which is not a valid pair of starting hands and hence cannot point to any other node.

Corollary 1. The connected components of G2n are either isolated points, trees, cycles, or cycles with directed rays
pointing to a node of a cycle. Here, a path is considered a tree.

Clearly the points of T2n which cannot occur as game play are precisely the isolated points of G2n. However, the
graph also reduces the analysis of Strict War by considering the proof of the following lemma, which in fact follows
from an easier lemma.

Lemma 2. There are an even number of connected components in G2n. Moreover, each connected component of
G2n is isomorphic to another distinct connected component of G2n.

Lemma 3. If for some game a pair of hands (H1(l), H2(l)) plays to (H1(l + 1), H2(l + 1)), then (H2(l), H1(l)) plays
to (H2(l + 1), H1(l + 1)).

Proof. Obvious.

Proof. Returning to the proof of Lemma 2. Suppose H is a connected component of G2n. Then consider the image
of H obtained by the map defined by swapping hands i.e. (H1(l), H2(l)) 7→ (H2(l), H1(l)). This is clearly a directed
graph isomorphism.

In words, the previous two lemmas simply say that game play is symmetric with respect to the player i.e. it does
not matter which player is assigned Hi(l). Thus, we can effectively reduce the numbers of cases to consider by half.
In order to make a consistent choice among all pairs of connected components, note the following trivial lemma.

Lemma 4. If a game terminates, then the player with the highest card must win.

Proof. Suppose otherwise i.e. the player who does not have the highest card wins the game. This then implies that
the winning player must have beat the highest card, which is impossible.

Thus, without loss of generality, we need only analyze the cases in which player 1 has the highest card.
Now, in order to analyze the remaining game play of Strict War, it would appear natural to first look at the game

play that ensues from trying each possible choice of H1(0) and H2(0) where H1(0) contains 2n. However, a more
informative algorithm would be to study the game in reverse. That is, for each permutation of {1, . . . , 2n}, consider
the moves that lead to it and proceed recursively, determining the moves that could lead to those moves and so on.
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In doing so, one effectively determines which permutation can a game terminate on, how long a game lasts,
how many starting hands end on the same permutation, and consequently, which starting hands lead to periodic or
quasi-periodic game play. Indeed, any starting hand will either terminate or become periodic. The posed algorithm
determines which starting hands terminate. Hence, the complement of the remaining set of starting hands must
lead to periodic or quasi-periodic game play. Moreover, the posed algorithm further allows one to determine the
(quasi)period of a starting hand that experiences (quasi)periodic game play.

Thus, while the posed algorithm allows one to determine all starting hands which have the same ending hand, it
in fact allows us to reduce the number of cases even further. Indeed, lemmas 2, 3, and 4 were useful in reducing the
analysis by half if it was conducted by looking at starting hands. However, in starting from reverse, a priori we are
looking at 2(2n)! since there are (2n)! permutations of {1, . . . , 2n}, but then either player 1 wins or player 2 wins.
However, by lemma 2, it still suffices to consider only the cases in which player 1 wins due to the aforementioned
symmetry. Consequently, we are again looking at at most (2n)! cases for the final hand of player 1.

Lemma 5. There are at most (2n)!
4 possible hands player 1 can end on.

Proof. Suppose a gamed terminated with the state of the game being

([i1, . . . , i2n], [])

where [i1, . . . , i2n] is some ordering of the cards. As this is not a valid starting hand, there must have necessarily been
a round that plays to it. However, since the rules stipulate that the lower of the two compared cards gets stacked,
necessarily i2n−1 > i2n and the previous pair of hands is given by

([i2n−1, i1, . . . , i2n−2], [i2n])

However, in the event that n > 1, this again is not a valid starting pair of hands. Hence, by the same logic there
must have been a round that plays to it, so necessarily i2n−3 > i2n−2 and the previous turn had the pair of hands

([i2n−3, i2n−1, i1, . . . , i2n−4], [i2n−2, i2n])

From here, it follows that the endings that may actually occur must be such that the last two pairs of cards are
decreasing i.e. the only endings allowed are permutations [i1, . . . , i2n] with i2n−1 > i2n and i2n−3 > i2n−2. There are

precisely (2n)!
4 such permutations, hence completing the proof.

Note that the proof does provide a procedure to determine tighter bounds for games played with more cards. In
particular,

Corollary 2. If n ≥ 3, then there are at most 3(2n)!
16 possible hands player 1 can end on. If n ≥ 4, then there are at

most 3(2n)!
32 possible hands player 1 can end on.

These two bounds can be readily derived by continuing the process outlined in the proof of the previous lemma.
We now turn our attention and prove two lemmas pertaining to periodic game play. Before doing so, there are

two types of periodic game play that have been mentioned but we now make more concrete. If a game does not
terminate, then it is called quasi-periodic if in the repetition of game play the players do not return to their starting
hands; otherwise it is called periodic. For the former, what is meant is it is possible to play a game such that the
repetition begins after l moves. Thus, both periodic and quasi-periodic game plays have a notion of period: the
length of the cycle experienced in game play. However, quasi-periodic game play also has a quasi-period given by
adding to the period the amount of moves needed to get from the starting hand to the periodic game.

Lemma 6. Any periodic game has an even period.

Proof. This follows from the trivial observation that the length of the period is also equal to the number of times
each player has won. However, if the game is to be periodic, then after a cycle, a player must have lost as much as
they won i.e. both players won the same amount of times. Hence, the period is indeed even.

