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1.1 The Purpose of this Book
This book aims to be a friendlier introduction to Bayesian analysis than other
texts available out there. Whenever we introduce new concepts, we keep the
mathematics to a minimum and focus instead on the intuition behind the
theory. However, we do not sacrifice content for the sake of simplicity and
aim to cover everything from the basics up to the advanced topics required
for applied research. Overall, this book seeks to plug a gap in the existing
literature (see Figure 1.1).
To help readers along the way, we have developed a number of interactive
elements which are accessible through the book’s website, as well as example
code for readers to peruse and, if they so desire, to run themselves. We also
supplement key ideas with videos, which approach topics from different
angles, and examples.
At the end of each chapter, there are problem sets, which allow the student to
build up practical experience of Bayesian analysis. Whenever appropriate
these problem sets will also be supplemented with video material.
Figure 1.1 This book’s niche.





1.2 Who is this Book for?
This book is for anyone who has ever tried and failed at statistics, particularly
Bayesian statistics.
The text is aimed at anyone who has completed high school mathematics and
wants to conduct Bayesian inference on real-world data. We assume no
previous knowledge of probability (which is central to Bayesian analysis) and
devote the entirety of Chapter 3 to this topic. We do not require that the
student be versed in Frequentist statistics, as we aim to build an alternative
and complementary path to a shared goal. After Chapter 2 we refrain from
frequent comparisons between these two approaches.
While we start at the beginning of statistical inference, we hope to provide a
guide of practical use for the types of analysis encountered in real life.

1.3 Prerequisites
Knowledge of the following is strongly recommended to allow the reader to
get the most out of this book:

Algebra: Manipulation of symbolic expressions is widespread
throughout the text.
Products and summations: These are mainly used for writing down
likelihood and log-likelihood functions.

There is some differentiation in this book, although it is fairly limited and
used mostly in sections concerning maximum likelihood. A note on
integration: At early stages of this book’s development, it contained many
integrals. In teaching this material, we have realised that students can be
discouraged by the sight of these mathematical behemoths. Fortunately, since
modern Bayesian inference relies on computational sampling rather than hard
calculation (see Part IV), an intimate knowledge of integrals is no longer
essential. In this book, we keep the use of integrals to a minimum, apart from
mainly those cases where we provide a motivation for Markov chain Monte
Carlo (MCMC).
The only other prerequisite concerns the practical application of Bayesian
analysis. Knowledge of the open source statistical software R [29] would be
useful. We do not classify this item with those above, because we use only
the basic functionality of this language and also document any use of this
language thoroughly. This language is widely used for statistical analysis
and, because of its popularity, there are excellent free online resources that
can be used to learn it. Here we list just a few of the available resources:



Coursera (www.coursera.org) has a number of great lecture courses with
associated problem sets available for learning R. We recommend the
courses by Roger Peng at Johns Hopkins University.
Try R (http://tryr.codeschool.com) is a short interactive introductory
lesson on the basics of R.
Data Camp’s free Introduction to R (www.datacamp.com/courses/free-
introduction-to-r) provides 4 hours of interactive lectures on the basics
of R.
The R Guide (http://cran.r-project.org/doc/contrib/Owen-
TheRGuide.pdf) is a nice written guide to R.

While none of these are essential, if you have difficulty following the
examples in this text, we recommend that you try the above resources.

http://www.coursera.org
http://tryr.codeschool.com
http://www.datacamp.com/courses/free-introduction-to-r
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf


1.4 Book Outline
We have written this text to make each chapter as self-contained as possible.
While, at times, the reader may feel that this makes the text repetitive, this
approach has two purposes: first to help keep topics self-contained, but also
because we believe that some ideas are worth encountering, and re-
encountering, at different points along the way in learning about Bayes.
The book is divided into five parts:

Part I: An introduction to Bayesian inference
Part II: Understanding the Bayesian formula
Part III: Analytic Bayesian methods
Part IV: A practical guide to doing real-life Bayesian analysis:
Computational Bayes
Part V: Hierarchical models and regression

Part I provides an introduction to the purpose of statistical inference, then
compares and contrasts the Bayesian and Frequentist approaches to it.
Bayesian inference is based on probability distributions. Hence, it is
imperative to understand these types of mathematical object. The latter half
of this part is devoted to this topic. Part II introduces the reader to the
constituent elements of the Bayesian inference formula, and in doing so
provides an all-round introduction to the practicalities of doing Bayesian
inference. Part III aims to equip the reader with knowledge of the most
practically relevant probability distributions for Bayesian inference. These
objects come under two categories (although some distributions fall into
both): prior distributions and likelihood distributions. Knowledge of these
distributions is essential for understanding existing research papers and books
which use Bayesian statistics, as well as necessary to conduct Bayesian
inference in practice. The rest of this part is concerned with introducing the
reader to ‘nice’ combinations of distributions, which allow for a pen-and-
paper deduction of quantities of interest. This is important as a stepping stone
to computational methods, but also because these types of model are a good
place to start before implementing more nuanced models. Part IV introduces
the reader to the modern methods of undertaking Bayesian analysis, through
computational Markov chain Monte Carlo. This part provides an intuitive
explanation of some of the most important algorithmic tools used in
computational methods. It also introduces the reader to the statistical
programming language that we use for many applied examples in this text:



Stan. This part is essential reading for anyone who wants to conduct serious
real-world Bayesian analysis of data. Assuming this computational
knowledge, Part V introduces the reader to an important Bayesian paradigm
known as hierarchical models. It also provides an in-depth introduction to
Bayesian regression modelling for linear and generalised linear models.
Each chapter has two introductory summaries: the chapter mission statement
and chapter goals. The former is usually a one- or two-sentence summary of
the material to be covered in the chapter. The goals section is more detailed
and links together material encountered in previous chapters. At the end of
each chapter, there are also two summary sections: a chapter summary and
short list of chapter outcomes. These provide the reader with a description of
the skills acquired as well as a perspective on the material’s position within
the book’s overall goals.

1.5 Route Planner – Suggested Journeys
Through Bayesland
In the style of most good guide books, we suggest itineraries that offer routes
through select parts of Bayesland. These journeys are meant to be shortish
paths towards gaining a better understanding of particular elements of
Bayesian statistics. Like most short trips they are not as all-encompassing as
a more prolonged stay, but can nonetheless be useful and fun in their own
right. We offer the following trips through Bayesland, which the reader can
choose based on their time constraints, goals and pre-existing knowledge:

The long-weekender (introductory) provides a short introduction to
the principles of Bayesian inference. Chapter 2 introduces you to the
theory behind statistical inference and provides a gentle comparison
between Bayesian and Frequentist approaches. If you have extra time,
and knowledge of probability distributions, then try your hand at
Chapter 7.
The 2-week basic package trip (introductory), consisting of Parts I
and II, provides a full introduction to Bayesian statistics from the ground
up.
The 2-week refresher (intermediate) aims to provide a good
grounding in Bayesian inference for someone with some experience in
statistics. Read Chapter 2 to get your bearings. Depending on your
knowledge of the Bayesian formula, Part II can be either read or left
behind. Part III should be read almost in full, as this will get you up to



speed with many of the tools necessary to understand research papers.
To this end, you can probably avoid reading Chapter 11, on objective
Bayes.
The Bayes summer 1-weeker (intermediate) is a short course that
provides some background information for anyone who wants to use
Bayesian inference in their own work. Read Chapters 8 and 9 to get an
idea of some of the distributional tools which are available to us and
how they can be used. Next read Chapter 12, which explains some of the
issues with analytical Bayesian inference and a motivation for Markov
chain Monte Carlo.
The 3-week full practical swing (intermediate-expert) is if you are
happy with your knowledge of the Bayesian inference formula and the
distributions used in Bayesian analysis, and you want to skip ahead to
Part IV, which introduces computational methods. This introduces you
to the motivation behind computational sampling and provides an
introduction to Stan, which is the statistical language used in this text to
do sampling via MCMC. If you have time, then you may want to
progress to Part V, where there are more applied examples that use Stan.
The ‘I need to do Bayesian analysis now’ 3-day leg (intermediate-
expert) is tailored to those practitioners who need to carry out Bayesian
data analysis fast. The most likely audience here consists of those in
research, either academic or corporate, who have existing knowledge of
Bayesian statistics. Skip ahead to Chapter 16, on Stan. After this, it is
useful to know about hierarchical models, so we recommend reading
Chapter 17, followed by the rest of Part V.
A 3-week Bayes ocean master (intermediate-expert) is for those who
want to learn as much about applied Bayesian methods as time allows,
but also want to gain experience in practically applying Bayesian
statistics. Read all of Part IV.
A 2-week modelling masterclass (expert) is for you if you know all the
basics, have used Stan before, and want to see these applied to carrying
out real-life data analysis. Read all of Part V.

1.6 Video
Whenever the reader sees the following signpost, there is a video available to
supplement the main text:
Video



This video describes the syllabus covered in this book.

By following the web address indicated, the user can watch the video.
The videos are not meant to replace reading of the text. They are
supplementary and aim to address topics through alternative approaches and
with different examples.

1.7 Problem Sets
The reader can test their knowledge using the problem sets at the end of each
chapter. The problems cover mostly the practical application of Bayesian data
analysis, although there are also more theoretical questions. We have tried to
make these as fun as possible! They include many examples which we think
demonstrate well certain aspects of Bayesian inference and could be used as
jumping-off points for mini student projects. The examples often include real
data sets that we believe are interesting to analyse and provide hands-on
insight into what it is like to do Bayesian statistics in the field.

1.8 R and Stan
Modern Bayesian data analysis uses computers. Luckily for the student of
Bayesian statistics, the most up-to-date and useful software packages are
open source, meaning they are freely available to use. In this book, we use
solely this type of software.
The most recent, and powerful, software to emerge is Stan, developed by
Andrew Gelman et al. [8, 34]. The language of this software is not difficult to
understand, and the code is easier to write and debug than its competition.
Stan allows a user to fit complex models to data sets without having to wait
an age for the results. It is now the de facto choice of modelling software for
MCMC for most researchers who use Bayesian statistics. This is reflected in
terms of both the number of papers that cite Stan and the number of
textbooks that use Stan as their programming language of choice. This
popularity matters. It means that the language is here to stay, and will likely
continue to improve. It also means that there is an active user forum (which is
managed by Stan developers) where you can often find answers to issues by
searching through the question bank or, failing a resolution, ask a question
yourself. In short, if you run into issues with your code or have trouble with



the sampling, then there are a range of places you can go to find a solution
(covered in detail in Chapter 16).
Stan is usually run through another piece of ‘helper’ software. While a
number of alternatives are available, we choose to use R because it is open
source and widely used. This means that anyone with a modern computer can
get their hands dirty in Bayesian analysis. Its popularity is important since the
code base is well maintained and tested.
Whenever appropriate, particularly in Part IV onwards, we include snippets
of code in R and Stan. These are commented thoroughly, which should be
self-explanatory.

1.9 Why Don’t More People use Bayesian
Statistics?
Many are discouraged from using Bayesian statistics for analysis due to its
supposed difficulty and its dependence on mathematics. We argue that this is,
in part, a weakness of the existing literature on the subject, which this book
seeks to address. It also highlights how many books on Frequentist statistics
sweep their inherent complexity and assumptions under the carpet, to make
their texts easier to digest. This means that for many practitioners it seems
that the path of least resistance is to forge ahead with Frequentist tools.
Because of its dependence on the logic of probability, Bayesian statistics
superficially appears mathematically complex. What is often lost in
introductory texts on Bayesian theory is the intuitive explanations behind the
mathematical formulae. Instead, here we consciously choose to shift the
emphasis towards the intuition behind the theory. We focus on graphical and
illustrative explanations rather than getting lost in the details of the
mathematics, which is not necessary for much of modern Bayesian analysis.
We hope that by doing so, we shall lose fewer casualties to the mathematical
complexity and redress the imbalance between Frequentist and Bayesian
analyses.
On first appearances, the concept of the prior no doubt leads many to
abandon ship early on the path to understanding Bayesian methodologies.
This is because some view this aspect of Bayesian inference as wishy-washy
and hence a less firm foundation on which to build an analysis. We cover this
concept in detail in Chapter 5, which is fully devoted to this subject, where
we hope to banish this particular thorn in the side of would-be Bayesian
statisticians.



The reliance on computing, in particular simulation, is also seen to inflate the
complexity of Bayesian approaches. While Bayesian statistics is reliant on
computers, we should recognise that, nowadays, the same is true for
Frequentist statistics. No applied statistician does research using only pen and
paper. We also argue that the modern algorithms used for simulation in
Bayesian inference are straightforward to understand and, with modern
software, easy to implement. Furthermore, the added complexity of
simulation methods is compensated for by the straightforward extension of
Bayesian models to handle arbitrarily complex situations. Like most things
worth studying, there is a slight learning curve to become acquainted with a
language used to write modern Bayesian simulations. We hope to make this
curve sufficiently shallow by introducing the elements used in these
computational applications incrementally.

1.10 What are the Tangible (Non-Academic)
Benefits of Bayesian Statistics?
Bayesian textbooks often heavily emphasise the academic reasons for
choosing a Bayesian analysis over Frequentist approaches. Authors often
neglect to promote the more tangible, everyday benefits of the former. Here
we list the following real benefits of a Bayesian approach:

Simple and intuitive model testing and comparison. The prior and
posterior predictive distributions allow for in-depth testing of any
particular aspect of a model, by comparing data simulated from these
distributions with the real data.
Straightforward interpretation of results. In Frequentist analyses, the
confidence interval is often taken to be a simple measure of uncertainty.
As we shall see in Section 7.7.1, this is not the case, and interpretation
of this concept is not straightforward. By contrast, Bayesian credible
intervals have a more common sense interpretation which better aligns
with the view that they quantify the uncertainty inherent in estimation.
Full model flexibility. Modern Bayesian analyses use computational
simulation to carry out analyses. While this might appear excessive
when compared to Frequentist statistics, a benefit is that Bayesian
models can be easily extended to encompass a data-generating process
of any complexity. This is in contrast to Frequentist approaches, where
the intrinsic difficulty of analysis often scales with the complexity of the
model chosen.



Less important to remember mathematical formulae and statistical
tests, and less opportunity for misuse of tests. For someone
attempting to learn Frequentist inference, there are considerable barriers
to entry. There are a range of mathematical and statistical results (with
somewhat random names) that are necessary to know in order to do
inference. The assumptions behind each of these results are typically not
self-evident, particularly when using statistical software for inference.
This means that there is ample opportunity for their misuse. In Bayesian
inference, by contrast, we typically build models from the ground up,
starting with our assumptions about a process. While this might appear
repetitive at times, this approach means that we do not need a working
knowledge of disparate statistical tests. It also means that there is less
opportunity to misuse Bayesian models since we explicitly state our
assumptions as part of the model building process.
The best predictions. Leading figures, both inside and outside of
academia, use Bayesian approaches for prediction. An example is Nate
Silver’s correct prediction of the 2008 US presidential election results
[32].

1.11 Suggested Further Reading
A good book should leave the reader wanting more. Due to the finiteness of
this text, we recommend the following books, articles and websites. These
are not necessarily all on Bayesian statistics but fall under the wider
categories of statistical inference and learning. We also provide a score of the
complexity of these texts to help guide your choice:

Bayesian Data Analysis (intermediate-expert): A masterpiece
produced by the master statisticians Andrew Gelman and Donald Rubin,
among others. This is the most all-encompassing and up-to-date text
available on applied Bayesian data analysis. There are plenty of
examples of Bayesian analysis applied to real-world data that are well
explained [14]. However, the mathematical and statistical knowledge
assumed by this book can be intimidating, especially if you are just
starting out in the world of inference.
Data Analysis Using Regression and Multilevel/Hierarchical Models
(master): Another belter from Andrew Gelman along with co-author
Jennifer Hill, this takes the reader through numerous examples of
regression modelling and hierarchical analysis. The text is not solely



limited to Bayesian analysis and covers Frequentist methods as well.
Again, the level for this text is probably too high for a student not well
versed in statistics.
Mastering Metrics (introductory): This is a great back-to-basics book
on causal inference by the masters of econometrics Josh Angrist and
Jörn-Steffen Pischke. It is an exhibition of the five main methods for
conducting causal inference using Frequentist statistics in the social
sciences: regression, matching, instrumental variables, differences-in-
differences and regression discontinuity design. This is a readable text
and is suitable for anyone wanting to learn about economic policy
evaluation.
Mostly Harmless Econometrics (master-of-metrics): Another by Josh
Angrist and Jörn-Steffen Pischke, this thorough and mathematically
detailed text takes the reader through most of those methods used in
Frequentist causal inference today. Its small size is deceptive; it is not
one to read over a single weekend. However, it is worth persisting with
this book, as the nuggets that await the determined reader are worth their
weight in gold. Also see Gelman’s review of this book, which provides
an interesting critique of the text.



Part I An Introduction to Bayesian
Inference



Part I Mission Statement
The purpose of this part is twofold: first to introduce the reader to the
principles of inference, and second to provide them with knowledge of
probability distributions, which is essential to Bayesian inference.



Part I Goals
Chapter 2 introduces the reader to the aims of statistical inference, along with
the differences in philosophy and approach used by Frequentists (also known
as Classicists) and Bayesians in pursuit of this shared goal. Both Frequentist
and Bayesian approaches aim to assess the evidence for a hypothesis using a
sample of data. However, it is usually much easier to calculate the inverse –
the probability of the data given the hypothesis. Therefore, in order to assess
the evidence for a hypothesis, a process of inversion is required. There are
two predominant ways of undertaking this inversion: Frequentists use a rule
of thumb, which is arbitrary but has historical consensus; by contrast,
Bayesians use Bayes’ rule – the only method consistent with the logic of
probability.
One of the differences in approach is the Bayesian insistence on describing
uncertainty explicitly through probability distributions. The resultant theory
is more elegant, as well as more practically useful, than Frequentist inference.
To fully appreciate this elegance, it is necessary to have a good working
knowledge of probability distributions and their manipulations, which is
provided by Chapter 3.



2 The Subjective Worlds of Frequentist and
Bayesian Statistics
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2.1 Chapter Mission Statement
At the end of this chapter, the reader will understand the purpose of statistical
inference, as well as recognise the similarities and differences between
Frequentist and Bayesian inference. We also introduce the most important
theorem in modern statistics: Bayes’ rule.



2.2 Chapter Goals
As data scientists, we aim to build predictive models to understand complex
phenomena. As a first approximation, we typically disregard those parts of
the system that are not directly of interest. This deliberate omission of
information makes these models statistical rather than deterministic because
there are some aspects of the system about which we are uncertain. There are
two distinct approaches to statistical modelling: Frequentist (also known as
Classical inference) and Bayesian inference. This chapter explains the
similarities between these two approaches and, importantly, indicates where
they differ substantively.
Usually, it is straightforward to calculate the probability of obtaining
different data samples if we know the process that generated the data in the
first place. For example, if we know that a coin is fair, then we can calculate
the probability of it landing heads up (the probability equals 1/2). However,
we typically do not have perfect knowledge of these processes, and it is the
goal of statistical inference to derive estimates of the unknown
characteristics, or parameters, of these mechanisms. In our coin example, we
might want to determine its bias towards heads on the basis of the results of a
few coin throws. Bayesian statistics allows us to go from what is known – the
data (the results of the coin throw here) – and extrapolate backwards to make
probabilistic statements about the parameters (the underlying bias of the coin)
of the processes that were responsible for its generation. In Bayesian
statistics, this inversion process is carried out by application of Bayes’ rule,
which is introduced in this chapter. It is important to have a good
understanding of this rule, and we will spend some time throughout this
chapter and Part II developing an understanding of the various constituent
components of the formula.

2.3 Bayes’ Rule – Allowing us to go From
the Effect Back to its Cause
Suppose that we know that a casino is crooked and uses a loaded die with a

probability of rolling a 1, that is  twice its unbiased value. We
could then calculate the probability that we roll two 1s in a row:

Here we use Pr to denote a probability, with the comma here having the



literal interpretation of and. Hence, Pr(1, 1) is the probability we obtain a 1
on the first roll and a 1 on the second. (Don’t worry if you don’t fully
understand this calculation, as we will devote the entirety of the next chapter
to working with probabilities.) In this case, we have presupposed a cause –
the casino being crooked – to derive the probability of a particular effect –
rolling two consecutive 1s. In other words, we have calculated Pr(effect |
cause). The vertical line, |, here means given in probability, so Pr(1,1|crooked
casino) is the probability of throwing two consecutive 1s given that the
casino is crooked.
Until the latter half of the seventeenth century, probability theory was chiefly
used as a method to calculate gambling odds, in a similar vein to our current
example. It was viewed as a dirty subject, not worthy of the attention of the
most esteemed mathematicians. This perspective began to change with the
intervention of the English Reverend Thomas Bayes, and slightly later and
more famously (at the time at least), with the work done by the French
mathematician Pierre Simon Laplace (see ‘Bayes’ rule or the Bayes–Price–
Laplace rule?’ below for a short history of Bayes’ rule). They realised that it
is possible to move in the opposite direction – to go from effect back to
cause:

In order to take this leap, however, it was necessary to discover a rule, which
later became known as Bayes’ rule or theorem. This can be written:

In the casino example, this formula tells us how to invert the original
probability Pr(1,1|crooked casino) to obtain a more useful quantity as a
patron of said casino – Pr(crooked casino|1,1). In words, this is the
probability that the casino is crooked given that we rolled two 1s. We do not
show how to carry out this calculation now, and instead delay this until we
learn about probability in Chapter 3. However, this process where we go
from an effect back to a cause is the essence of inference. Bayes’ rule is
central to the Bayesian approach to statistical inference. Before we introduce
Bayesian inference, though, we first describe the history of Bayes’ rule.

Bayes’ rule or the Bayes–Price–Laplace rule?
In 1748, the Scottish philosopher David Hume dealt a serious
blow to a fundamental belief of Christianity by publishing an
essay on the nature of cause and effect. In it, Hume argues that
‘causes and effects are discoverable, not by reason, but by



experience’. In other words, we can never be certain about the
cause of a given effect. For example, we know from experience
that if we push a glass off the side of a table, it will fall and
shatter, but this does not prove that the push caused the glass to
shatter. It is possible that both the push and the shattering are
merely correlated events, reflecting some third, and hitherto
unknown, ultimate cause of both. Hume’s argument was
unsettling to Christianity because God was traditionally known as
the First Cause of everything. The mere fact that the world exists
was seen as evidence of a divine creator that caused it to come
into existence. Hume’s argument meant that we can never deal
with absolute causes; rather, we must make do with probable
causes. This weakened the link between a divine creator and the
world that we witness and, hence, undermined a core belief of
Christianity.
Around this time the Reverend Thomas Bayes of Tunbridge Wells
(where this book’s author grew up!) began to ponder whether
there might be a mathematical approach to cause and effect.
Thomas Bayes was born around 1701 to a Presbyterian minister,
Joshua Bayes, who oversaw a chapel in London. The Presbyterian
Church at the time was a religious denomination persecuted for
not conforming to the governance and doctrine of the Church of
England. Being a non-conformist, the young Bayes was not
permitted to study for a university degree in England and so
enrolled at the University of Edinburgh, where he studied
theology. After university, Bayes was ordained as a minister of
the Presbyterian Church by his clergyman father and began work
as an assistant in his father’s ministry in London. Around 1734,
Bayes moved south of London to the wealthy spa resort town of
Tunbridge Wells and became minister of the Mount Sion chapel
there.
Bayes: c.1701–1761



Around this time, Bayes began to think about how to apply
mathematics, specifically probability theory, to the study of cause
and effect (perhaps invigorated by the minerals in the spa town’s
cold water). Specifically, Bayes wanted a mathematical way to go
from an effect back to its cause. To develop his theory, he
proposed a thought experiment: he imagined attempting to guess
the position of a ball on a table. Not perhaps the most enthralling
of thought experiments, but sometimes clear thinking is boring.
Bayes imagined that he had his back turned to the table, and asks
a friend to throw a cue ball onto its surface (imagine the table is
big enough that we needn’t worry about its edges). He then asks
his friend to throw a second ball, and report to Bayes whether it
landed to the left or right of the first. If the ball landed to the right
of the first, then Bayes reasoned that the cue ball is more likely to
be on the left-hand side of the table, and vice versa if it landed to
its left. Bayes and his friend continue this process where, each
time, his friend throws subsequent balls and reports which side of
the cue ball his throw lands. Bayes’ brilliant idea was that, by
assuming all positions on the table were equally likely a priori,
and using the results of the subsequent throws, he could narrow
down the likely position of the cue ball on the table. For example,
if all throws landed to the left of the cue ball, it was likely that the
cue ball would be on the far right of the table. And, as more data
(the result of the throws) was collected, he became more and more
confident of the cue ball’s position. He had gone from an effect
(the result of the throws) back to a probable cause (the cue ball’s
position)!
Bayes’ idea was discussed by members of the Royal Society, but
it seems that Bayes himself perhaps was not so keen on it, and
never published this work. When Bayes died in 1761 his
discovery was still languishing between unimportant memoranda,
where he had filed it. It took the arrival of another, much more
famous, clergyman to popularise his discovery.
Richard Price was a Welsh minister of the Presbyterian Church,
but was also a famous political pamphleteer, active in liberal
causes of the time such as the American Revolution. He had
considerable fans in America and communicated regularly with



Benjamin Franklin, John Adams and Thomas Jefferson. Indeed,
his fame and adoration in the United States reached such levels
that in 1781, when Yale University conveyed two degrees, it gave
one to George Washington and the other to Price. Yet today, Price
is primarily known for the help that he gave his friend Bayes.
Price: 1723–1791

When Bayes died, his family asked his young friend Richard
Price to examine his mathematical papers. When Price read
Bayes’ work on cause and effect he saw it as a way to counter
Hume’s attack on causation (using an argument not dissimilar to
the Intelligent Design hypothesis of today), and realised it was
worth publishing. He spent two years working on the manuscript
– correcting some mistakes and adding references – and
eventually sent it to the Royal Society with a cover letter of
religious bent. Bayes for his (posthumous) part of the paper did
not mention religion. The Royal Society eventually published the
manuscript with the secular title, ‘An Essay towards solving a
Problem in the Doctrine of Chances’. Sharon McGrayne – a
historian of Bayes – argues that, by modern standards, Bayes’ rule
should be known as the Bayes–Price rule, since Price discovered
Bayes’ work, corrected it, realised its importance and published it.
Given Bayes’ current notoriety, it is worth noting what he did not
accomplish in his work. He did not actually develop the modern
version of Bayes’ rule that we use today. He just used Newton’s
notation for geometry to add and remove areas of the table.
Unlike Price, he did not use the rule as proof for God, and was
clearly not convinced by his own work since he failed to publish
his papers. Indeed, it took the work of another, more notable,
mathematician to improve on Bayes’ first step, and to elevate the
status of inverse probability (as it was known at the time).
Pierre Simon Laplace was born in 1749 in Normandy, France,



into a house of respected dignitaries. His father, Pierre, owned
and farmed the estates of Maarquis, and was Syndic (an officer of
the local government) of the town of Beaumont. The young
Laplace (like Bayes) studied theology for his degree at the
University of Caen. There, his mathematical brilliance was
quickly recognised by others, and Laplace realised that maths was
his true calling, not the priesthood. Throughout his life, Laplace
did important work in many fields including analysis, differential
equations, planetary orbits and potential theory. He may also have
even been the first person to posit the existence of black holes –
celestial bodies whose gravity is so great that even light can’t
escape. However, here, we are most interested in the work he did
on inverse probability theory.
Laplace: 1749–1827

Independently of Bayes, Laplace had already begun to work on a
probabilistic way to go from effect back to cause, and in 1774
published ‘Mémoire sur la probabilité des causes par les
évènemens’, in which he stated the principle’:

Si un évènement peut être produit par un nombre n de causes
différentes, les probabilités de l’existence de ces causes
prises de évènement, sont entre elses comes les probabilités
de l’évènement prises de ces causes, et la probabilité de
l’existence de chacune d’elles, est égale á la probabilité de
l’évènement prise de cette cause, diviseé par la somme de
toutes les probabilités de l’évènement prises de chacune de
ces causes.

This translates as (Laplace (1986)):
If an event can be produced by a number n of different
causes, then the probabilities of these causes given the event
are to each other as the probabilities of the event given the
causes, and the probability of the existence of each of these



is equal to the probability of the event given the cause,
divided by the sum of all the probabilities of the event given
each of these causes.

This statement of inverse probability is only valid when the
causes are all equally likely. It was not until later than Laplace
generalised this result to handle causes with different prior
weights.
In 1781, Price visited Paris and told the Secretary of the French
Royal Academy of Sciences, the Marquis of Condorcet, about
Bayes’ discovery. This information eventually reached Laplace
and gave him confidence to pursue his ideas in inverse
probability. The trouble with his theory for going from an effect
back to a cause was that it required an enormous number of
calculations to be done to arrive at an answer. Laplace was not
afraid of a challenge, however, and invented a number of
incredibly useful techniques (for example, generating functions
and transforms) to find an approximate answer. Laplace still
needed an example application of his method that was easy
enough for him to calculate, yet interesting enough to garner
attention. His chosen data sample was composed of babies.
Specifically, his sample comprised the numbers of males and
females born in Paris from 1745 to 1770. This data was easy to
work with because the outcome was binary – the child was
recorded as being born a boy or girl – and was large enough to be
able to draw conclusions from it. In the sample, a total of 241,945
girls and 251,527 boys were born. Laplace used this sample and
his theory of inverse probability to estimate that there was a
probability of approximately 10−42 that the sex ratio favoured
girls rather than boys. On the basis of this tiny probability, he
concluded that he was as ‘certain as any other moral truth’ that
boys were born more frequently than girls. This was the first
practical application of Bayesian inference as we know it now.
Laplace went from an effect – the data in the birth records – to
determine a probable cause – the ratio of male to female births.
Later in his life, Laplace also wrote down the first modern version
of Bayes’ mathematical rule that is used today, where causes
could be given different prior probabilities. He published it in his



“Théorie analytique des probabilités” in 1820 (although he
probably derived the rule around 1810–1814):

ce qui donne les probabilités des diverses causes, lorsqu’elles ne
sont pas toutes, également possible á priori.
On the left-hand side, P denotes the posterior probability of a
given cause given an observed event. In the numerator on the
right-hand side, H is the probability of an event occurring given
that cause, p, is the a priori probability of that cause. In the
denominator, S. denotes summation (the modern equivalent of this
is Σ) over all possible causes, and H and p now represent the
corresponding quantities to those in the numerator, but for each
possible cause. Laplace actually presented two versions of the rule
– one for discrete random variables (as we show above) and
another for continuous variables. The typesetting he used for the
continuous case, however, did not allow him to write limits on
integrals, meaning that the numerator and denominator look the
same.
History has been unfair to Laplace and Price. If they were alive
today, the theory would, no doubt, be known as the Bayes–Price–
Laplace rule. We hope by including this short biographical section
that this will encourage you, in your own work, to give credit to
others where it is due. We, in particular, would like to thank
Sharon McGrayne for her excellent book, The theory that would
not die: how Bayes’ rule cracked the enigma code, hunted down
Russian submarines, & emerged triumphant from two centuries of
controversy, that served as an invaluable reference to this section,
and we encourage others to read it to learn of the tempestuous
history of Bayesian inference [26].

2.4 The Purpose of Statistical Inference
How much does a particular drug affect a patient’s condition? What can an
average student earn after obtaining a college education? Will the Democrats
win the next US presidential election? In life, we develop theories and use
these to make predictions, but testing those theories is not easy. Life is



complicated, and it is often impossible to exactly isolate the parts of a system
which we want to examine. The outcome of history is determined by a
complex nexus of interacting elements, each of which contributes to the
reality that we witness. In the case of a drug trial, we may not be able to
control the diets of participants and are certainly unable to control for their
idiosyncratic metabolisms, both of which could impact the results we
observe. There are a range of factors which affect the wage that an individual
ultimately earns, of which education is only one. The outcome of the next US
presidential election depends on party politics, the performance of the
incumbent government and the media’s portrayal of the candidates.
In life, noise obfuscates the signal. What we see often appears as an
incoherent mess that lacks any appearance of logic. This is why it is difficult
to make predictions and test theories about the world. It is like trying to listen
to a classical orchestra which is playing on the side of a busy motorway,
while we fly overhead in a plane. Statistical inference allows us to focus on
the music by separating the signal from the noise. We will hear ‘Nessun
Dorma’ played!
Statistical inference is the logical framework which we can use to trial our
beliefs about the noisy world against data. We formalise our beliefs in
models of probability. The models are probabilistic because we are ignorant
of many of the interacting parts of a system, meaning we cannot say with
certainty whether something will, or will not, occur. Suppose that we are
evaluating the efficacy of a drug in a trial. Before we carry out the trial, we
might believe that the drug will cure 10% of people with a particular ailment.
We cannot say which 10% of people will be cured because we do not know
enough about the disease or individual patient biology to say exactly whom.
Statistical inference allows us to test this belief against the data we obtain in a
clinical trial.
There are two predominant schools of thought for carrying out this process of
inference: Frequentist and Bayesian. Although this book is devoted to the
latter, we will now spend some time comparing the two approaches so that
the reader is aware of the different paths taken to their shared goal.

2.5 The World According to Frequentists
In Frequentist (or Classical) statistics, we suppose that our sample of data is
the result of one of an infinite number of exactly repeated experiments. The
sample we see in this context is assumed to be the outcome of some



probabilistic process. Any conclusions we draw from this approach are based
on the supposition that events occur with probabilities, which represent the
long-run frequencies with which those events occur in an infinite series of
experimental repetitions. For example, if we flip a coin, we take the
proportion of heads observed in an infinite number of throws as defining the
probability of obtaining heads. Frequentists suppose that this probability
actually exists, and is fixed for each set of coin throws that we carry out. The
sample of coin flips we obtain for a fixed and finite number of throws is
generated as if it were part of a longer (that is, infinite) series of repeated coin
flips (see the left-hand panel of Figure 2.1).
In Frequentist statistics the data are assumed to be random and results from
sampling from a fixed and defined population distribution. For a Frequentist
the noise that obscures the true signal of the real population process is
attributable to sampling variation – the fact that each sample we pick is
slightly different and not exactly representative of the population.
We may flip our coin 10 times, obtaining 7 heads even if the long-run

proportion of heads is . To a Frequentist, this is because we have picked a
slightly odd sample from the population of infinitely many repeated throws.
If we flip the coin another 10 times, we will likely get a different result
because we then pick a different sample.
Figure 2.1 The Frequentist (left) and Bayesian (right) approaches to
probability.

2.6 The World According to Bayesians
Bayesians do not imagine repetitions of an experiment in order to define and
specify a probability. A probability is merely taken as a measure of certainty
in a particular belief. For Bayesians the probability of throwing a ‘heads’
measures and quantifies our underlying belief that before we flip the coin it
will land this way.
In this sense, Bayesians do not view probabilities as underlying laws of cause
and effect. They are merely abstractions which we use to help express our



uncertainty. In this frame of reference, it is unnecessary for events to be
repeatable in order to define a probability. We are thus equally able to say,
‘The probability of a heads is 0.5’ or ‘The probability of the Democrats
winning the 2020 US presidential election is 0.75’. Probability is merely seen
as a scale from 0, where we are certain an event will not happen, to 1, where
we are certain it will (see the right-hand panel of Figure 2.1).
A statement such as ‘The probability of the Democrats winning the 2020 US
presidential election is 0.75’ is hard to explain using the Frequentist
definition of a probability. There is only ever one possible sample – the
history that we witness – and what would we actually mean by the
‘population of all possible US elections which happen in the year 2020’?
For Bayesians, probabilities are seen as an expression of subjective beliefs,
meaning that they can be updated in light of new data. The formula invented
by the Reverend Thomas Bayes provides the only logical manner in which to
carry out this updating process. Bayes’ rule is central to Bayesian inference
whereby we use probabilities to express our uncertainty in parameter values
after we observe data.
Bayesians assume that, since we are witness to the data, it is fixed, and
therefore does not vary. We do not need to imagine that there are an infinite
number of possible samples, or that our data are the undetermined outcome of
some random process of sampling. We never perfectly know the value of an
unknown parameter (for example, the probability that a coin lands heads up).
This epistemic uncertainty (namely, that relating to our lack of knowledge)
means that in Bayesian inference the parameter is viewed as a quantity that is
probabilistic in nature. We can interpret this in one of two ways. On the one
hand, we can view the unknown parameter as truly being fixed in some
absolute sense, but our beliefs are uncertain, and thus we express this
uncertainty using probability. In this perspective, we view the sample as a
noisy representation of the signal and hence obtain different results for each
set of coin throws. On the other hand, we can suppose that there is not some
definitive true, immutable probability of obtaining a heads, and so for each
sample we take, we unwittingly get a slightly different parameter. Here we
get different results from each round of coin flipping because each time we
subject our system to a slightly different probability of its landing heads up.
This could be because we altered our throwing technique or started with the
coin in a different position. Although these two descriptions are different
philosophically, they are not different mathematically, meaning we can apply



the same analysis to both.

2.7 Do Parameters Actually Exist and have
a Point Value?
For Bayesians, the parameters of the system are taken to vary, whereas the
known part of the system – the data – is taken as given. Frequentist
statisticians, on the other hand, view the unseen part of the system – the
parameters of the probability model – as being fixed and the known parts of
the system – the data – as varying. Which of these views you prefer comes
down to how you interpret the parameters of a statistical model.
In the Bayesian approach, parameters can be viewed from two perspectives.
Either we view the parameters as truly varying, or we view our knowledge
about the parameters as imperfect. The fact that we obtain different estimates
of parameters from different studies can be taken to reflect either of these two
views.
In the first case, we understand the parameters of interest as varying – taking
on different values in each of the samples we pick (see the top panel of
Figure 2.2). For example, suppose that we conduct a blood test on an
individual in two consecutive weeks, and represent the correlation between
the red and white cell count as a parameter of our statistical model. Due to the
many factors that affect the body’s metabolism, the count of each cell type
will vary somewhat randomly, and hence the parameter value may vary over
time. In the second case, we view our uncertainty over a parameter’s value as
the reason we estimate slightly different values in different samples. This
uncertainty should, however, decrease as we collect more data (see the
middle panel of Figure 2.2). Bayesians are more at ease in using parameters
as a means to an end – taking them not as real immutable constants, but as
tools to help make inferences about a given situation.
The Frequentist perspective is less flexible and assumes that these parameters
are constant, or represent the average of a long run – typically an infinite
number – of identical experiments. There are occasions when we might think
that this is a reasonable assumption. For example, if our parameter
represented the probability that an individual taken at random from the UK
population has dyslexia, it is reasonable to assume that there is a true, or
fixed, population value of the parameter in question. While the Frequentist
view may be reasonable here, the Bayesian view can also handle this
situation. In Bayesian statistics these parameters can be assumed fixed, but



that we are uncertain of their value (here the true prevalence of dyslexia)
before we measure them, and use a probability distribution to reflect this
uncertainty.
But there are circumstances when the Frequentist view runs into trouble.
When we are estimating parameters of a complex distribution, we typically
do not view them as actually existing. Unless you view the Universe as being
built from mathematical building blocks,1 then it seems incorrect to assert
that a given parameter has any deeper existence than that with which we
endow it. The less restrictive Bayesian perspective here seems more
reasonable.
1 See [37] for an interesting argument for this hypothesis.
The Frequentist view of parameters as a limiting value of an average across
an infinity of identically repeated experiments (see the bottom panel of
Figure 2.2) also runs into difficulty when we think about one-off events. For
example, the probability that the Democrat candidate wins in the 2020 US
election cannot be justified in this way, since elections are never rerun under
the exact same conditions.
Figure 2.2 The Bayesian (top and middle) and Frequentist perspectives on
parameters. In the top panel, the urn holds a large number of parameter
values – a population distribution – that we sample from each time we pick a
new sample. These parameters, in turn, determine the data that we obtain in
our sample. The middle panel shows the Bayesian view where the uncertainty
about a parameter’s true value (shown in the box) decreases as we collect
more data. The bottom panel represents the Frequentist view where
parameters represent averages across an infinite number of exactly repeated
experiments (represented by the many worlds).