We now prove a lemma pertaining to the minimum size of periodic game play, but first prove an even easier
lemma, where recall we assume that player 1 has the highest card.

Lemma 7. The highest card cannot occur as the last or third to last card in player 1’s hand during any round of
game play.
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Proof. The fact that the highest card cannot be the last card is obvious. If it was, since the corresponding pair of
hands is part of a periodic game play, there is a pair of hands that plays to it. If in the previous round player 1
won, then as the lowest card gets placed last, this means the second to last card is higher than its last, which is a
contradiction. Thus, player 2 won the round before. But by the same logic, player 1 could not have the won the
round before that one, so necessarily player 2 did. Consequently, player 2 won every round prior, eventually leading
to a pair of hands where player 2 has only one card. At this state, clearly player 2 could not have won the round
prior, so player 1 must have won, which again is a contradiction to the last card being the highest card.

Similarly, suppose the highest card was in the third to last spot. Suppose player 1 won the round before. In this
previous round, player 1 thus had their highest card as their last, which was shown before to be impossible.

Corollary 3. In a periodic game, the highest card cannot be in a position with the same parity as that of n.

We are now able to prove a lower bound on the length of periodic game play.

Lemma 8. Any periodic game must have a period of at least n + 2.

Proof. Suppose ([i1, . . . , ik], [ik+1, . . . , i2n]) is a pair of hands in the periodic game play. Now, one of the players has
at least n cards. Without loss of generality, we may suppose it is the first player i.e. k ≥ n. As the game is periodic,
player 1 must play through each ij . In particular, there will be at least k ≥ n moves. However, note that once the
first card of player 1’s hand is ik, player 2 will have some ij as their first.

If player 1 wins, then their last two cards are ordered as ik, ij . As the game is periodic, player 1 must return ij
to player 2, hence play at least 2 more rounds. If player 1 loses, then player 2’s last two cards are ordered as ij , ik.
As the game is periodic, player 1 must retrieve ik, hence there are at least two more rounds; once through ij and
once through ik.

Hence, the period is indeed at least k + 2 ≥ n + 2.

We now return to terminating games and give two lemmas pertaining to their lengths.

Lemma 9. The shortest terminating game which occurs has length n.

Proof. This is the simple observation that player 1 can win every single round, which is precisely n rounds.

Lemma 10. The length of any game that terminates has the same parity as n.

Proof. Denote the length of a terminating game by N . Suppose after these N total rounds, player 1 won n1 rounds,
and player 2 won n2 rounds. Hence N = n1 + n2. Now, as it is assumed player 1 wins, we readily obtain that
n1 = n + n2. Indeed, for player 1 to win they must obtain every card they lost to player 2, which is n2, and then
obtain the other n cards player 2 started with. With this system one readily deduces that

n1 =
N + n

2

n2 =
N − n

2

In particular, as either left hand side is an integer, 2 must divide their difference (and sum) and indeed N and n are
either both even or both odd; N is thus the same parity as n as claimed.

2 Generating Functions

The following are the generating functions Ln(t)for the duration of game play with each player starting with n cards
which terminate.

L2(t) = 4t6 + 8t4 + 12t2

L3(t) = 12t15 + 30t13 + 54t11 + 102t9 + 162t7 + 180t5 + 180t3

L4(t) = 64t26 + 324t24 + 636t22 + 1300t20 + 2196t18 + 3280t16 + 4188t14 + 4920t12 + 5828t10 + 5824t8 + 6720t6 + 5040t4

L5(t) = 40t49 + 150t47 + 390t45 + 565t43 + 820t41 + 1850t39 + 3615t37

+ 6955t35 + 11580t33 + 18280t31 + 30960t29 + 44275t27 + 58665t25 + 70585t23

+ 87430t21 + 110595t19 + 128660t17 + 149045t15 + 190120t13 + 204150t11 + 195300t9 + 189000t7 + 113400t5
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Interestingly enough, the exponents are all in arithmetic progression with difference 2 starting from n and ending
on...who knows! Moreover, note that the coefficients are all even, which should be the case since as noted in the
preliminary discussion, there are twice as many hands with the same outcome by swapping the players’ hands.

Now, Ln(1) is precisely the amount of starting hands which have a terminating game play. Interestingly enough,
note that

L2(1) = 4! = 24

L3(1) = 6! = 720

L4(1) = 8! = 40320

L5(1) = 3232860

Thus, for a deck of size 4, 6, and 8, there are no games which experience periodic game play. However, this can be
rigorously proven, rather trivially, for each of these cases. For a deck of size 5 there are indeed starting hands that
experience periodic game play.

Moreover, one may also readily compute the expectations from Ln(t) as
L′

n(1)
Ln(1)

. In particular,

L′2(1)

L2(1)
=

10

3
≈ 3.3̄

L′3(1)

L3(1)
=

97

15
≈ 6.46̄

L′4(1)

L4(1)
=

8843

840
≈ 10.52738095 . . .

L′5(1)

L5(1)
=

2339111

161643
≈ 14.47084625 . . .

Interestingly, as mentioned before, the coefficients are even because half occur for player 1 winning and the other
occur for player 2 winning. Thus, the generating function for the length of game play where player 1 wins is 1

2Ln(t)
and similarly for player 2. Consequently, when we compute the expected length of game play where player 1 wins,
it is precisely the same values as above! And of course the same holds for player 2 winning! This makes contextual
since as game play is symmetric with respect to the players.
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