2.8 Frequentist and Bayesian Inference
The Bayesian inference process is the only logical and consistent way to



modify our beliefs to account for new data. Before we collect data we have a
probabilistic description of our beliefs, which we call a prior. We then collect
data, and together with a model describing our theory, Bayes’ formula allows
us to calculate our post-data or posterior belief:

For example, suppose that we have a prior belief that a coin is fair, meaning
that the probability of it landing heads up is ½. We then throw it 10 times and
find that it lands heads up every time; this is our data. Bayes’ rule tells us
how to combine the prior with the data to result in our updated belief that the
coin is fair. Ignore for the moment that we have not explained the meaning of
this mysterious prior, as we shall introduce this element properly in Section
2.9.2.
In inference, we want to draw conclusions based purely on the rules of
probability. If we wish to summarise our evidence for a particular hypothesis,
we describe this using the language of probability, as the ‘probability of the
hypothesis given the data obtained’. The difficulty is that when we choose a
probability model to describe a situation, it enables us to calculate the
‘probability of obtaining our data given our hypothesis being true’ – the
opposite of what we want. This probability is calculated by accounting for all
the possible samples that could have been obtained from the population, if the
hypothesis were true. The issue of statistical inference, common to both
Frequentists and Bayesians, is how to invert this probability to get the desired
result.
Frequentists stop here, using this inverse probability as evidence for a given
hypothesis. They assume a hypothesis is true and on this basis calculate the
probability of obtaining the observed data sample. If this probability is small,
then it is assumed that it is unlikely that the hypothesis is true, and we reject
it. In our coin example, if we throw the coin 10 times and it always lands
heads up (our data), the probability of this data occurring given that the coin
is fair (our hypothesis) is small. In this case, Frequentists would reject the
hypothesis that the coin is fair. Essentially, this amounts to setting
Pr(hypothesis|data)=0. However, if this probability is not below some
arbitrary threshold, then we do not reject the hypothesis. But Frequentist
inference is then unclear about what probability we should ascribe to the
hypothesis. Surely it is non-zero, but exactly how confident are we in it? In
Frequentist inference we do not get an accumulation of evidence for a
particular hypothesis, unlike in Bayesian statistics.



In reality, Frequentist inference is slightly different to what we described.
Since the probability of obtaining any one specific data sample is very small,
we calculate the probability of obtaining a range of possible samples to
obtain a more usable probability. In particular, Frequentists calculate the
probability of obtaining a sample as extreme as, or more extreme than, the
one actually obtained, assuming a certain hypothesis to be true. For example,
imagine we have a hypothesis that people’s heights are normally distributed
with a mean of 1.55m and a standard deviation of 0.3m. Then suppose we
collect a sample of one individual with a height of 2.5m. To test the validity
of the hypothesis, Frequentists calculate the probability of obtaining a height
greater than, or equal to, 2.5m, assuming the hypothesis to be true. However,
we did not actually witness an individual with a height greater than 2.5m. In
Frequentist inference we must invent fictitious samples to test a hypothesis!
Bayes’ formula allows us to circumvent these difficulties by inverting the
Frequentist probability to get the ‘probability of the hypothesis given the
actual data we obtained’. In our heights example, this would be the
probability that the mean population height is 1.55m and has a standard
deviation of 0.3m given that our data consists of a single individual of height
2.5m. In Bayesian inference, there is no need for an arbitrary threshold in the
probability in order to validate the hypothesis. All information is summarised
in this (posterior) probability and there is no need for explicit hypothesis
testing. However, to use Bayes’ rule for inference, we must supply a prior –
an additional element compared to Frequentist statistics. The prior is a
probability distribution that describes our beliefs in a hypothesis before we
collect and analyse the data. In Bayesian inference, we then update this belief
to produce something known as a posterior, which represents our post-
analysis belief in the hypothesis.
The next few, albeit silly, examples illustrate a difference in methodology but
also, perhaps more significantly, in philosophy between the two different
approaches.
2.8.1 The Frequentist and Bayesian murder trials
Assume you find yourself in the unfortunate situation where you are
(hopefully falsely) accused of murder, and face a trial by jury. A
complication in the tale is that you personally have a choice over the method
used by the jury to assign guilt: either Frequentist or Bayesian. Another
unfortunate twist is that the legal system of the country starts by presuming
guilt rather than innocence.



Let’s assume that security camera footage indicates you were in the same
house as the victim – Sally – on the night of her demise.
If you choose the Frequentist trial, your jurors start by specifying a model
based on previous trials, which assigns a probability of your being seen by
the security camera if you were guilty. They use this to make the statement
that ‘If you did commit the murder, then 30% of the time you would have
been seen by the security camera’ based on a hypothetical infinity of
repetitions of the same conditions. Since Pr(you were seen by the
camera|guilt) is not sufficiently unlikely (the p value is not below 5%), the
jurors cannot reject the null hypothesis of guilt, and you are sentenced to life
in prison.
In a Bayesian trial, the jury is first introduced to an array of evidence, which
suggests that you neither knew Sally nor had any previous record of violent
conduct, being otherwise a perfectly respectable citizen. Furthermore, Sally’s
ex-boyfriend is a multiple offending-violent convict on the run from prison
after being sentenced by a judge on the basis of Sally’s own witness
testimony. Using this information, the jury sets a prior probability of the

hypothesis that you are guilty equal to  (don’t worry about what is meant
by a ‘prior’ as we devote all of Chapter 5 to this purpose). The jury then uses
the same model as the Frequentists which indicates that 30% of the time you
would have been seen by the camera if you were guilty. However, the jury
then coolly uses Bayes’ rule and concludes that the probability of your

committing the crime is  (see Section 2.13.1 for a full description of this
calculation). Based on this evidence, the jury acquits you, and you go home
to your family.
2.8.2 Radio control towers
In a hypothetical war, two radio control workers, Mr Pearson (from the
county of Frequentland) and Mr Laplace (from the county of Bayesdom), sit
side by side and are tasked with finding an enemy plane that has been spotted
over the country’s borders. They will each feed this information to the nearest
air force base(s), which will respond by sending up planes of their own.
There are, however, two different air forces – one for each county. Although
the air forces of Frequentland and Bayesdom share airbases, they are distinct,
and only respond to Mr Pearson’s and Mr Laplace’s advice, respectively. The
ongoing war, though short, has been costly to both allies, and they each want



to avoid needless expenditure while still defending their territory.
Mr Pearson starts by inputting the plane’s radar information into a computer
program that uses a model of a plane’s position which has been calibrated
against historical enemy plane data. The result comes out instantly:

The plane is most likely 5 miles North of the town of Tunbridge Wells.
Without another moment’s thought, Mr Pearson radios the base of Tunbridge
Wells, telling them to scramble all 10 available Frequentist fighter jets
immediately. He then gets up and makes himself a well-earned coffee.
Mr Laplace knows from experience that the enemy has used three different
flight paths to attack in the past. Accordingly, he gives these regions a high
probability density in his prior for the plane’s current location and feeds this
into the same computer program used by Mr Pearson. The output this time is
different. By using the optional input, the program now outputs a map with
the most likely regions indicated, rather than a single location. The highest
posterior density is over the region near Tunbridge Wells, where Mr Pearson
radioed, although the map suggests there are two other towns which might
also be victims of the plane’s bombing. Accordingly, Mr Laplace radios to
Tunbridge Wells, asking them to send up four jets, and to the other two
towns, asking them to send up two jets each. At the end of all this, Mr
Laplace remains seated, tired but contented that he has done his best for his
own.
The enemy bomber turned out to be approaching Berkstad, one of the towns
which Mr Laplace radioed. The Bayesdom jets intercept the encroaching
plane and escort it out of allied airspace. Mr Laplace is awarded a medal in
honour of his efforts. Pearson looks on jealously.

2.9 Bayesian Inference Via Bayes’ Rule
Bayes’ rule tells us how to update our prior beliefs in order to derive better,
more informed, beliefs about a situation in light of new data. In Bayesian
inference, we test hypotheses about the real world using these posterior
beliefs. As part of this process, we estimate characteristics that interest us,
which we call parameters, that are then used to test such hypotheses. From
this point onwards we will use θ to represent the unknown parameter(s)
which we want to estimate.
The Bayesian inference process uses Bayes’ rule to estimate a probability
distribution for those unknown parameters after we observe the data. (Don’t
worry if you don’t know what is meant by a probability distribution since we



shall devote the entirety of Chapter 3 to this purpose.) However, it is
sufficient for now to think of probability distributions as a way to represent
uncertainty for unknown quantities.
Bayes’ rule as used in statistical inference is of the form:

where we use p to indicate a probability distribution which may represent
either probabilities or, more usually, probability densities (see Section 3.3.2
for a description of their distinction). We shall now spend the next few
sections describing, in short, the various elements of expression (2.5). This
will only be a partial introduction since we spend the entirety of Part II on an
extensive discussion of each of the constituent components.
2.9.1 Likelihoods
Starting with the numerator on the right-hand side of expression (2.5), we
come across the term Pr(data|θ), which we call the likelihood, which is
common to both Frequentist and Bayesian analyses. This tells us the
probability of generating the particular sample of data if the parameters in our
statistical model were equal to θ. When we choose a statistical model, we can
usually calculate the probability of particular outcomes, so this is easily
obtained. Imagine that we have a coin that we believe is fair. By fair, we

mean that the probability of the coin landing heads up is  If we flip
the coin twice, we might suppose that the outcomes are independent events
(see Section 3.4), and hence can calculate the probabilities of the four
possible outcomes by multiplying the probabilities of the individual
outcomes:

(Don’t worry if you don’t understand the logic in the above, as we devote the
whole of Chapter 4 to understanding likelihoods.)



2.9.2 Priors
The next term in the numerator of expression (2.5) p(θ), is the most
controversial part of the Bayesian formula, which we call the prior
distribution of . It is a probability distribution which represents our pre-data
beliefs across different values of the parameters in our model, θ. This
appears, at first, to be counterintuitive, particularly if you are familiar with
the world of Frequentist statistics, which does not require us to state our
beliefs explicitly (although we always do implicitly, as we explain in Section
2.10). Continuing the coin example, we might assume that we do not know
whether the coin is fair or biased beforehand, so suppose all possible values
of θ ∈ [0,1] – which represents the probability of the coin falling heads up –
are equally likely. We can represent these beliefs by a continuous uniform
probability density on this interval (see the black line in Figure 2.3). More
sensibly, however, we might believe that coins are manufactured in a way
such that their weight distribution is fairly evenly distributed, meaning that
we expect that the majority of coins are reasonably fair. These beliefs would
be more adequately represented by a prior similar to the one shown by the red
line in Figure 2.3.
The concept of priors will be covered in detail in Chapter 5.
Figure 2.3 Two different prior distributions: a uniform prior, where we
believe all values of θ (corresponding to the probability of throwing a heads)
are equally likely (black line), and another where we believe that the coin is
most likely fair before we throw it (red line).

2.9.3 The denominator
The final term on the right-hand side of expression (2.5) in the denominator
is p(data). This represents the probability of obtaining our particular sample
of data if we assume a particular model and prior. We will mostly postpone
discussion of this term until Chapter 6 when we understand better the
significance of likelihoods and priors. However, for our purposes here it



suffices to say that the denominator is fully determined by our choice of prior
and likelihood function. While it appears simple, this is deceptive, and it is
partly the difficulty with calculating this term that leads to the introduction of
computational methods that we discuss in Part IV.
The concept of the denominator will be covered in detail in Chapter 6.
2.9.4 Posteriors: the goal of Bayesian inference
The posterior probability distribution p(θ|data) is the main goal of Bayesian
inference. For example, we might want to compute the probability
distribution representing our post-experimental beliefs of the inherent bias,θ ,
of a coin, given that it was flipped 10 times and it landed heads up 7 times. If
we use Bayes’ rule, assuming the likelihood model specified in Section 2.9.1,
and the uniform prior shown in Figure 2.3 (black line), then the result is the
posterior distribution shown as the grey line in Figure 2.4. Here, the peak of
the distribution occurs at θ = 0.7, which corresponds exactly with the
percentage of ‘heads’ obtained in the experiment.
The posterior distribution summarises our uncertainty over the value of a
parameter. If the distribution is narrower, then this indicates that we have
greater confidence in our estimates of the parameter’s value. More narrow
posterior distributions can be obtained by collecting more data. In Figure 2.4,
we compare the posterior distribution for the previous case where 7 out of 10
times the coin landed heads up with a new, larger, sample where 70 out of
100 times the same coin comes up heads. In both cases, we obtained the same
ratio of heads to tails, resulting in the same peak value at θ = 0. However, in
the latter case, since we have more evidence to support our claim, we end up
with greater certainty about the parameter value after the experiment.
The posterior distribution is also used to predict future outcomes of an
experiment and for model testing. However, we leave discussion of these
until Chapter 7.
Figure 2.4 Posterior distributions for θ – the probability that a coin landing
heads up when flipped. The grey line represents the posterior probability
distribution function (PDF) resulting from a data sample where 7 out of 10
times the coin came up heads. The red line is the posterior probability
distribution function for the case where 70 out of 100 times the coin came up
heads. Both of the posteriors assume a binomial likelihood and uniform prior
(don’t worry if these mean nothing to you as we will introduce these concepts
in Chapters 4 and 5).



2.10 Implicit Versus Explicit Subjectivity
One of the major arguments levied against Bayesian statistics is that it is
subjective due to its dependence on the analyst specifying their pre-
experimental beliefs through priors. This experimenter prejudice towards
certain outcomes is said to bias the results away from the types of fair,
objective outcomes resultant from a Frequentist analysis.
We argue that all analyses involve a degree of subjectivity, which is either
explicitly stated or, more often, implicitly assumed. In a Frequentist analysis,
the statistician typically selects a model of probability which depends on a
range of assumptions. These assumptions are often justified explicitly,
revealing their suggestive nature. For example, the simple linear regression
model is often used, without justification, in applied Frequentist analyses.
This model makes assumptions about the relationships between the
dependent and independent variables that may, or may not, be true. In a
Bayesian approach, we more typically build our models from the ground up,
meaning that we are more aware of the assumptions inherent in the approach.
In applied research, there is a tendency among scientists to choose data to
include in an analysis to suit one’s needs, although this practice should really
be discouraged (see [20]). The choice of which data points to include is
subjective, and the underlying logic behind this choice is more often than not
kept opaque from the reader.
A further source of subjectivity is the way in which models are checked and
tested. In analyses, both Frequentist and Bayesian, there is a need to exercise
(subjective) judgement in suggesting a methodology which will be used in
this process. We would argue that Bayesian analysis allows greater flexibility
and a more suitable methodology for this process because it accounts for the
inherent uncertainty in our estimates.
In contrast to the examples of subjectivity mentioned above, Bayesian priors
are explicitly stated. This makes this part of the analysis openly available to



the reader, meaning it can be interrogated and debated. This transparent
nature of Bayesian statistics has led some to suggest that it is honest. While
Frequentist analyses hide behind a fake veil of objectivity, Bayesian
equivalents explicitly acknowledge the subjective nature of knowledge.
Furthermore, the more data that is collected, (in general) the less impact the
prior exerts on posterior distributions. In any case, if a slight modification of
priors results in a different conclusion being reached, it must be reported by
the researcher.
Finally, comparing the Frequentist and Bayesian approaches to the pursuit of
knowledge, we find that both approaches require a subjective judgement to
be made. In each case, we want to obtain p(θ|data) – the probability of the
parameter or hypothesis under investigation, given the data set which has
been observed. In Frequentist hypothesis testing we do not calculate this
quantity directly, but use a rule of thumb. We calculate the probability that
the data set would, in fact, have been more extreme than those we actually
obtained assuming a null (the given, default) hypothesis is true. If the
probability is sufficiently small, typically less than a cut-off of 5% or 1%,
then we reject the null. This choice of threshold probability – known as a
statistical test’s size – is completely arbitrary, and subjective. In Bayesian
statistics, we instead use a subjective prior to invert the likelihood from
p(data|θ) → p(θ |data). There is no need to accept or reject a null hypothesis
and consider an alternative since all the information is neatly summarised in
the posterior. In this way we see a symmetry in the choice of Frequentist test
size and Bayesian priors; they are both required to invert the likelihood to
obtain a posterior.



2.11 Chapter Summary
This chapter has focused on the philosophy of statistical inference. Statistical
inference is the process of inversion required to go from an effect (the data)
back to a cause (the process or parameters). The trouble with this inversion is
that it is generally much easier to do things the other way round: to go from a
cause to an effect. Frequentists and Bayesians start by defining a forward
probability model that can generate data (the effect) from a given set of
parameters (the cause). The method that they each use to run this model in
reverse and determine the probability for a cause is different. Frequentists
assume that if the probability of generating the data (actually data as extreme
as or more extreme than that obtained) from a particular cause is small, then
the cause is rejected; the probability of that cause is concluded to be zero.
The set of all non-rejected causes then forms a confidence interval that
contains the actual cause with some measure of certainty. Bayesians instead
carry out the inversion formally using Bayes’ rule. This results in an
accumulation of evidence for each cause, rather than a binary ‘yes’ or ‘no’ as
for the Frequentist case.
Frequentists and Bayesians also differ in their view on probabilities.
Frequentists view probabilities as the frequency at which an event occurs in
an infinite series of experimental repetitions. In this sense Frequentists view
probabilities as fixed laws that actually exist independent of the individual
analyst. Because they are fixed, it does not make sense to update them.
Similarly, in the Frequentist viewpoint, it does not make sense to define
probabilities for one-off events, where an infinite series of experimental
reproductions is not possible. Bayesians take a more general view on
probabilities. They see probabilities as measuring the strength of an
individual’s underlying belief in the likelihood of some outcome. For
Bayesians probabilities are only defined in relation to a particular analyst and
are hence, by their very nature, subjective. Since probabilities measure
beliefs, they can be updated in light of new data. The only correct way to
update probabilities is through Bayes’ rule, which Bayesians use to do
statistical inference. Because Bayesian probabilities measure a subjective
belief in an outcome, they can be used for all categories of events, from those
that could in some way be infinitely repeated (for example, coin flips) or one-
off events (for example, the outcome of the 2020 US presidential election).
One argument that is often levied against Bayesian approaches to inference is



that they are subjective, in contrast to the objectivity of Frequentism. We
argued that all analytical approaches to inference are inherently subjective at
some level. Beginning with the data selection process, the analyst often
makes a subjective judgement of which data to include. The choice of a
specific probability model is also inherently subjective and is typically
justified by making assumptions about the data-generating process. In
Frequentist inference the choice of the threshold probability for null
hypothesis testing is also arbitrary and inherently depends on the analyst.
Bayesian inference has priors, which should always be explicitly stated in an
analysis. That priors are explicitly stated means that they can be debated and
interrogated in a transparent fashion. While priors are inherently subjective,
this does not mean they cannot be informed by data. In fact, in analyses that
are repeated at different points in time, it often makes sense to use the
posterior of a previous analysis as a prior for a new one (see Chapter 7).
In this chapter, we also introduced Bayes’ rule for inference and discussed
briefly its constituent parts. The Bayesian formula is the central dogma of
Bayesian inference. However, in order to use this rule for statistical analyses,
it is necessary to understand and, more importantly, be able to manipulate
probability distributions. The next chapter is devoted to this cause.



2.12 Chapter Outcomes
The reader should now be familiar with the following concepts:

the goals of statistical inference
the difference in interpretation of probabilities for Frequentists versus
Bayesians
the differences in the Frequentist and Bayesian approaches to inference

2.13 Appendix
2.13.1 The Frequentist and Bayesian murder trials
In the Bayesian trial the probability of guilt if you are seen by the security
camera on the night of the murder is:

In the above equation we assume that the security camera is hidden, and
hence a murderer does not change their behaviour to avoid being seen,
meaning that the probability of being seen by the security camera in each
case is 30%. We have also assumed that the footage is itself uninformative
about the motivations of an individual; it is merely indicative of a person’s
location at a given time. In other words, we are supposing that criminals and
innocents cannot be differentiated by their actions on the video.

2.14 Problem Sets
Problem 2.1 The deterministic nature of random coin
throwing
Suppose that, in an idealised world, the ultimate fate of a thrown coin – heads
or tails – is deterministically given by the angle at which you throw the coin
and its height above a table. Also in this ideal world, the heights and angles
are discrete. However, the system is chaotic2 (highly sensitive to initial
conditions), and the results of throwing a coin at a given angle and height are
shown in Table P2.1.



2 The authors of the following paper actually experimentally tested this and
found it to be the case, “The three-dimensional dynamics of the die throw”,
Chaos, Kapitaniak et al. (2012).
Problem 2.1.1 Suppose that all combinations of angles and heights are
equally likely to be chosen. What is the probability that the coin lands heads
up?
Problem 2.1.2 Now suppose that some combinations of angles and heights
are more likely to be chosen than others, with the probabilities shown in
Table P2.2. What are the new probabilities that the coin lands heads up?
Problem 2.1.3 We force the coin-thrower to throw the coin at an angle of 45
degrees. What is the probability that the coin lands heads up?
Problem 2.1.4 We force the coin-thrower to throw the coin at a height of
0.2m. What is the probability that the coin lands heads up?
Problem 2.1.5 If we constrained the angle and height to be fixed, what would
happen in repetitions of the same experiment?
Problem 2.1.6 In light of the previous question, comment on the Frequentist
assumption of exact repetitions of a given experiment.

Table P2.1 



Table P2.2 
Problem 2.2 Objections to Bayesianism
The following criticisms of Bayesian statistics are raised in an article by
Gelman [4]. Provide a response to each of these.
Problem 2.2.1 ‘As scientists we should be concerned with objective
knowledge rather than subjective belief.’
Problem 2.2.2 ‘Subjective prior distributions don’t transfer well from person
to person.’
Problem 2.2.3 ‘There’s no good objective principle for choosing a
noninformative prior … Where do prior distributions come from, anyway?’
Problem 2.2.4 A student in a class of mine: ‘If we have prior expectations of
a donkey and our dataset is a horse then Bayesians estimate a mule.’
Problem 2.2.5 ‘Bayesian methods seem to quickly move to elaborate
computation.’
Problem 2.3 Model choice
Suppose that you have been given the data contained in
subjective_overfitShort.csv and are asked to find a ‘good’ statistical model to
fit the (x, y) data.
Problem 2.3.1 Fit a linear regression model using least squares. How
reasonable is the fit?
Problem 2.3.2 Fit a quintic (powers up to the fifth) model to the data. How
does its fit compare to that of the linear model?
Problem 2.3.3 You are now given new data contained within
subjective_overfitLong.csv. This contains data on 1000 replications of the
same experiment, where the x values are held fixed. Using the least squares



fits from the first part of this question, compare the performance of the linear
regression model with that of the quintic model.
Problem 2.3.4 Which of the two models do you prefer, and why?
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3.1 Chapter Mission Statement
In Bayesian statistics, we formulate models in terms of entities called
probability distributions. This chapter provides an introduction to all things
related to probability, starting with the interpretation and manipulation of
these distributions.



3.2 Chapter Goals
There are some ideas which we know are true, and others which we know are
false. But for most ideas, we cannot be sure either way – in these cases, we
say we are uncertain. And the correct way to quantify our uncertainty is by
using the language of probability. In this vein, Bayesian inference uses
probability theory to allow us to update our uncertain beliefs in light of data.
This chapter takes a step away from Bayesian inference to focus on
probability distributions, assuming the reader has no previous knowledge of
them. (If you feel confident with interpreting and using probability
distributions, then you can either skim or skip this chapter.) To understand
these abstract objects, we first explicitly define what is meant by probability
distributions. This exercise is also useful since Bayesian inference attempts to
invert a likelihood – itself not a valid probability distribution – to obtain a
valid probability distribution that we call a posterior. We also discuss why the
distinction between likelihoods and probabilities is important. We then
explain how to manipulate probability distributions in order to derive
quantities of interest. We start with simple one-dimensional distributions and
work up to more adventurous examples, typical of the variety encountered in
Bayesian inference. We finish with a derivation of the Bayesian formula from
the law of conditional probability.

3.3 Probability Distributions: Helping us to
Explicitly State our Ignorance
Before we look out of the window in the morning, before we get our exam
results, before the cards are dealt, we are uncertain of the world that lies in
wait. To plan, and make sense of things, we want to use a suitable framework
to describe the uncertainty inherent in a range of situations. Using a particular
framework to explicitly state our thoughts illuminates our thought process,
and allows others to interrogate our assumptions.
Random variables and probability distributions

The mathematical theory of probability provides a logic and language which
is the only completely consistent framework to describe situations involving
uncertainty. In probability theory, we describe the behaviour of random
variables. This is a statistical term for variables that associate different



numeric values with each of the possible outcomes of some random process.
By random here we do not mean the colloquial use of this term to mean
something that is entirely unpredictable. A random process is simply a
process whose outcome cannot be perfectly known ahead of time (it may
nonetheless be quite predictable). So for a coin flip, we may create a random
variable X that takes on the value 1 if the coin lands heads up or 0 for tails up.
Because the coin flip can produce only a countable number of outcomes (in
this case two), X is a discrete random variable. By contrast, suppose we
measure the weight of an individual, Y. In this case Y is a continuous random
variable, because in principle it can take on any positive real number.
What is a probability distribution?

3.3.1 What makes a probability distribution valid?
Imagine that we enter a lottery, where we select a number from 1 to 100, to
have a chance of winning $1000. We suppose that in the lottery only one ball
is drawn and it is fair, meaning that all numbers are equally likely to win.
Although we have not stated this world view in mathematical notation, we
have without realising it formulated a valid probability distribution for the
number drawn in the lottery (see the left-hand panel of Figure 3.1).
Figure 3.1 Probability distributions representing (left) the chance of winning
a lottery and (right) the value of a second-hand car.

The outcome of the lottery example is a discrete probability distribution since
the variable we measure – the winning number – is confined to a finite set of
values. However, we could similarly define a probability distribution where
our variable may equal one value from an infinite number of possible values
across a spectrum. Imagine that, before test driving a second-hand car, we are
uncertain about its value. From seeing pictures of the car, we might think that
it is worth anywhere from $2000 to $4000, with all values being equally



likely (see the right-hand panel of Figure 3.1).
The aforementioned cases are both examples of valid probability
distributions. So what are their defining properties?

All values of the distribution must be real and non-negative.
The sum (for discrete random variables) or integral (for continuous
random variables) across all possible values of the random variable must
be 1.

In the discrete lottery case, this is satisfied since Pr(X)= 1/100 ≥ 0 and:

An introduction to discrete probability distributions

For the continuous case of the second-hand car example, the right-hand graph
in Figure 3.1 indicates that p(v) = 1/2000 ≥ 0 for 2000 ≤ v ≤ 4000, but how do
we determine whether this distribution satisfies the second requirement for a
valid probability distribution? To do this we could do the continuous
equivalent of summation, which is integration. However, we want to avoid
doing this (difficult) maths if possible! Fortunately, since integration is
essentially just working out an area underneath a curve, we can calculate the
integral by appealing to the geometry of the graph shown in the right-hand
panel of Figure 3.1. Since this is just a rectangular shape, we calculate the
integral by multiplying the base by its height:

So for the second-hand car example, we also have a valid probability
distribution. Although it may seem that this definition is arbitrary or, perhaps,
well-trodden territory for some readers, it is of central importance to
Bayesian statistics. This is because Bayesians like to work with and produce
valid probability distributions. This is because only valid probability
distributions can be used to describe uncertainty. The pursuit of this ideal
underlies the majority of all methods in applied Bayesian statistics – analytic
and computational – and hence its importance cannot be overstated!
An introduction to continuous probability distributions

3.3.2 Probabilities versus probability densities:
interpreting discrete and continuous probability



distributions
The discrete probability distribution for the lottery shown in the left-hand
panel of Figure 3.1 is straightforward to interpret. To calculate the probability
that the winning number, X , is 3, we just read off the height of the relevant
bar, and conclude that:

In the discrete case, to calculate the probability that a random variable takes
on any value within a range, we sum the individual probabilities
corresponding to each of the values. In the lottery example, to calculate the
probability that the winning number is 10 or less, we just sum the
probabilities of it being {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}:

To calculate the probability that the value of the second-hand car is $2500,
we could simply draw a vertical line from this value on the horizontal axis up
to the distribution function’s value, and conclude that Pr(value = $2500) =
1/2000 (see the right-hand panel of Figure 3.1). However, using this logic, we
would also deduce that the probabilities of the value of the car being {$2500,
$2500.10, $2500.01, $2500.001} are all 1/2000. Furthermore, we could
deduce the same probability for an infinite number of possible values, which
if summed together would yield infinity.
There is evidently something wrong with our method for interpreting
continuous distributions. If we reconsider the test values {$2500, $2500.10,
$2500.01, $2500.001}, we reason that these are all equally unlikely and
belong to a set of an infinite number of potential values that we could draw.
This means that, for a continuous random variable, we always have Pr(θ =
number) = 0, to avoid an infinite sum. Hence, when we consider p(θ) for a
continuous random variable, it turns out we should interpret its values as
probability densities, not probabilities.
We can use a continuous probability distribution to calculate the probability
that a random variable lies within an interval of possible values. To do this,
we use the continuous analogue of a sum, an integral. However, we recognise
that calculating an integral is equivalent to calculating the area under a
probability density curve. For the car example, we can calculate the
probability that the car’s value lies between $2500 and $3000 by determining
the rectangular area underneath the graph shown in Figure 3.2 between these



two points on the horizontal axis:

In expression (3.5), we use Pr to explicitly state that the result is a
probability, whereas p(value) is a probability density.
A quick note on terminology: Often theorists use probability mass to handle
discrete distributions, where the distribution’s values are directly
interpretable as probabilities, and probability densities to handle continuous
distributions. Unlike their discrete sisters, continuous distributions need to be
integrated to yield a probability. We mostly eschew the mass terminology as
we find it counterproductive to differentiate between the two types of
distributions since Bayes’ rule handles them in the same way.
Discrete versus continuous probability distributions: a
(wet) river crossing
Imagine that you wish to cross a fast-flowing river to reach friends on the
other side. Unbeknownst to you, a rather devious park ranger has arranged
six stepping stones which guarantee that a person attempting to cross the
river will suffer a wet fate. Since you are certain to have a damp walk home,
the only uncertainty is exactly where along the stepping stone route you will
fall. Your friends (schadenfreunde) are anticipating this outcome and have
assigned probabilities of your falling when attempting to reach each
individual stone; the higher the stone, the more probable you will fall into the
water from it (see the top panel of Figure 3.3). In this case, there are only six
outcomes to the crossing: you fall from one of stones 1, 2, 3, 4, 5 or 6. Thus,
each of these discrete outcomes is associated with its own non-zero
probability.
Figure 3.2 We calculate the probability that the second-hand car’s value lies
between $2500 and $3000 by integrating the probability density function
between these bounds. This amounts to finding the corresponding area under
the graph.



By contrast, imagine that the malevolent omnipotent ranger has, instead,
arranged a bridge across the river. Again, they have ensured that you will
definitely fall while attempting to navigate the path. This, of course, seems
like divine intervention, perhaps even the playing out of the laws of physics,
but your cheeky friends believe in a probabilistic order behind this façade of
arbitrariness, and assign probabilities to each of the outcomes. This time,
however, since there are no longer a finite number of possible places where
you can fall, there is, in fact, a continuum consisting of an infinite number of
possibilities. For example, you could fall from a point 5m from the bank, or
5.000001m from the bank. Clearly, here we cannot assign a positive
probability to all of these possible outcomes, since then the total probability
would sum to infinity. Instead, your friends choose to specify probabilities
across intervals of the bridge length, again deciding that the higher the
bridge, the greater the probability of your falling (see the middle panel of
Figure 3.3). To determine the quantity of interest – the probability of falling
across a small interval – we must now multiply our quantity – called a
probability density – by the small length of bridge interval we choose. Here
we use a small interval so that we can assume that the probability density is
unchanging across its length. Also, notice that a probability density has no
meaning without a corresponding length scale. In this case, the density has
units of probability/metre.
Figure 3.3 Top: crossing a river on discrete stepping stones, where the stone
heights represent probabilities. Middle: crossing via a bridge whose height
(B) is a probability density, which can be used to calculate the probability of
falling over a short length (Δx). Bottom: crossing on thin ice – the reciprocal
of the thickness of the ice (F) can be used to create a probability density that
represents the probability of falling through across a small area (ΔA). The
area is calculated by multiplying its width (Δx) by its length (Δy).



Finally, imagine that it is winter and the surface of the river is frozen,
allowing you to choose your own path across. Again, we imagine that our
cunning (increasingly deified) ranger has determined that you will fall at
some point in your attempted crossing. Your friends realise that the ice is
thinner in some places than others and, hence, it is more likely that you will
fall in those places. We can characterise a given point in your path by its
distance across the river – the y direction – together with the transverse
distance along the bank – called the x direction. Using this information your
friends construct a probability density which is defined by these two
coordinates and is inversely related to the thickness of the ice. Again, we
realise that there are an infinite number of different places where you could
fall, for example at the point (1.1m, 3.2m) or (1.1000001m, 3.2000000001m)
across. Clearly, for our density to make sense it must have units of
probability/m2. To calculate the quantity of interest – a probability of falling
within a small area – we multiply the value of the probability density by the
corresponding surface area (see the bottom panel of Figure 3.3).
To close our discussion of the differences between probabilities and
probability densities, we realise that for densities we must supply a volume,
which provides the exchange rate to convert it into a probability. Note that
the word volume is used for its analogy with three-dimensional solids, where
we calculate the mass of an object by multiplying the density by its volume.
Analogously, here we calculate the probability mass of an infinitesimal



volume:

However, here a volume need not correspond to an actual three-dimensional
volume in space, but to a unit of measurement across a parameter range of
interest. In the above examples we use a length then an area as our volume
unit, but in other cases it might be a volume, a percentage or even a
probability.
Probability zero versus impossibility
We have reasoned that for continuous distributions, Pr(a value) = 0.
However, does this mean it is impossible to obtain any individual value? If
you answered ‘yes’ here, then how can we hope to obtain a sample of
numbers from our distribution, since they are all individually impossible?
The apparent paradox at hand is subtle, but important nonetheless. While a
full explanation of this issue requires a knowledge of measure theory, we
attempt a more heuristic explanation.
When we say an event is impossible, it has a probability of zero. When we
use the word impossible we mean that the event is not within our space of
potential outcomes. Imagine the event that you simultaneously conclude both
of the following about a ball withdrawn from an urn of many balls:

The ball is entirely white, and
The ball is entirely black.

Philosophically, we could argue that such an event is impossible, and does
not belong to the set of possible outcomes, meaning it has a probability of
zero.
Imagine a sample of numbers from a standard normal distribution. Here the
purely imaginary number i does not belong to the set of possible outcomes
and hence has zero probability. Conversely, consider attempting to guess
exactly the number that we sample from a standard normal distribution.
Clearly, obtaining the number 3.142 here is possible – it does not lie outside
of the range of the distribution – so it belongs to our potential outcomes.
However, if we multiply our probability density by the volume corresponding
to this single value, then we get zero because the volume element is of zero
width. So we see that events that have a probability of zero can still be
possible.
So events that are impossible have zero probability. However, the converse is
not true: some events that are of zero probability are still possible. If this does
not make sense to you, then remember that probabilities are just units of



measurement. For a Bayesian, they measure subjective points of view, so,
clearly, an event that we assign zero probability to can still happen. For a
Frequentist, they measure the frequency at which an outcome occurs in an
infinite series of identical trials. In our normal distribution example imagine
counting the number of times we sample a value of 3.142. We could then
enumerate the ratio: #successes/#trials (where a success is sampling a value
of 3.142). While for an infinite sample size we might obtain this value a few
times, clearly the denominator will dominate (go to infinity) and we obtain a
probability of zero.
The good news: Bayes’ rule does not distinguish
between probabilities and probability densities
While it is important to understand that probabilities and probability densities
are not the same types of entity, the good news for us is that Bayes’ rule is
the same for each. So we can readily write:

when the data, X , and the parameter θ are discrete, and hence Pr denotes a
probability.
Alternatively, we can write Bayes’ rule as:

when the data and parameter are continuous and p denotes a probability
density. We will more commonly use the latter representation since for the
majority of interesting models the parameters will be continuous.
3.3.3 The mean of a distribution
A popular way of summarising a distribution is by its mean, which is a
measure of central tendency for a distribution. More intuitively, a mean, or
expected value, of a distribution is the long-run average value that would be
obtained if we sampled from it an infinite number of times.
The method to calculate the mean of a distribution depends on whether it is
discrete or continuous in nature. However, the concept is essentially the same
in both cases. The mean is calculated as a weighted sum (for discrete random
variables) or integral (for continuous variables) across all potential values of
the random variable where the weights are provided by the probability
distribution. This results in the following expressions for the mean of a
discrete and continuous variable, respectively:



In the two expressions in (3.9), α is any one of the discrete set, or continuum,
of possible values for the random variable X, respectively. We use Pr in the
first expression in (3.9) and p in the second, to indicate these are probabilities
and probability densities, respectively.
We now use the first expression of (3.9) to calculate the mean winning
number from the lottery example introduced in Section 3.3.1:

We also demonstrate the long-run nature of the mean value of  by
computationally simulating many plays of the lottery (see Figure 3.4). As the
number of games played increases, the running mean becomes closer to this
value.
We now use the second expression of (3.9) to calculate the expected (or
mean) value of the second-hand car. This amounts to integrating the curve 

 between $2000 and $4000. The region bounded by this curve and
the axis can be broken up into triangular and rectangular regions (see Figure
3.5), and so we calculate the total area by summing the individual areas:

If we had a business buying (and selling) second-hand cars, we might keep a
record of the prices we paid for cars over time. If the value of all cars we buy
can be represented by the same uniform distribution then the average price
we pay should eventually approach the mean of $3000 (see Figure 3.6).
If you understand the process used to produce Figures 3.4 and 3.6, then you
already understand the basis behind modern computational Bayesian
statistics. However, if you do not, fear not; we devote Part IV of the book to
this purpose.
Figure 3.4 Playing a computational lottery. As the number of games played

increases, the sample mean approaches the true mean of  This quantity
corresponds to the mean winning number that would be drawn from a lottery
where the possible numbers are the integers from 1 to 100, each of which is



equally likely.

Figure 3.5 Calculating the mean of the second-hand car distribution (shown
in Figure 3.2) by finding the area under the graph representing the PDF times
the car’s value. We can do this by splitting up the area into a triangle and a
rectangle, and summing their respective areas.

3.3.4 Generalising probability distributions to two
dimensions
Life is often more complex than the examples encountered thus far. We often
must reason about the outcomes of a number of processes, whose results may
be interdependent. We begin by considering the outcome of two
measurements to introduce the mechanics of two-dimensional probability
distributions. Fortunately, these rules do not become more complex when
generalising to higher dimensional problems. This means that if the reader is
comfortable with the following examples, then they should understand the
majority of calculations involving probability distributions. In Bayesian
statistics, being familiar with the manipulations of probability distributions is



essential, since the output of the Bayesian formula – the posterior probability
distribution – is used to derive all post-experiment conclusions. As such, we
will devote some time to introducing two examples, which we will use to
describe and explain the manipulations of two-dimensional probability
distributions.
Figure 3.6 The running mean value of cars we have bought over our long
career. Eventually, the sample mean approaches the true mean of $3000.

Matt’s horses: a two-dimensional discrete probability
example
Imagine that you are a horse racing aficionado and want to quantify the
uncertainty in the outcome of two separate races. In each race there are two
horses from a particular stable, called A and B. From their historical
performance over 100 races, you notice that both horses often react the same
way to the racing conditions. When horse A wins, it is more likely that, later
in the day, B will also win, and vice versa, with similar interrelations for the
losses; when A finds conditions tough, so does B. Wanting to flex your
statistical muscle, you represent the historical race results by the two-
dimensional probability distribution shown in Table 3.1.

Table 3.1 
Does this distribution satisfy the requirements for a valid probability
distribution? To check, we apply the rules described in Section 3.3.1. Since
all the values of the distribution are real and non-negative, this satisfies our
first requirement. Since our distribution is composed of two discrete random



variables, we must sum over the possible values of both to test if it is
normalised:

In expression (3.12) XA and XB are random variables which represent the race
for horses A and B, respectively. Notice that since our situation considers the
outcome of two random variables, we must index the probability, Pr(XA,XB),
by both. Since the probability distribution is a function of two variables, we
say that it is two-dimensional.
How can we interpret the probability distribution shown in Table 3.1? The
probability that both horses lose (and hence both their random variables equal
0) is just read off from the top-left entry in the table, meaning 

 We ascribe a smaller likelihood of

heterogeneous outcomes,  or 

 since based on historical data we believe
that the horses react similarly to the racing conditions. The most likely

outcome is that both horses win with.
2D discrete distributions: an introduction

Foot length and literacy: a two-dimensional continuous
probability example
Suppose that we measure the foot size and literacy test scores for a group of
individuals. Both of these variables can be assumed to be continuous,
meaning that we represent our strength of beliefs by specifying a two-
dimensional probability distribution across a continuum of values. Since this
distribution is two-dimensional we need three dimensions to plot it – two
dimensions for the variables and one dimension for the probability density
(see the left-hand plot of Figure 3.7). These three-dimensional plots are,
however, a bit cumbersome to deal with, and so we prefer to use contour
plots to graph two-dimensional continuous probability distributions (see the
right-hand plot of Figure 3.7). In contour plots, we mark the set of positions
where the value of the probability density function is constant, as contour
lines. The rate of change of the gradient of the function at a particular



position in parameter space is, hence, determined by the local density of
contour lines.
Figure 3.7 Left: the probability density (vertical axis) as a function of foot
size and literacy scores (the other two axes). Right: the same distribution
shown as a contour plot. The contour lines and shading from the right-hand
plot correspond to those in the left-hand plot.

We could verify that the distribution shown in the left-hand plot of Figure 3.7
is valid by showing that the volume underneath the left-hand surface is 1, by
integration. However, to avoid overcomplicating things, you will have to take
our word for it.
Notice that in the right-hand plot of Figure 3.7, the contour lines are
diagonally oriented. This means that there is a positive correlation between
foot size and scores on the literacy test; as an individual’s foot size increases,
so does their literacy score, on average. Why might this be so? Our sample of
individuals here consists of children of various ages. Age is positively
correlated with both foot size and literacy!
2D continuous distributions: an introduction

3.3.5 Marginal distributions
Although in the horse racing example there are two separate races, each with
an uncertain outcome, we can still consider the outcome of one race on its
own. Suppose, for example, that we witness only the result for A. What
would be the probability distribution that describes this outcome?
What is a marginal probability distribution? A discrete example



Table 3.2 
To calculate this, we must average out the dependence of the other variable.
Since we are interested only in the result of A, we can sum down the column
values for B to give us the marginal1 distribution of A, which is shown at the
bottom of Table 3.2.
1 Marginal distributions are thus called because, for discrete random
variables, they are obtained by summing a row or column of a table and
placing the result in its margins.
Hence, we see that the marginal probability of A winning is 0.6. This value is
calculated by considering the two possible ways that this event can occur:

In expression (3.13) to calculate the probability that A wins, we sum the
probability that A wins and B loses with the probability that both win.
So to calculate the probability of a single event we just sum the probabilities
of all the potential ways this can happen. This amounts to summing over all
potential states of the other variable. Mathematically we can write down this
rule for a two-dimensional probability distribution as:
Discrete marginal probability distributions



In expression (3.14), α and β refer to the specific values taken on by the
random variables A and B, respectively. We can use expression (3.14) for the
horses example to calculate the probability that B loses:

For continuous random variables we use the continuous analogue of a sum,
an integral, to calculate the marginal distribution because the other variable
can now equal any of a continuum of possible values:

In expression (3.16), pAB(α,β) represents the joint probability distribution of
random variables A and B, evaluated at (A = α ,B = β). Similarly, pA(α)
represents the marginal distribution of random variable A, evaluated at A = α.
Although it is somewhat an abuse of notation, for simplicity, from now on we
write pAB(α,β) as p (A,B) and pA(α) as p(A).
What is a marginal probability distribution? A continuous example

In the foot size and literacy test example, suppose we want to summarise the
distribution for literacy score, irrespective of foot size. We can obtain this
distribution by ‘integrating out’ the dependence on foot size:

The result of carrying out the calculation in (3.17) is the distribution shown in
the right-side graph in Figure 3.8. We have rotated this graph to emphasise
that it is obtained by summing (really, integrating) across the joint density at
each individual value of literacy score. Similarly, we can obtain the marginal
distribution for foot size by integrating the joint density with respect to
literacy score. The resultant distribution is shown in the bottom graph of
Figure 3.8.
Continuous marginal probability distributions



Another way to think about marginal densities is to imagine walking across
the landscape of the joint density, where regions of greater density represent
hills. To calculate the marginal density for a literacy score of 100 we walk
along the horizontal line that corresponds to this score and record the number
of calories we burn in walking from FS = 0 to FS = 30. If the path is
relatively flat, we burn fewer calories and the corresponding marginal density
is low. However, if the path includes a large hill, we burn a lot of energy and
the marginal density is high.
Marginal distribution by sampling
An alternative approach to estimating the marginal distribution of literacy test
score is by sampling from the joint distribution of literacy score and foot size.
But what is sampling, and why does this help us determine the marginal
distribution?
Figure 3.8 Top left: the joint density of foot size and literacy test scores.
Right: the marginal density of literacy scores. Bottom left: the marginal
density of foot size.

Even if we do not know what sampling means, we have all done it at one
stage or another in our lives. An example is throwing a die and recording the



number that results. Each number we record is an independent sample from
the discrete probability distribution that describes the outcome from throwing
the die. One way to understand this distribution is to throw the die a large
number of times and record the frequency of each outcome.
While it may seem counterintuitive, we can also understand a continuous
distribution by sampling from it. In particular, if we can generate independent
samples from the joint distribution of literacy score and foot size, we can
estimate the marginal distribution for each variable. To estimate these
marginal distributions we ignore the observations of the variable not directly
of interest and draw a histogram of the remaining samples (see Figure 3.9).
While not exact, the shape of this histogram is a good approximation of the
marginal distribution if we have enough samples.
This has been a very quick introduction to using sampling to understand
distributions. Because of this, we have skimmed over many of the details.
What is an independent sample? Why does sampling mean we can avoid
doing sums (for discrete variables) or integrals (for continuous variables)?
For now, it suffices to say that sampling is behind most modern
computational methods used for applied research in Bayesian statistics.
Rather than provide a complete exposition of this method now, we wait until
Part IV (after we know a little more about the underlying theory) before
doing so.
Venn diagrams
An alternative way to think about marginal distributions is using Venn
diagrams. In a Venn diagram, the area of a particular event indicates its
probability, and the rectangular area represents all the events that can
possibly happen, so it has an area of 1. In Figure 3.10, we specify the events
of horses A and B winning as sub-areas in the diagram, which we refer to as
A and B respectively. These areas overlap, indicating a region of joint
probability where Pr(XA = 1,XB = 1). Using this diagram, it is straightforward
to calculate the marginal probability of A or B winning: we find the area of
the elliptic shapes A or B, respectively. Considering A, when we calculate the
area of its ellipse, we implicitly calculate the sum:
Figure 3.9 Sampling from the joint distribution of literacy score and foot size
to estimate the marginal distribution for literacy score (the histogram on the
left) and foot size (the histogram at the bottom). In this case, we use 1000
samples from the joint distribution of foot size and literacy scores.



In expression (3.18), the terms on the right-hand side correspond to the
overlap region and the remaining part of A (where B does not occur),
respectively.
Figure 3.10 A Venn diagram showing the marginal and conditional
distributions for the horse racing example. Note that here the labels A and B
refer to the events that horse A wins or horse B wins, respectively. So
Pr(A,B) is used as a shorthand for Pr(XA = 1,XB = 1).



3.3.6 Conditional distributions
We sometimes receive only partial information about a system which is of
interest to us. In the horse racing example, we might observe the result of
only one horse race, and use this to update the probability that the other horse
will win. Alternatively, in the foot size and literacy example, we might
measure an individual’s foot size and then want to estimate their literacy
score.
What is a conditional probability distribution?

In probability, when we observe one variable and want to update our
uncertainty for another variable, we are seeking a conditional distribution.
This is because we compute the probability distribution of one uncertain
variable, conditional on the known value of the other(s).
In each case, we have reduced some of the uncertainty in the system by
observing one of its characteristics. Hence, in the two-dimensional examples



described above, the conditional distribution is one-dimensional because we
are only now uncertain about one variable.
Luckily, it is straightforward to obtain the probability of one variable,
conditional on the value of the other:

In expression (3.19), p(A|B) refers to the probability (or probability density)
of A occurring, given that B has occurred. On the right-hand side of this
expression, p(B) is the marginal distribution of B, and p(A,B) is the joint
probability that A and B both occur.
For the horses example, suppose that we observe that horse A wins. To
calculate the probability that B also wins, we use (3.19):
An introduction to discrete conditional probability distributions

In the above, we used expression (3.14) to calculate the denominator, Pr(XA =
1). Table 3.3 shows another way to conceive of this calculation. When we
observe that A wins, we reduce our solution space to only the middle column
(highlighted). Therefore, we renormalise the solution space to have a total
probability of 1 by dividing each of its entries by its sum of probabilities 

, yielding the conditional probabilities shown in the right-hand column.
The Venn diagram in Figure 3.10 shows another way to interpret conditional
distributions. If we observe that B wins, our event space collapses to only the
area specified by B. The conditional probability, Pr(XA = 1| XB = 1)., is then
given by the ratio of the area of overlap to the total area of B. This makes
intuitive sense, since this is the only way that A can win, given that B has



already won.

Table 3.3  

We can also use (3.19) to calculate the conditional distribution of literacy
scores for individuals after we measure their foot size. The only difference
with the discrete example is that we must now integrate to calculate the
marginal probability for foot size. Figure 3.11 shows the conditional
distributions traced out when we measure an individual’s foot size to be
10cm (in the top panel) and 20cm (in the lower panel). The dashed lines show
the new event space since we now have no uncertainty over foot size in each
of the cases. Therefore, the heights traversed on the walk along these lines of
constant foot size indicate the relative probability of different values of
literacy scores.
Figure 3.11 Calculating the conditional density for literacy test score (right-
hand panels) after we measure an individual’s foot size to be 10cm (top-left-
hand panel) and 20cm (bottom-left-hand panel). The dashed lines indicate the
new event space in each case.



3.4 Independence
If there is a relationship between two random variables, we say that they are
dependent. This does not necessarily mean causal dependence, as it is
sometimes supposed, in that the behaviour of one random variable affects the
outcome of another. It just means that the outcome of the first is informative
for predicting the second.
An introduction to continuous conditional probability distributions

An example of dependent variables can be illustrated using the colour and
suit of a playing card. If we are told that the colour of a playing card is red,
then our other variable, suit, is constrained to be either hearts or diamonds. In
this case, knowing the value of the first variable, colour, allows us to narrow



down the list of outcomes of the second variable, suit (see Figure 3.12). This
would not be the case if, instead, we considered the suit of the card and its
value. Since all suits have the same range of cards from 2 to Ace, knowing
the suit of the card is uninformative of its value. The suit and card value are
hence independent variables.
If two events, A and B, are disjoint, then if one occurs, the other cannot. In
this case, it is often mistakenly believed that the variables are independent,
although this is not true (see the left-hand panel of Figure 3.13). In this case,
knowledge that event A has occurred provides significant information about
whether B will. If A occurs, then we know for certain that B cannot.
In contrast, if two events are independent, then knowledge of B provides no
additional information on A. Mathematically, this means that the conditional
probability of A is equal to its marginal:
Figure 3.12 Knowledge of the colour of a card provides information about
the suit of the card. The colour and suit of a card are dependent variables.

This makes intuitive sense, since knowing that B has occurred does not affect
the probability that A occurs (see the right-hand panel of Figure 3.13).
We now provide a toy example to describe what it means for two events to be
independent. We do this partly because we think it helps to explain this



concept, but also because this approach will prove useful when discussing
more complex concepts (for example, the Kullback–Leibler divergence and
mutual information) later on. Imagine that we have two types of object, a ball
and a cube, and each object can be coloured either red or grey. Suppose that
in an urn, hidden from our view, there are three balls and three cubes and
that, for each object type, one of them is red and the other two are grey (see
the left-hand panel of Figure 3.14). A friend of ours will reach into the urn
and grab an object at random, and we want to describe the probability of each

of the outcomes. Before a ball is drawn, we know that Pr(☐)=  and Pr(○)=.

 We also know that Pr(red)=1/3 and Pr(grey) = 2/3. Suppose that we wear
a blindfold, and our friend reaches into the urn and takes out an object. She
then says the object is a ball. What now is the probability that it is red? Well,
since there are three balls and one of them is red (see the middle panel of
Figure 3.14) then Pr(red|○) = 1/3. In other words, this is unchanged from the
situation when we were entirely ignorant of the object. Similarly, suppose our
friend had told us that she had pulled out a grey object. What would be the
probability that it is a cube? Since four objects are grey and two of them are
balls (see the right-hand panel of Figure 3.14), again our probability remains
the same at Pr(☐|grey) = 1/2. In other words, knowing one property about
the object does not help us predict the other one, in line with expression
(3.21). This means that the shape of the object and its colour represent
independent outcomes.
Figure 3.13 Venn diagrams representing the probability space for left:
disjoint events (A and B) and right: independent events (C and D). The
lengths indicated in the right-hand panel indicate Pr(C) = Pr(C|D) = 1/2.



Figure 3.14 Left: the six objects in an urn. Middle: the possible outcomes if
we know the object is a ball. Right: the possible outcomes if we know the
object is coloured grey.

Using the conditional probability rule given in expression (3.19), we use this
to rewrite expression (3.21) as:

In other words, the ratio of the joint probability A and B occurring to the
marginal probability of B is the same as the overall probability of A (see the
right-hand panel of Figure 3.13). The most common expression to describe
independent events is obtained by multiplying both sides of expression (3.22)
by its denominator:

where here for generality we use ‘p’ to represent either a probability (for
discrete A and B) and a probability density (for continuous A and B).
To provide a more concrete example, consider again the results of two horse
races. Imagine that now there are two horses, C and D, which come from
separate stables and race on consecutive days. The probability distribution
shown in Table 3.4 is based on the historical race results of both horses. We
can use this table to test whether the outcomes of the two races are



independent using expression (3.23). If the event that C wins and the event
that D wins are independent, then their joint probability should equal the
product of the marginal probabilities:

Table 3.4 

which is true. To determine whether the variables XC and XD are independent
we should use the above method to check that the above holds true for the
three other joint outcomes in Table 3.4. We leave it as an exercise to the
reader to demonstrate this is the case.

3.5 Central Limit Theorems
We choose statistical models to approximate some aspect of the real world,
yet the choice of a particular model can appear arbitrary. Therefore, any
concrete results that help to determine our choice of model are most
welcome. Imagine that we are modelling the mean IQ test score in a
particular school. Suppose, also, that IQ scores are constrained to lie in the
range [0,300], and we believe that an individual is equally likely to attain any
score across this range – in formal terms, the individual’s score is ‘uniformly
distributed over this range’ (this isn’t a particularly good model, but try to
suspend your disbelief for now). We also suppose that individuals’ scores are
independent of one another.
To start, imagine that we have a sample of two individuals and want to
describe the distribution of the mean of their scores. If the individual test



scores are uniformly distributed, we might then suppose that their average is
also uniformly distributed. But is this actually true? Begin by considering the
extremes: there is only one way to obtain a mean test score of 300; both
individuals must score 300. Similarly, to obtain a mean of 0, both individuals
must score 0. By contrast, consider a mean of 150. This could result from a
number of individual score combinations, for example (scoreA, scoreB) = :
(150,150),(100,200),(125,175). Intuitively, there are many more ways to
obtain moderate values for the sample mean than there are for the extremes.
This central tendency of the sample mean increases along with sample size,
since extreme values then require more individual scores to be
simultaneously extreme, which is less likely. This effect is visible in Figure
3.15; however, we also see another impact on the probability distribution for
the mean: as our sample size increases, the distribution is an increasingly
good fit to the normal distribution. This approximation, it turns out, becomes
exact in the limit of an infinite sample size and is known as the central limit
theorem (CLT). For practical purposes, however, the approximation is
generally reasonable if the sample size is above about 20 (see right-hand
panel of Figure 3.15).
There are, in fact, a number of central limit theorems. The above CLT applies
to the average of independent, identically distributed random variables.
However, there are also central limit theorems that apply far less stringent
conditions. This means that whenever an output is the result of the sum or
average of a number of largely independent factors, then it may be reasonable
to assume it is normally distributed. For example, one can argue that an
individual’s intelligence is the result of the average of a number of factors,
including parenting, genetics, life experience and health, among others.
Hence, we might assume that an individual’s test score picked at random
from the population is normally distributed.
An introduction to central limit theorems

Figure 3.15 The central limit theorem in action: as we increase the sample
size (left to right), the probability distribution for the sample mean (red lines)
approaches a normal with the same mean and standard deviation (black
lines).



3.6 A Derivation of Bayes’ Rule
Bayes’ rule dictates the correct way to go from a conditional probability to its
inverse. It is crucial to Bayesian inference because it allows us to go from
‘the probability of the data given a hypothesis’ to the desired ‘the probability
of the hypothesis given the data’. In this section, we derive Bayes’ rule from
first principles. First, we rewrite the conditional probability formula
expression (3.19) for the probability that event A occurs given that B occurs:

However, we could also swap the order of A and B, resulting in the
probability that B occurs given that A occurs:

Where Pr(A,B) is the joint probability that both A and B occur. This is exactly
the same as the reverse: the probability of B and A coinciding, given by
Pr(B,A). We can, therefore, rearrange (3.26) to obtain this joint probability:

We can use expression (3.27) to decompose the probability of both A and B
occurring into two steps. First, for this joint event to happen, A must happen,
with probability, Pr(A). We then require that B occurs given that A has
already occurred, with probability Pr(B|A). We finally substitute expression
(3.27) into the numerator of expression (3.25) to yield the famous Bayesian
formula:

Importantly, the Bayesian formula explains how to convert Pr(B|A) to its
inverse Pr(A|B), which is central to Bayesian statistics.
3.6.1 The intuition behind the formula
If we multiply both sides of expression (3.28) by Pr(B), this produces an
alternative statement of Bayes’ rule:

In expression (3.29) we include the joint distribution in square brackets
because of the logic described above. Expression (3.29) indicates that there
are two ways of arriving at this joint probability (see Figure 3.16). The first



way is given by the left-hand side and is due to A occurring, with probability
Pr(A), followed afterwards by B, with probability Pr(B|A). An equivalent
way for both A and B to occur is given by the right-hand side of Figure 3.16.
Here B occurs first, with probability Pr(B), followed by A given that B has
occurred, with probability Pr(A|B).
Figure 3.16 The two ways of arriving at the joint probability that both A and
B occur: Pr(A,B). When rearranged, the above equations can be used to
derive Bayes’ rule.

3.6.2 Breast cancer screening
To gain experience in using Bayes’ rule, we now describe a practical
application of it. Suppose that we are a clinician specialising in breast cancer.
Out of all women aged 40 who participate in screenings, roughly 1% of them
will have breast cancer at the time of testing. The screening process is fairly
robust, and for those women with breast cancer the tests indicate a positive
result 80% of the time. However, there is also a risk of false positives, and
10% of women without breast cancer also test positive.
Suppose that a 40-year-old woman has been screened, and tested positive for
cancer. What is the probability that she has the disease?
To answer this question, we must calculate the conditional probability:
Pr(cancer | +ve). In other words, the probability that she has breast cancer
given that she has tested positive. To compute this probability we first
summarise the relevant information in the language of probability:
Pr(cancer) = 0.01, Pr(+ve | no cancer) = 0.1. and . How do we use this
information to produce the quantity of interest? Bayes’ formula to the rescue!
That is:

where the only element that is not readily available is Pr(+ve), the probability
that an individual tests positive. There are two ways an individual can test
positive: either they have cancer and the test shows a true positive; or they are
disease free and the test is a false positive:



= 0.8 × 0.01 + 0.1 × 0.99
= 0.11.

Using this result, we can now calculate our desired probability:

≈ 0.08.
This seems extremely small – even though the woman in the clinic tests
positive she only has an 8% probability of having the disease. To understand
this result, we imagine two pools of individuals: those with the disease and
those without. Since the risk of breast cancer is 1%, the size of the disease-
free group (the other 99%) is about 100 times bigger. So, while a high
proportion of those individuals with cancer test positive, the number of
people is still relatively few (see the left-hand side of Figure 3.17). Whereas
even though only a small proportion of people test positive in the disease-free
group, their number dwarfs the true positives (see the right-hand side of
Figure 3.17). Until relatively recently, unfortunately, the probabilities we
assumed in this analysis were indicative of actual clinical outcomes.
Breast cancer example use of Bayes rule

Figure 3.17 The number of 40-year-old women with breast cancer (left,
under the normal crab) is small compared with the number that do not have
the disease (right, under the upturned crab). This means that, even though a
high proportion of the women with cancer will test positive (red shading),
this number is small compared with the false positives – the women without
the disease who also test positive.



3.7 The Bayesian Inference Process from
the Bayesian Formula
In Bayesian statistics, we use probability distributions to describe all
components of our system. Our starting point is Bayes’ rule (for a continuous
random variable):

In statistics, we aim to estimate a number of parameters, which from now on
we call θ. We can think of these parameters as levers that we can pull to
change the behaviour of a statistical model. These parameters can be thought



of as real (such as the proportion of individuals in a given population with a
disease) or mere abstractions (such as the degrees of freedom of a Student-t
distribution).
In Bayesian statistics, we update our beliefs about a parameter after we
observe a sample of data. Being Bayesians, we represent these beliefs by a
probability distribution, which we write as p(θ|data). If we associate A with θ
and B with the data, we use expression (3.33) to write:

This is Bayes’ rule as we use it for inference. But what exactly do the terms
on the right-hand side of expression (3.34) mean? We devote Part II to
answering this question.



3.8 Chapter Summary
In Bayesian statistics, we describe uncertainty using probability distributions.
In this chapter, we introduced the reader to two flavours of such objects:
discrete and continuous probability distributions. For the discrete case, the
values of the distribution function can be interpreted as probabilities since
there are only a finite number of discrete values where these distributions are
defined. However, for continuous probability distributions, the probability of
any one value is zero because there are an infinite number of any such values.
Instead, the value of a continuous probability distribution is interpreted as a
density. To convert this to a probability, we multiply the density by a volume.
Mathematically this amounts to integrating the probability density function
with respect to the measure.
In this chapter, we also introduced marginal distributions. These are obtained
by summing (for discrete variables) or integrating (for continuous variables)
joint distributions. We also introduced conditional distributions. These are the
probability distributions that represent our updated state of knowledge after
observing part of a system. In Section 3.3.6 we described how to calculate
these objects using the law of conditional probability. In Bayesian inference,
we aim to obtain a conditional probability distribution – the posterior – which
is the probability distribution that represents our uncertainty over parameter
values after we observe a data sample.
In this chapter we introduced the concept of statistical independence: Two
events are statistically independent if the knowledge that event A occurs does
not affect our belief that B occurs. This is a key concept in statistical
modelling since independence implies we can calculate the overall
probability of a data set by simply multiplying together the probabilities for
each of the individual data points. In Bayesian statistics, we make extensive
use of this result to calculate our likelihood function in a range of different
settings.
It is often difficult to justify a specific choice of probability model,
particularly for complex systems. The central limit theorem sometimes
provides such a justification. The central limit theorem states that, whatever
process generates our data, the sample mean always behaves as if it is
normally distributed for large enough sample sizes. This means that for all
processes that can be considered as an average, we can use the normal
distribution as our probability model.



If you do not feel fully confident with probability distributions, do not worry,
since we will have ample opportunity to work with these mathematical
objects in the next part of the book. There we discuss the various elements of
the central formula of Bayesian inference: Bayes’ rule.



3.9 Chapter Outcomes
The reader should now be familiar with the following concepts:

the conditions satisfied for valid probability distributions, for discrete
and continuous random variables
the difference between probability (mass) and probability density
the mean of a distribution
two-dimensional probability distributions
marginal and conditional distributions
statistical independence
the central limit theorem
the Bayesian formula

3.10 Problem Sets
Problem 3.1 Messy probability density
Suppose that a probability density is given by the following function:

Problem 3.1.1 Demonstrate that the above density is a valid probability
distribution.
Problem 3.1.2 What is the probability that 0.2 ≤ X ≤ 0.5?
Problem 3.1.3 Find the mean of the distribution.
Problem 3.1.4 What is the median of the distribution?
Problem 3.2 Keeping it discrete
Suppose that the number of heads obtained, X, in a series of N coin flips is
described by a binomial distribution:

where  is the binomial coefficient and θ is the probability of
obtaining a heads on any particular throw.
Problem 3.2.1 Suppose that θ = 0.5 (that is, the coin is fair). Calculate the
probability of obtaining 5 heads in 10 throws.
Problem 3.2.2 Calculate the probability of obtaining fewer than 3 heads.
Problem 3.2.3 Find the mean of this distribution. (You can either derive the



mean of this distribution or take it as given that ṛ(X) = Nθ.)
Problem 3.2.4 Suppose I flip another coin with θ = 0.2. What is the
probability that I get more than 8 heads?
Problem 3.2.5 What is the probability that I obtain fewer than 3 heads in 10
flips of the first coin, and more than 8 heads with the second?
Problem 3.3 Continuously confusing
Suppose that the time that elapses before a particular component on the Space
Shuttle fails can be modelled as being exponentially distributed:

where λ > 0 is a rate parameter.
Problem 3.3.1 Show that the above distribution is a valid probability density.
Problem 3.3.2 Find the mean of this distribution.
Problem 3.3.3 Suppose that λ = 0.2 per hour. Find the probability that the
component fails in the first hour of flight.
Problem 3.3.4 What is the probability that the component survives for the
first hour but fails during the second?
Problem 3.3.5 What is the probability that the component fails during the
second hour given that it has survived the first?
Problem 3.3.6 Show that the probability of the component failing during the
(n+1) th hour given that it has survived n hours is always 0.18.
Problem 3.4 The boy or girl paradox
The boy or girl paradox was first introduced by Martin Gardner in 1959.
Suppose we are told the following information:
Problem 3.4.1 Mr Bayes has two children. The older child is a girl. What is
the probability that both children are girls?
Problem 3.4.2 Mr Laplace has two children. At least one of the children is a
girl. What is the probability that both children are girls?
Problem 3.5 Planet Scrabble
On a far-away planet suppose that people’s names are always two letters
long, with each of these letters coming from the 26 letters of the Latin
alphabet. Suppose that there are no constraints on individuals’ names, so they
can be composed of two identical letters, and there is no need to include a
consonant or a vowel.
Problem 3.5.1 How many people would need to be gathered in one place for
there to be a 50% probability that at least two of them share the same name?
Problem 3.5.2 Suppose instead that the names are composed of three letters.



Now how many people would need to be gathered in one place for there to be
a 50% probability that at least two of them share the same name?
Problem 3.6 Game theory
A game show presents contestants with four doors: behind one of the doors is
a car worth $1000; behind another is a forfeit whereby the contestant must
pay $1000 out of their winnings thus far on the show. Behind the other two
doors there is nothing. The game is played as follows:

1. The contestant chooses one of four doors.
2. The game show host opens another door, always to reveal that there is

nothing behind it.
3. The contestant is given the option of changing their choice to one of the

two remaining unopened doors.
4. The contestant’s final choice of door is opened, to their delight (a car!),

dismay (a penalty), or indifference (nothing).
Assuming that:

the contestant wants to maximise their expected wealth, and
the contestant is risk-averse,

what is the optimal strategy for the contestant?
Problem 3.7 Blood doping in cyclists
Suppose, as a benign omniscient observer, we tally up the historical cases
where professional cyclists either used or did not use blood doping, and either
won or lost a particular race. This results in the probability distribution shown
in Table P3.1.
Problem 3.7.1 What is the probability that a professional cyclist wins a race?
Problem 3.7.2 What is the probability that a cyclist wins a race, given that
they have cheated?
Problem 3.7.3 What is the probability that a cyclist is cheating, given that
they win?
Now suppose that drug testing officials have a test that can accurately
identify a blood-doper 90% of the time. However, it incorrectly indicates a
positive for clean athletes 5% of the time.
Problem 3.7.4 If the officials care only about the proportion of people
correctly identified as dopers, should they test all the athletes or only the
winners?
Problem 3.7.5 If the officials care five times as much about the number of
people who are falsely identified as they do about the number of people who



are correctly identified as dopers, should they test all the athletes or only the
winners?
Problem 3.7.6 What factor would make the officials choose the other group?
(By factor, we mean the number 5 in the previous problem.)

Table P3.1 
Problem 3.8 Breast cancer revisited
Suppose that the prevalence of breast cancer for a randomly chosen 40-year-
old woman in the UK population is about 1%. Further suppose that
mammography has a relatively high sensitivity to breast cancer, where in
90% of cases the test shows a positive result if the individual has the disease.
However, the test also has a rate of false positives of 8%.
Problem 3.8.1 Show that the probability that a woman tests positive is about
9%.
Problem 3.8.2 A woman tests positive for breast cancer. What is the
probability she has the disease?
Problem 3.8.3 Draw a graph of the probability of having a disease, given a
positive test, as a function of (a) the test sensitivity (true positive rate) (b) the
false positive rate, and (c) the disease prevalence. Draw graphs (a) and (b) for
a rare (1% prevalence) and a common (10% prevalence) disease. What do
these graphs imply about the relative importance of the various characteristics
of medical tests?
Problem 3.8.4 Assume the result of a mammography is independent when
retesting an individual (probably a terrible assumption!). How many tests
(assume a positive result in each) would need to be undertaken to ensure that
the individual has a 99% probability that they have cancer?
Problem 3.8.5 Now we make the more realistic assumption that the
probability of testing positive in the nth trial depends on whether positive
tests were achieved in the (n – 1) th trials, for both individuals with cancer
and those without. For a cancer status κ ∈ {C,NC}:

where n+ denotes testing positive in the nth trial, p(+|κ) and ∈ ≥ 0 determine
the persistence in test results. Assume that p(+|C) = 0.9 and p(+|NC) = 0.08.



For ∈ = 0.15 show that we now need at least 17 positive test results to
conclude with 99% probability that a patient has cancer.



Part II Understanding the Bayesian
Formula



Part II Mission Statement
This part introduces the reader to the elements of the Bayesian inference
formula: the likelihood, the prior, the denominator and the posterior.



Part II Goals
In this book, we discuss how to model phenomena whose constituent
processes we do not fully know, or understand. This uncertainty means that
we include random variability as part of our models. This randomness means
that these models are probabilistic in nature. The most important choice in
such analyses is the specific probability model to use. In Bayesian inference,
these probability models are called likelihoods because (somewhat
confusingly) they do not behave as valid probability distributions in this
context. In Chapter 4 we discuss this conceptual confusion. We also explain
how to choose a likelihood for any circumstance.
In Bayesian inference, we describe uncertainty using probability
distributions. Bayes’ rule describes how to convert the likelihood – itself, not
a valid probability distribution – into a posterior probability distribution. To
carry out this conversion we must specify a probability distribution known as
a prior, which we discuss in Chapter 5. This distribution is a measure of our
pre-data beliefs about the parameters of the likelihood function. Priors are,
without doubt, the most controversial part of Bayesian inference, although, as
we argue in Chapter 5, this criticism is unwarranted.
The final part of the formula – the denominator – is fully determined by our
choice of likelihood and prior. However, this predetermination does not mean
it is simple to calculate, and we see in Chapter 6 that the difficulty in
evaluating this term motivates the computational methods we introduce in
Part IV.
The goal of Bayesian inference is to calculate the posterior probability
distribution for the parameters which interest us. This distribution is the
starting point for drawing conclusions and making decisions. It is thus
important to understand why this part of Bayes’ formula is so useful, and we
devote Chapter 7 to this purpose.



4 Likelihoods
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4.1 Chapter Mission Statement
At the end of this chapter, the reader will know how to choose a likelihood
that is appropriate for a given situation. Further, the reader will understand
how maximum likelihood estimation works:



4.2 Chapter Goals
The first and most important choice in a Bayesian (or Frequentist) analysis is
which probability model to use to describe a given process. Probability
models are characterised by a set of parameters which, when varied, generate
a range of different system behaviours. If the model choice is appropriate, we
should be able to tune these parameters so that the model’s behaviour mimics
the behaviour of the real-world system that we are investigating. When we fix
the parameter values and use our model to generate data, the resultant
distribution of the data behaves as a valid probability distribution (see Section
3.3). However, in Bayesian inference, we wish to determine a posterior belief
in each set of parameter values. This means that in Bayesian inference we
instead hold the data constant, and vary the parameter values. Confusingly, in
this context, our probability model no longer behaves as a valid probability
distribution. In particular, the distribution no longer sums (for discrete
distributions) or integrates (for continuous distributions) to 1. To
acknowledge this distinction in Bayesian inference, we avoid using the term
probability distribution in favour of likelihood. In this chapter, we devote
considerable discussion to this distinction as it is crucial to Bayesian
inference.
When starting out in statistical inference, it can seem bewildering to choose a
likelihood function that is appropriate for a given situation. In this chapter,
we use a number of case studies to explain how to choose a likelihood. This
process should begin with the analyst listing the various assumptions about
the data generating process. The analyst should then search through the list of
probability distributions provided in Chapter 8 and select one (or a number)
that satisfy these conditions. The model selection process does not stop here,
however. After a model is fitted to the data it is important to check that the
results are consistent with the actual data sample (see Chapter 10) and, if
necessary, adjust the likelihood.
Frequentist inference also proceeds from a likelihood function. Instead of
using Bayes’ rule to convert this function into a valid probability distribution,
Frequentists determine the parameter values that maximise the likelihood.
Accordingly, these parameter estimates are known as maximum likelihood
estimators and, because they maximise the likelihood, they are the values of
model parameters that result in the greatest probability of achieving the
observed data sample. Bayesian posterior distributions can be viewed as a



weighted average of the likelihood and the prior. This means that it can be
helpful to know where the maximum likelihood peak occurs to make sense of
the shape of the posterior distribution. We devote the last part of this chapter
to maximum likelihood inference.

4.3 What is a Likelihood?
In all statistical inference, we use an idealised model to approximate a real-
world process that interests us. This model is then used to test hypotheses
about the world. In Bayesian statistics, the evidence for a particular
hypothesis is summarised in a posterior probability distribution. Bayes’
magic rule explains how to compute this posterior probability distribution:

To understand this rule we first need to know what is meant by the numerator
term, p(data|θ) , which Bayesians call a likelihood.
What does this mean in simple, everyday language? Imagine that we flip a
coin and record its outcome. The simplest model to represent this outcome
ignores the angle the coin was thrown at, and its height above the surface,
along with any other details. Because of our ignorance, our model cannot
perfectly predict the behaviour of the coin. This uncertainty means that our
model is probabilistic rather than deterministic. We might also suppose that
the coin is fair, so the probability of the coin landing heads up is given by 

. Furthermore, if the coin is thrown twice, we assume that the result of
the first flip does not affect the result of the second. This means that the
results of the first and second coin flips are independent (see Section 3.4).
We can use our model to calculate the probability of obtaining two heads in a
row:

where Model represents the set of assumptions that we make in our analysis.
In this book, we generally omit this term on the understanding that it is
implicit. We can also calculate the corresponding probabilities for all possible
outcomes for two coin flips. The most heads that can occur is 2, and the least



is 0 (if both flips land tails up). Figure 4.1 displays the probabilities for each
possible outcome. The most likely number of heads is 1 since this can occur
in two different ways – either the first coin lands heads up and the second
lands tails up, or vice versa – whereas the other possibilities (all heads or no
heads) can occur in only one way. The discrete distribution shown in Figure
4.1 is a valid probability distribution (see Section 3.3.1) because:
Figure 4.1 The probabilities of each outcome for a fair coin that is flipped
twice.

The individual event probabilities are all non-negative.
The sum of the individual probabilities is 1.

When we assume a particular value of θ and vary the data (in this case the
number of heads obtained), the collection of resultant probabilities forms a
probability distribution. So why do Bayesians insist on calling p(data|θ) a
likelihood, not a probability?

4.4 Why Use Likelihood Rather than
Probability?
When we hold the parameters of our model fixed, for example when we held

the probability of a coin landing heads up at  the resultant distribution
of possible data samples is a valid probability distribution. So why do we call
p(data|θ) in Bayes’ rule a likelihood?
This is because in Bayesian inference we do not keep the parameters of our
model fixed. In Bayesian analysis, the data are fixed and the parameters vary.
In particular, Bayes’ rule tells us how to calculate the posterior probability
density for any value of θ. Consider flipping a coin whose inherent bias, θ , is
unknown beforehand. In Bayesian inference, we use a sample of coin flip
outcomes to estimate a posterior belief in any value of θ (perhaps ending up



with something similar to Figure 4.2). To obtain p(data|θ) we must compute
p(data|θ) in the numerator of Bayes’ rule for each possible value of θ.
Suppose that we flip our coin twice and obtain one head and one tail. We can
use our model to calculate the probability of this data for any value of θ:
Why is a likelihood not a probability distribution?

This result yields the probability for a fixed data sample (one head and one
tail) as a function of θ. We can graph the value of expression (4.4) as a
function of this parameter. It might appear that Figure 4.3 is a continuous
probability distribution, but looks can deceive. While all the values of the
distribution are non-negative, if we calculate the area underneath the curve in
Figure 4.3 we obtain:
Figure 4.2 An example posterior distribution for the probability of obtaining
heads in a coin flip.

Figure 4.3 The likelihood function when we flip a coin twice and obtain a
single heads. The area under this function is also indicated to illustrate that
this is not a valid probability density.



which does not equal 1. Thus our distribution is not a valid probability
distribution. Hence, when we vary θ, p(data|θ) is not a valid probability
distribution. We thus introduce the term likelihood to describe p(data|θ) when
we vary the parameter, θ. Often the following notation is used to emphasise
that a likelihood is a function of the parameter θ with the data held fixed:

The duality of meaning for likelihoods and probability distributions: the
equivalence principle

We call the above the equivalence relation since a likelihood of θ for a
particular data sample is equivalent to the probability of that data sample for
that value of θ. In this book, we mainly use the right-hand notation as this is
most typical in the literature, under the implicit assumption that this term is
not a probability distribution in Bayesian statistics.
We now provide another example to underscore the difference between
likelihoods and probabilities. Continuing with our coin flipping example, we
can calculate the probability of all possible numbers of heads, X, from two
coin flips:

Further, suppose (somewhat artificially) that the probability of obtaining



heads on a particular throw is confined to one of six discrete values: θ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Using this information we compute the various
probabilities of each possible outcome, which are displayed in Table 4.1.
In tabular form, we can see the effect of varying the data (moving along each
row) and contrast it with the effect of varying θ (moving down each column).
If we hold the parameter fixed – regardless of the value of θ – and vary the
data by moving along each row, the values sum to 1, meaning that this is a
valid probability distribution. By contrast, when we hold the number of heads
fixed and vary the parameter θ, by moving down each column the values do
not sum to 1. When θ varies we do not have a valid probability distribution,
meriting the use of the term likelihood.
In Bayesian inference, we always vary the parameter and hold the data fixed
(we only obtain one sample). Thus, from a Bayesian perspective, we use the
term likelihood to remind us that p(data|θ) is not a probability distribution.

Table 4.1X 

4.5 What are Models and why do we Need
them?
All models are wrong. They are idealised representations of reality that result



from making assumptions which, if reasonable, may recapitulate some
behaviours of a real system. In an article titled ‘Why Model?’, Joshua Epstein
argues that in life we automatically build implicit mental models [11]. Before
we go to bed at night, we set an alarm for the next morning on the basis of a
model. We imagine an idealised – model – morning when it takes us 15
minutes to wake up after the alarm sounds, which we hope gives us enough
time to prepare for the day ahead. Whenever we go to the doctor, they use an
internalised biological model of the human body to advise on the best course
of treatment for a particular ailment. Whenever we hear expert opinions on
TV about the outcome of an upcoming election, the pundits use mental
models of society to explain the results of current polls. As is the case with
all models, some are better than others. Hopefully, the models a doctor uses
to prescribe medicine are better than those used by TV pundits!1

1 For a great discussion of the performance of TV pundits, read [21].
We inevitably use implicit models. Epstein argues, however, that there are
many benefits to explicitly stating our models. These include:

To predict.
To explain.
To guide data collection.
To discover new questions.
To bound outcomes to plausible ranges.
To illuminate uncertainties.
To challenge the robustness of prevailing theory through perturbations.
To reveal the apparently simple (complex) to be complex (simple).

There are, of course, other reasons to build models, but we think this list
covers most cases. Whenever we build a model, whether it is statistical,
biological or sociological, we should ask: What do we hope to gain by
building this model, and how can we judge its success? Only when we have
answers to these basic questions should we proceed to model building.

4.6 How to Choose an Appropriate
Likelihood
Bayesians are acutely aware that their models are wrong. At best, these
simple abstractions can explain some aspect of real behaviour; at worst, they
can be very misleading. Before we use a model to make decisions in the real
world, we require it to be able to explain key characteristics of the system’s
behaviour for the past and present. With this in mind we introduce the



following framework for building a model:
1. Write down the real-life behaviour that the model should be capable of

explaining.
2. Write down the assumptions that it is believed are reasonable to achieve

step 1.
3. Search Chapter 8 for probability models that are based on these

assumptions. If necessary, combine different models to produce a
resultant model that encompasses all assumptions.

4. After fitting the model to data, test its ability to explain the behaviour
identified in step 1. If unsuccessful, go back to step 2 and assess which
of your assumptions are likely violated. Then choose a new, more
general, probability model that encompasses these new assumptions.

To illustrate the above framework we now consider a few example scenarios.
4.6.1 Example: an individual’s disease status
Suppose you work for the state as a healthcare analyst who wants to estimate
the prevalence of a certain disease. Also, imagine (unrealistically) that we
begin with a sample of only one person, for whom we have no prior
information. Let the disease status of that individual be denoted by the binary
random variable X, which equals:

The goal of our analysis is to estimate a probability,θ , that a randomly
chosen individual has the disease. We now calculate the probability of each
outcome for our sample of one individual:

Example likelihood model: waiting times between epidemics

Note the similarity between these probabilities and those from the coin
flipping example in the previous section. One model can often be used in a
multitude of different settings.
We want to write down a single rule which yields either of the expressions in
(4.9), dependent on whether X = 0 or X = 1. This can be achieved by the
following expression:

where α∈{0,1} is the numeric value of the variable . Expression (4.10) is



known as a Bernoulli probability density.
Although this rule for calculating the probability of a particular disease status
appears complex, it reduces to either of the expressions in (4.9) if the
individual is disease-positive or -negative, respectively:

These two likelihood functions are graphed in the bottom-left panel of Figure
4.4. The top-left panel of Figure 4.4 shows that, for a fixed value of θ, the
sum (in the figure, the vertical sum) of the two probabilities always equals 1,
and so expression (4.10) is a valid discrete probability density. By contrast,
when we hold the data X fixed and vary θ , the distribution is continuous, and
the area under the curve is not 1 (bottom-right panel of Figure 4.4), meaning
expression (4.10) is a likelihood.
Figure 4.4 Bottom left: the likelihood function for a disease-free individual
(red) or a disease-positive individual (black). Top left: holding θ fixed and
summing the probabilities of each outcome equals 1. Bottom right:
integrating the likelihood across θ ∈ [0,1], we obtain 0.5 in each case.

4.6.2 Example: disease prevalence of a group
Now imagine that instead of a solitary individual, we have a sample of N
individuals, and want to develop a model that yields the probability of



obtaining Z disease cases in this sample.
To choose a model, we must first make some simplifying assumptions. We
assume that one individual’s disease status does not influence the probability
that another individual in the sample has the disease. This would not be
reasonable if the disease were contagious, and if the individuals in the sample
came from the same neighbourhood or household. This assumption is called
statistical independence (see Section 3.4). We also assume that all individuals
in our sample are from the same population. If we knew that some
individuals came from different geographic regions, with heterogeneous
prevalence rates, we might abandon this assumption. Combining these two
assumptions, we say in statistical language that our data sample is composed
of independent and identically distributed observations, or alternatively we
say that we have a random sample.
With our two assumptions, we can formulate a model for the probability of
obtaining Z disease-positive individuals in a total sample size of N. We first
consider each person’s disease status individually, meaning we can reuse
expression (4.10). Then by assuming independence, we obtain the overall
probability by multiplying together the individual probabilities. For N = 2,
this means we obtain the probability that the first person has disease status X1
and the second person has status X2:

(4.12)
where we have assumed that each individual has a different predisposition to
having the disease denoted by θ1 and θ2 , respectively. By assuming
identically distributed observations, we can set θ1 =θ2 = θ:

where we obtained the resulting line by using the exponent rule ab × ac = ab+c

for the components θ and (1–θ), respectively. For our sample of two
individuals, we can now calculate the probability of obtaining Z cases of the
disease. We first realise that:

We then use expression (4.13) to generate the respective probabilities:



We want to determine a single rule for calculating the probability of any
possible value of Z. To do this, we recognise that the above can be rewritten
as:

In all the above expressions we notice a common term θβ (1 – θ)2– β, where
β∈{0,1,2} represents the number of disease cases found. This suggests that
we can write down a single rule of the form:

The only problem with matching expression (4.17) to those expressions in
(4.16) is the factor of 2 in the middle expression of (4.16). To resolve this
issue we realise that when a quadratic is expanded we obtain:

where the numbers {1,2,1} are the coefficients of {x2, x1, x0}, respectively.
This sequence of numbers appears in early secondary school maths classes
and is known as either the binomial expansion coefficients or simply .
The expansion coefficients are typically written in compact form:

where ! means factorial and β∈{0,1,2}. Using this notation we can write the
probability distribution of disease count for our sample of two individuals:

This likelihood function is illustrated in Figure 4.5 for the three possible
numbers of disease cases.
We now extend the analysis to N individuals. First, suppose we have a
sample size of 3. If we assume that the individuals are independent and
identically distributed, then the four probabilities are:



Figure 4.5 Bottom left: the likelihood function for each possible disease
outcome for a sample of two individuals. Top left: when we hold θ constant
and vary the data, the sum of probabilities equals 1. Bottom right: when we
vary the parameter and hold the data constant, the result does not integrate to
1.

Again we recognise a pattern in the coefficients of each expression [1,3,3,1],
which corresponds exactly to the polynomial coefficients for the expansion of
(x+1)3. Hence we can write the likelihood using binomial expansion notation:

We recognise a pattern in the likelihoods of expressions (4.20) and (4.22),
meaning that for a sample size of N, the likelihood is given by:

which is known as the binomial probability distribution.
If we had data we could test the model’s assumptions by calculating the



model-implied probability of this outcome. For example, suppose previous
analyses estimate θ = 1%. Suppose also that we collect a sample of 100
individuals and find that 10 are disease-positive. We then calculate the
probability of obtaining 10 or more disease cases using expression (4.23):

where we summed over all disease cases from 10 to 100, to obtain the
probability of getting a result as bad as, or worse than, what we actually
obtained. This is a Frequentist hypothesis test, which we will later avoid, but
for now it seems a reasonable way of assessing our model.
The probability of generating our data using our model is extremely small.
What does this tell us? There is something wrong with our model. It could be
that the actual disease prevalence is much higher than the 1% we assumed.
The assumption of independence could also be violated, for example if we
sampled households rather than individuals. It is difficult to diagnose what is
specifically wrong with our model without further information. However, it
does suggest that we should adjust one or more of our assumptions and
reformulate the model to take these into account. We must never simply
accept that a model is correct. A model is only as good as its ability to
recapitulate real-life data, which is lacking in this case.
4.6.3 Example: intelligence test scores for a group of
people
Suppose that we are modelling the intelligence test scores for a group of
individuals, where test score is measured on a continuous scale from 0 to 200.
We have no information on individual characteristics to help predict
individual scores. There are many factors that affect an individual’s
performance on this test, such as their schooling, parental education, ‘innate’
ability, and so on. If we assume that an individual’s score is a sort of average
of all these factors, then the central limit theorem might apply (see Section
3.5) and we can use a normal distribution to model the test score of an
individual, X:

where μ and σ are the population mean and standard deviation, respectively.
Since this distribution is continuous, we write p rather than Pr, to indicate it
is a probability density (see Section 3.3.2).
Now consider a sample of N individuals. If we assume that one individual’s



test score does not help to predict another’s, then our data are independent. If
we also assume that all individuals are drawn from the same population, we
have a random sample (see Section 4.7). We can then calculate the joint
probability density for a sample of N individuals by taking the product of the
individual densities:

which we could then use to calculate a probability of obtaining a sample as
extreme as ours if we were so inclined. However, we leave further discussion
of this model until Section 4.8.

4.7 Exchangeability Versus Random
Sampling
We introduced the concept of a random sample to develop a probability
model for the disease status of patients (Section 4.6.2) and the intelligence of
a group of people (Section 4.6.3). This term is just a shorthand for an
independent and identically distributed sample of data. Often, however,
Bayesians assume a (slightly) weaker condition that still means the overall
likelihood is the product of individual likelihoods in many situations.
Suppose that we have a sequence of random variables representing the height
of three individuals: {H1, H2, H3}. If this sequence is equally as likely as the
reordered sequence, {H2, H1, H3} , or any other possible reordering, then the
sequence of random variables is said to be exchangeable.
The assumption of random sampling is stronger than that of exchangeability,
meaning that any random sample is automatically exchangeable. However,
the converse is not necessarily true. An example of this is drawing balls
without replacement from an urn containing three red and three blue balls.
The probability of obtaining the sequence RBR is given by:

The sequence of random variables representing the outcome of this sampling
is exchangeable since any permutation of this sequence is equally likely:

However, this sequence of random variables is not a random sample. The



probability distribution for the first ball drawn is different to that for the
second. For the first draw, there are six balls in total, with equal numbers of
each. However, for the second draw there are only five balls, and, dependent
on the first draw, there may be either more red balls or blue balls remaining.
Sometimes we cannot assume to have a random sample of observations for
similar reasons to the urn example. However, a brilliant theory originally
developed by Bruno de Finetti means a sample behaves as a random sample
so long as it is exchangeable. Technically, this requires an infinite sample of
observations, but for a reasonably large sample, this approximation is
reasonable. Often we do have a random sample and so need not worry about
any of this. However, due to this theorem, we can still write down an overall
likelihood as the product of individual likelihoods, so long as the
observations are exchangeable.

4.8 Maximum Likelihood: A Short
Introduction
In Section 4.6 we assumed we knew the prevalence of disease, θ, in the
population. In reality, we rarely know such a thing. Indeed, it is often the
main focus of statistical modelling to estimate such parameters. The
Frequentist approach to estimation is known as the method of maximum
likelihood, which we introduce in this section.
The principle of maximum likelihood estimation is simple. First, we assume a
likelihood using the logic described earlier in this chapter. We then calculate
the parameter values that maximise the likelihood of obtaining our data
sample. We now use some examples to illustrate this process.
Maximum likelihood estimation: another example

4.8.1 Estimating disease prevalence
Consider our disease prevalence example again. Suppose in a random sample
of 100 individuals, 10 are disease-positive, meaning the overall likelihood is
given by:

Remember that since we vary θ and hold the data constant, expression (4.29)
is a likelihood, not a probability. We then calculate the value of θ which
maximises the likelihood. To maximise a function, we need to find the point



at which its gradient is 0 – in other words, where the function stops either
increasing or decreasing. The correct way to do this is by differentiation.
We could differentiate expression (4.29) and set the derivative equal to 0, and
rearrange the resultant equation for θ. However, it is simpler to first take the
log of this expression, before we differentiate it. We can do this because the
properties of the log transformation ensure that the function is maximised at
the same value of θ (see Figure 4.6):

where l(θ|data) is the log-likelihood. We obtained expression (4.30) by using
the log rules:

We now differentiate the log-likelihood and set the derivative to zero:

and obtain the maximum likelihood estimate,  (see Figure 4.7).
This estimator makes sense intuitively. The value of the parameter which
maximises the likelihood of obtaining our data sample occurs when the
population disease prevalence exactly matches the diseased proportion in our
sample. In general, if we observe a number β of disease-positive individuals
in a sample size of N, then the maximum likelihood estimator equals the
diseased proportion in our sample:

Figure 4.6 The log function versus an unspecified non-monotonic function.
The log function is monotonically increasing, meaning that as x increases, the
function value always increases. For the other function, increases in x do not
necessarily cause increases in the function value; it is non-monotonically
increasing. The monotonicity of the log-likelihood means that the function
will be maximised at the same input value as the original likelihood.



4.8.2 Estimating the mean and variance in intelligence
scores
This example describes to the reader how maximum likelihood estimation
works with continuous data. Suppose that we collect a random sample of two
individuals with test scores [75,71] and model the scores using a normal
likelihood, ℒ:

Figure 4.7 The likelihood function described in Section 4.8.1 as a function of
disease prevalence, θ, when we obtain 10 disease-positive individuals out of a
sample of 100 people. The dashed line indicates the maximum likelihood

estimate 

We then take the log of this expression (see Section 4.8.1):

We now differentiate expression (4.35) with respect to both variables,



holding the other constant, setting each derivative equal to 0:

The solution of the top equation in (4.36) is 
which if substituted into the bottom, yields:

Technically we should check that our parameter estimates do not correspond
to a minimum (since this would also have a zero gradient). To do this we
could graph the likelihood or check that the second derivative is negative.
Notice that the maximum likelihood estimators of the population mean and
variance are here the sample mean and sample variance (actually a slightly
biased estimate of the sample variance). This holds for a sample of N
individuals where the maximum likelihood estimators are:

4.8.3 Maximum likelihood in simple steps
In the above examples, we followed the same procedure each time to obtain
maximum likelihood estimates of parameters. These steps were:

1. Find the density of a single data point.
2. Calculate the joint probability density of all data points, by multiplying

the likelihood from the individual data points together (if the data are
independent).

3. Take the log of the joint density to produce the log-likelihood function.
4. Maximise the log-likelihood by differentiation.

4.8.4 Inference in maximum likelihood
We now know how to calculate point estimates of parameters using the
method of maximum likelihood. However, at the moment we are unable to
make any conclusions about the population. This is because we do not know
whether our estimated value is due to picking a weird sample or because it is
close to the true value. Frequentists tackle this issue by examining the
likelihood function near the maximum likelihood point estimate. If the



likelihood is strongly peaked near the maximum likelihood estimate (see the
black line in Figure 4.8), then this suggests that only a small range of
parameters could generate a similar likelihood. In this case, we are fairly
confident in our estimates. By contrast, if the likelihood is gently peaked near
the maximum likelihood estimate (see the red line in Figure 4.8), then a large
range of parameter values could yield similar values for the likelihood. We
are now less confident in our estimates. We measure the peakedness in the
likelihood by calculating the magnitude of its second derivative at the
maximum likelihood estimates. This is because the first derivative represents
the gradient, whereas the second derivative represents the rate of change of
the gradient – a measure of curvature. The more curved the likelihood, the
more confident we are in our estimates and any conclusions drawn from
them. Note, however, that the Frequentist inference is not based on valid
probability distributions, since we infer based on likelihoods. This contrasts
with Bayesian inference that relies on probability distributions.
Figure 4.8 Two likelihood functions resulting in the same maximum
likelihood estimates of parameters (dashed line). The likelihood shown by the
solid black line is more strongly peaked than the one shown by the solid red
line, meaning that we are more confident in the estimate.



4.9 Chapter Summary
We often have information for only a few of the factors that influence the
outcome of a process. Because of this informational incompleteness, we
cannot build deterministic models of a situation and, instead, use probabilistic
models. These probabilistic models are at the centre of Bayesian inference,
and enter Bayes’ formula as the likelihood.
In this chapter, we explained the distinction between likelihoods and
probability distributions. When we hold the model parameters fixed and vary
the data, the object describes a valid probability distribution. By contrast, in
Bayes’ rule (and maximum likelihood estimation) we vary the parameters and
hold the data fixed. In this circumstance, the object does not behave as a valid
probability distribution, and hence we call it a likelihood.
To choose a likelihood for a given situation, we start by writing down
assumptions about the data-generating process. Some of these are fairly
objective: for example, the outcome is either discrete or continuous. Others
are more contentious: for example, assuming that the data are statistically
independent. We then search for a probability model that satisfies these
assumptions.
Any likelihood function has parameters. By changing these parameters we
change the behaviour of the data-generating process. In maximum likelihood
estimation, we find the value for the parameters that maximises the likelihood
of obtaining our observed data sample. In Frequentist inference, we
determine the uncertainty in our estimates by examining the curvature of the
likelihood near the maximum likelihood estimates. We recognise, however,
that this situation is not ideal because we make inferences based on a
likelihood, that is by definition, not a valid probability distribution. Bayes’
rule tells us how we can convert a likelihood – itself, not a valid probability
distribution – to a posterior probability distribution for parameters. To do
this, though, we must specify a prior distribution. In Chapter 5 we discuss the
meaning of these distributions, and how to choose one in practice.



4.10 Chapter Outcomes
The reader should now be familiar with the following concepts:

the difference between likelihoods and probability distributions
how to choose a likelihood for a given situation
maximum likelihood estimation and how to carry out inference in this
framework

4.11 Problem Sets
Problem 4.1 Blog blues
Suppose that visits to your newly launched blog occur sporadically. Imagine
you are interested in the length of time between consecutive first-time visits
to your homepage. You collect the time data for a random sample of 50 visits
to your blog for a particular time period and day, and you decide to build a
statistical model to fit the data.
Problem 4.1.1 What assumptions might you make about the first-time visits?
Problem 4.1.2 What might be an appropriate probability model for the time
between visits?
Problem 4.1.3 Using your chosen probability distribution from the previous
part, algebraically derive the maximum likelihood estimate (MLE) of the
mean.
Problem 4.1.4 You collect data from Google Analytics that contains the time
(in minutes) between each visit for a sample of 50 randomly chosen visits to
your blog. The data set is called likel i hood_blogVisits.csv. Derive an
estimate for the mean number of visits per minute.
Problem 4.1.5 Graph the log-likelihood near the MLE. Why do we not plot
the likelihood?
Problem 4.1.6 Estimate 95% confidence intervals around your estimate of
the mean visit rate.
Problem 4.1.7 What does this interval mean?
Problem 4.1.8 Using your maximum likelihood estimate, what is the
probability you will wait:

(a) 1 minute or more,
(b) 5 minutes or more,
(c) half an hour or more

before your next visit?
Problem 4.1.9 Evaluate your model.



Problem 4.1.10 Can you think of a better model to use? What assumptions
are relaxed in this model?
Problem 4.1.11 Estimate the parameters of your new model, and hence
estimate the mean number of website visits per minute.
Problem 4.1.12 Use your new model to estimate the probability that you will
wait:

(a) 1 minute or more,
(b) 5 minutes or more,
(c) half an hour or more

before your next visit.
Problem 4.2 Violent crime counts in New York counties
In data file likelihood_NewYorkCrimeUnemployment.csv is a data set of the
population, violent crime count and unemployment across New York
counties in 2014 (openly available from the New York Criminal Justice
website).
Problem 4.2.1 Graph the violent crime count against population size across
all the counties. What type of relationship does this suggest?
Problem 4.2.2 A simple model here might be to assume that the crime count
in a particular county is related to the population size by a Poisson model:

crimei ∼ Poisson(niθ),
(4.39)

where crimei and ni are the crime count and population in county i. Write
down an expression for the likelihood.
Problem 4.2.3 Find the maximum likelihood estimators of the parameters.
Problem 4.2.4 By generating fake data, assess this model.
Problem 4.2.5 What are the assumptions of this model? And do you think
that these hold in this case?
Problem 4.2.6 Suggest an alternative model and estimate its parameters by
maximum likelihood.
Problem 4.2.7 Evaluate this new model.
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5.1 Chapter Mission Statement
At the end of this chapter, the reader will know what is meant by a prior and
the different philosophies that are used to understand and construct them:



5.2 Chapter Goals
Bayes’ rule tells us how to convert a likelihood – itself, not a valid
probability distribution – into a posterior probability distribution for
parameters, which can be used for inference. The numerator of Bayes’ rule
tells us we must multiply the likelihood by a weighting of each parameter
value, which is known as the prior. Priors are, without doubt, the most
controversial aspect of Bayesian statistics, with opponents criticising their
inherent subjectivity. In this chapter, we hope to convince the reader that not
only is subjectivity inherent in all statistical models – both Frequentist and
Bayesian – but the explicit subjectivity of priors is more transparent than the
implicit subjectivity abound elsewhere.
This chapter will also explain the differing interpretations which are ascribed
to priors. The reader will come to understand the different approaches to
constructing prior distributions and how they can be chosen to be weakly
informative or otherwise to contain informative pre-experimental insights
from data or opinion.
Finally, we use a few examples to illustrate how changes to the prior affect
the shape of the posterior. However, the reader will appreciate that if
significant data are available, then the conclusions drawn are typically
insensitive to the initial choice of prior.
Inevitably, this chapter is slightly more philosophical and abstract than other
parts of this book, but we hope that the examples given are sufficiently
concrete to ensure its practical use.

5.3 What are Priors and What do They
Represent?
Chapter 4 introduced the concept of a likelihood and how this can be used to
derive Frequentist estimates of parameters using the method of maximum
likelihood. This presupposes that the parameters in question are immutable,
fixed quantities that actually exist and can be estimated by methods that can
be repeated, or imagined to be repeated, many times (see Section 2.7). As
Gill (2007) indicates, this is unrealistic for the vast majority of social science
research [17].
It is simply not possible to rerun elections, repeat surveys under exactly the
same conditions, replay the stock market with exactly matching market forces
or re-expose clinical subjects to identical stimuli. Furthermore, since



parameters only exist because we have invented a model, we should be
suspicious of any analysis which assumes they have a single ‘true’ value.
For Bayesians, the data are treated as fixed and the parameters vary. We
know that the likelihood – however useful – is not a valid probability
distribution. Bayes’ rule tells us that to calculate the posterior probability
distribution we must combine a likelihood with a prior probability
distribution over parameter values. But what does it actually mean for a
parameter to have a probability distribution?
Gelman et al. (2013) suggest that there are two different interpretations of
parameter probability distributions: the subjective state of knowledge
interpretation, where we use a probability distribution to represent our
uncertainty over a parameter’s true value; and the more objective population
interpretation, where the parameter’s value varies between different samples
we take from a population distribution [14]. In both viewpoints, the model
parameters are not viewed as static, unwavering constants as in Frequentist
theory (see Section 2.7).
If we adopt the state of knowledge viewpoint, the prior probability
distribution represents our pre-data uncertainty for a parameter’s true value.
For example, imagine that a doctor gives their probability that an individual
has a particular disease before the results of a blood test become available.
Using their knowledge of the patient’s history, and their expertise on the
particular condition, they assign a prior disease probability of 75% (see the
left-hand panel of Figure 5.1). Alternatively, imagine we want to estimate the
proportion of the UK population that has this disease. Based on previous
analyses we probably have an idea of the underlying prevalence, and
uncertainty in this value. In this case, the prior is continuous and represents
our beliefs for the prevalence (see the right-hand panel of Figure 5.1).
Figure 5.1 Left: a prior representing a doctor’s probability that they ascribe
to an individual having a given disease. Right: a prior representing our
uncertainty in disease prevalence in a population.



Adopting the population perspective, we imagine the value of a parameter is
drawn from a population distribution, which is represented by our prior.
Imagine the process of flipping a coin. If we knew the angle at which it is
tossed, the height from which it is thrown above the surface and other
relevant physical properties, we could exactly determine the side on which
the coin would fall. We could then hypothetically enumerate the (infinitely)
many angles and heights of the coin throw, and for each set determine
whether the coin will land heads up or down. Each time we throw the coin,
we implicitly choose an angle and height from the set of all possible
combinations, which exactly determines the outcome of the toss. Some
ranges of the angle and the height will be chosen more frequently than others,
although the coin will likely land ‘heads up’ roughly half the time. However,
we regard this choice of angle and height as a realisation from a population
distribution of all possible sets.
For the disease prevalence example, we imagine the observed data sample is
partly determined by the characteristics of the subpopulations from which the
individuals were drawn. The other variability is sampling variation within
those subpopulations. Here we can view the individual subpopulation
characteristics as drawn from an overall population distribution of
parameters, representing the entirety of the UK.
The prior is always a valid probability distribution and can be used to
calculate prior expectations of a parameter’s value. For example, we could
use the prior probability distribution in the right-hand panel of Figure 5.1 for
the proportion of diseased individuals and would estimate a pre-experimental
mean of approximately 15% prevalence.
5.3.1 Why do we need priors at all?
A question we might ask is: Why do we need priors at all? Can’t we simply
let the data speak for itself, without the need for these subjective beasts?
Bayes’ rule is really only a way to update our initial beliefs in light of data:



Viewed in this light, it is clear that we must specify an initial belief,
otherwise we have nothing to update! Unfortunately, Bayes does not tell us
how to formulate this initial belief, but fear not, in this chapter we describe
the process of prior determination.
5.3.2 Why don’t we normalise the likelihood by
assuming a unity prior?
Another question that can be asked is: Why can’t we simply let the prior
weighting be constant across all values of θ ? In other words, set p(θ)= 1 in
the numerator of Bayes’ rule, resulting in a posterior that takes the form of a
normalised likelihood:

This would surely mean we can avoid choosing a prior and, hence, thwart
attempts to denounce Bayesian statistics as more subjective than Frequentist
approaches. So why do we not do just that?
There is a pedantic, mathematical, argument against this, which is that p(θ)
must be a valid probability distribution to ensure that the posterior is
similarly valid. If our parameter is unbounded and we choose p(θ)= 1 (or in
fact any positive constant), then the integral (for a continuous parameter) is 

 and so p(θ) is not a valid probability distribution. Even
if the prior is not a valid probability distribution, the resultant posterior can
sometimes satisfy the properties of one. However, take care using these
distributions for inference, as they are not technically probability
distributions, because Bayes’ rule requires us to use a valid prior distribution.
Here the posteriors should be viewed, at best, as limiting cases when the
parameter values of the prior distribution tend to ±∞.
Example of how an improper prior leads to an improper posterior

Another perhaps more persuasive argument is that assuming all parameter
values are equally probable can result in nonsensical resultant conclusions
being drawn. As an example, suppose we want to determine whether a coin is
fair, with an equal chance of both heads and tails occurring, or biased, with a
very strong weighting towards heads. If the coin is fair,θ = 1 , and if it is
biased, θ = 0. Imagine that coin is flipped twice, with the result {H,H}.



Figure 5.2 illustrates how assuming a uniform prior results in a strong
posterior weighting towards the coin being biased. This is because, if we
assume that the coin is biased, then the probability of obtaining 2 heads is
high. Whereas, if we assume that the coin is fair, then the probability of

obtaining this result is only . The maximum likelihood estimate (which
coincides with the posterior mode due to the flat prior) is hence that the coin
is biased. By ignoring common sense – that the majority of coins are likely
unbiased – we obtain an unreasonable result.
Of course, we hope that by collecting more data, in this case throws of the
coin, we would be more confident in the conclusions drawn from the
likelihood. However, Bayesian analysis allows us to achieve such a goal with
a smaller sample size, by including other relevant information.
Figure 5.2 The top box illustrates the outcome of the coin toss along with its
possible causes according to our prior beliefs: with probability 1/2 the coin is
fair, and with probability 1/2 the coin is biased. Using Bayes’ rule, we assign
a high posterior probability to the coin being biased.



5.4 The Explicit Subjectivity of Priors
Opponents of Bayesian approaches to inference criticise the subjectivity
involved in choosing a prior. However, all analysis involves a degree of
subjectivity, particularly the choice of a statistical model. This choice is often



viewed as objective, with little justification for the underlying assumptions
necessary to arrive there. The choice of prior is at least explicit, leaving this
aspect of Bayesian modelling subject to the same academic examination to
which any analysis should be subjected. A word that is sometimes used by
protagonists of Bayesian methods is that the approach is more honest due to
the explicit statement of assumptions. The statement of pre-experimental
biases actually forces the analyst to self-examine and perhaps also reduces
the temptation to manipulate the analysis to serve one’s own ends.

5.5 Combining a Prior and Likelihood to
Form a Posterior
Thus far this chapter has given more attention to the philosophical and
theoretical underpinnings of Bayesian analysis. Now we illustrate the
mechanics behind Bayes’ formula, specifically how changes to the prior
affect the posterior distribution. The following examples introduce an
illustrative method, known as Bayes’ box (described in detail in [35] and [6]),
which provides intuition about Bayes’ rule that is important for applied work.
5.5.1 The fish game
Imagine a bowl of water covered with a cloth, containing five fish, each of
which is either red or white. We want to estimate the total number of red fish
in the bowl after we pick out a single fish, and find it to be red. Before we
pulled the fish out from the bowl, we had no strong belief in there being a
particular number of red fish and so suppose that all possibilities (0 to 5) are

equally likely, and hence have the probability of  in our discrete prior. Our
model for the likelihood of Y red fish is simple: it is based on the assumption
that that all fish are equally likely to be picked (irrespective of colour).
Further, suppose that the random variable X∈{0,1} indicates whether the
sampled fish is white or red. The analogy with the disease status of an
individual described in Section 4.6.1 is evident, hence we choose a Bernoulli
likelihood:

where α∈{0,1,2,3,4,5} represents the possible numbers of red fish in the
bowl, and X = 1 indicates that the single fish we sampled is red.
We illustrate the mechanics of Bayes’ rule using the Bayes’ box shown in
Table 5.1. We start by listing the possible numbers of red fish in the bowl in
the leftmost column. In the second column, we then specify our prior



probabilities for each of these numbers of red fish. In the third column, we
calculate the likelihoods for each of these outcomes using expression (5.4). In
the fourth column, we then multiply the prior by the likelihood (the

numerator of Bayes’ rule), which when summed yields 
the denominator of Bayes’ rule that normalises the numerator to yield the
posterior distribution is shown in the fifth column. For a mathematical
description of this process, see Section 5.10.1.
The Bayes’ box illustrates the straightforward mechanism of Bayes’ rule for
the case of discrete data. We also note that when we sum the likelihood over
all possible numbers of red fish in the bowl – in this case, our parameter –
this equals 3, demonstrating again that a likelihood is not a valid probability
distribution. We also see that at a particular parameter value, if either the
prior or the likelihood is 0, as for the case of zero red fish being in the bowl
(impossible since we sampled a red fish), then this ensures that the posterior
distribution is 0 at this point. The posterior is also displayed graphically in
Figure 5.3. To explain its shape we resort to Bayes’ rule:

where we obtained the second line because the denominator contains no θ
dependence (see Chapter 6). Viewed in this light, the posterior is a sort of
weighted (geometric) average of the likelihood and the prior. Because, in the
above example, we specify a uniform prior, the posterior’s shape is entirely
determined by the likelihood.

Table 5.1 



Figure 5.3 The prior, likelihood and posterior distributions for the fish
example. The prior in the top panel gives uniform weighting to all possible
numbers of red fish. This is then multiplied by the likelihood (in the middle
panel) which, when normalised, yields the posterior distribution shown in the
bottom panel.

Table 5.2 



Imagine that we believe that the game-maker likes fish of all colours, and
tends to include comparable numbers of both fish, so we modify our prior
accordingly (see Table 5.2 and Figure 5.4). Again, because the posterior is
essentially a weighted average of the likelihood and prior, this new prior
results in a posterior that is less extreme, with a stronger posterior weighting
towards more moderate numbers of red fish in the bowl.
Figure 5.4 The prior, likelihood and posterior distributions for the fish
example. The prior in the top panel gives a higher weighting to more
comparable numbers of red and white fish. This is then multiplied by the
likelihood (in the middle panel) which, when normalised, yields the posterior
distribution shown in the bottom panel.



5.5.2 Disease proportions revisited
Suppose that we substitute our fish bowl from Section 5.5.1 for a sample of
100 individuals taken from the UK population. We assume the independence
of individuals within our sample and also that they are from the same
population, and are therefore identically distributed. We want to conclude
about the overall proportion of individuals within the population with a
disease, θ. Suppose that in a sample of 10 there are 3 who are disease-
positive, meaning we have a binomial likelihood (see Section 4.6.2) of the
form:

Table 5.3 



Before we collect the data, we suppose that all values of θ are equally likely
and so use a uniform prior. Since the parameter of interest is now continuous,
it appears that we cannot use Bayes’ box, as there would be infinitely many
rows (corresponding to the continuum of possible θ values) to sum over.
However, we can still use it to approximate the shape of the posterior if we
discretise the prior and likelihood at 0.1 intervals across the [0,1] range for θ
(see Table 5.3).
The method to calculate the exact continuous posterior is identical to that in
the discretised Bayes’ box of Table 5.3, except now we multiply two
functions – one for the prior, the other for the likelihood. As expected, the
general shape of the posterior is the same for the continuous and discretised
versions of the posterior (compare the left- and right-hand panels of Figure
5.5). The impact of using a flat prior is that the posterior is peaked at the
same value of θ as the likelihood.
Figure 5.5 The prior, likelihood and posterior distributions for the (left)
discretised and (right) continuous disease proportion model. Each value of θ
along the prior curve (top panel) is multiplied by the corresponding value of
likelihood (middle) to calculate the numerator of Bayes’ rule. The numerator
is then normalised to produce the posteriors shown in the bottom panel.



5.6 Constructing Priors
There are a number of different methodologies and philosophies for
constructing a prior density. In this section, we consider how priors can be
engineered to be relatively uninformative, weakly informative or alternatively
to combine pre-experimental knowledge in a logical manner.
5.6.1 Uninformative Priors
When there is a premium placed on the objectivity of analysis, as is true in
regulatory work (drug trials, public policy and the like), then the use of
uninformative priors is desired. For example, if we were uncertain about the
proportion of individuals in a population with a particular disease, then we



might specify a uniform prior. The use of a prior that has a constant value,
p(θ) = constand , is attractive because, in this case:

and the shape of the posterior distribution is determined by the likelihood
function. This is seen as a merit of uniform priors since they ‘let the data
speak for itself’ through the likelihood. This is used as the justification for
using a flat prior in many analyses.
The flatness of the uniform prior distribution is often termed uninformative,
but this is misleading. Assuming the same model as described in Section
5.5.2, the probability that one individual is disease-positive is θ, and the
probability that two randomly chosen individuals both have the disease is θ2.
If we assume a flat prior for θ, then this implies the decreasing prior for θ2

shown by the red line in Figure 5.6. Furthermore, considering the probability
that in a sample of 10 individuals all are diseased, a flat prior for θ implies an
even more accentuated prior for this event (dashed line in Figure 5.6). For the
mathematical details of these graphs, see Section 5.10.2.
Figure 5.6 The probability density of obtaining a sample composed of only
diseased individuals, for sample sizes of 1, 2 and 10, assuming a flat prior for
θ, the underlying proportion of the population with the disease. Here f(θ)
represents the three different functions of θ shown in the legend.



So even though a uniform prior for an event appears to convey no
information, it actually confers quite considerable information about other
events. This aspect of choosing flat priors is swept under the carpet for most
analyses because we usually care most about the particular event (parameter)
for which we create a prior. All priors contain some information, so we prefer
the use of the terms vague or diffuse to represent situations where a premium
is placed on drawing conclusions based only on observed data.
There are methods for constructing priors that aim to limit the information
contained within them to avoid colouring the analysis with pre-experimental
prejudices. We leave a discussion of these methods until Chapter 11, where
we argue that these methods are usually not helpful for real-life analysis.
More seriously, we argue that these methods (and the resultant priors they
construct) actually miss the point – no analysis is objective. True Bayesians
recognise this and realise that a real benefit of the Bayesian approach is the
possibility to include information based on previous experiences.
While uniform priors are straightforward to specify for a bounded parameter
– as in the previous example, where θ∈[0,1], or in the case of discrete
parameters – we run into issues with parameters which have no predefined
range. For example, imagine we aim to estimate the mean,μ , time of onset of
lung cancer for individuals who develop the disease after they begin to
smoke. If we remove all background cases (assumed not to be caused by
smoking), then μ has a lower bound of 0. However, there is no obvious point
at which to draw an upper bound. A naive solution is to use a prior for
μ~U(0,∞). This solution, although at first appearing reasonable, is not viable
for two reasons: one statistical, the other practical. The statistical reason is
that μ~U(0,∞) is not a valid probability density, because any non-zero
constant value for the density implies infinite total probability because the μ
axis stretches out for ever. The common sense argument is that it is
impossible for humans to develop the disease after 250 or 2500 years! The
finiteness of human lifespan dictates that we choose a more appropriate prior.
A better choice of prior would be a density that ascribes zero probability to
negative values of μ allocates most weight towards values of μ that we
believe are most reasonable, such as the prior indicated by the red line shown
in Figure 5.7. While many analyses assume a discontinuous uniform prior of
the type shown by the grey line in Figure 5.7, we discourage their usage (see
Section 5.7.1), due to the arbitrary, and often nonsensical, lower and upper
bounds. There are also good computational reasons for using gentler, less



discontinuous priors, which we discuss in Section 11.7. These types of prior
are what Gelman terms weakly informative.
Figure 5.7 Two prior distributions for the average time before the onset of
lung cancer after a patient begins smoking.

5.6.2 Informative priors
In Section 5.6.1 we discussed priors that give a strong weight to recent data
and aim to minimise the impact of pre-existing beliefs. There are, however,
occasions when it is essential to include significant information in the prior:
to incorporate previously collected data, or the results of a former analysis, to
include data from another source or to account for theoretical considerations.
In cases where data are available from previous studies, the construction of a
prior can proceed by a method known as moment-matching. Suppose that we
obtain the data shown in Figure 5.8 for SAT scores of past participants of a
particular class, which we want to use to form a prior for scores for a future
class. We might assume that the test scores could be modelled as having
come from a normal distribution. We characterise normal distributions by
two parameters: their mean, μ , and standard deviation,σ . In moment-
matching a normal prior to this previous data, we choose the mean and
standard deviation to equal their sample equivalents, in this case μ = 998 and
σ = 145, respectively (indicated by the red line in Figure 5.8).
While this simple methodology produces priors that closely approximate pre-
experimental data sets, it was an arbitrary choice to fit the first two moments
(the mean and the standard deviation, respectively) of the sample. We could
have used, for instance, the skewness and kurtosis (skewness measures how
symmetric a distribution is, and kurtosis quantifies how fat its tails are; these
relate to the third and fourth moments of a distribution, respectively). Also,
moment-matching is not Bayesian in nature and can often be difficult to
apply in practice. When we discuss hierarchical models in Chapter 17, we



will learn about a purer Bayesian method that can be used to create prior
densities.
Figure 5.8 The SAT scores for past students of a class. The mean and
standard deviation of a hypothetical sample are 998 and 145, respectively,
which are used to fit a normal distribution to the data whose PDF is shown in
red.

5.6.3 Eliciting priors
A different sort of informative prior is sometimes necessary, which is not
derived from prior data, but from expert opinions. These priors are often used
in clinical trials, where clinicians are interviewed before the trial is
conducted. However, a considerable amount of research in the social sciences
also uses these types of priors. There are many methods to create priors from
subjective views (see [17] for a detailed discussion). Here we use a simple
example to illustrate how such methods can work in practice.
Suppose that we ask a sample of economists to provide estimates of the 25th
and 75th percentiles, wage25 and wage75, of the wage premium that one extra
year of college education commands on the job market. If we assume a
normal prior for the data, then we can relate these two quantiles back to the
corresponding quantiles of a standardised normal distribution for each expert:

where z25 and z75 are the 25th and 75th percentiles of the standard normal
distribution, respectively. These two simultaneous equations could be solved
for each expert, giving an estimate of the mean and standard deviation of a



normal variable. These could then be averaged to determine the mean and
standard deviation across all the experts. A better method relies on linear
regression. Expressions (5.8) and (5.9) can be rearranged to give the
following:

We recognise that each equation represents a straight line y = mx + c in
(z,wage) space where in this case c = μ and m = σ. If we fit a linear regression
line to the data from the whole panel, the values of the y intercept and
gradient hence estimate the mean and standard deviation (see Figure 5.9).
Figure 5.9 Regressing hypothetical 25th and 75th percentiles on the
corresponding percentiles from a standard normal distribution (left) yields
estimates of the mean and standard deviation of a normal distribution (right).
The horizontal dashed lines indicate the position of the estimated 25th
(lower), 50th (middle) and 75th (top) percentiles of the distribution of annual
wage premiums. Note that jitter has been added to the left-hand plot x
coordinates to allow the points to be resolved.

5.7 A Strong Model is Less Sensitive to
Prior Choice
Returning to the disease prevalence example in Section 5.5.2, we now
examine the effects of using an informative prior on the analysis. Suppose
that we choose a prior which suggests that the prevalence of a disease within
the population is high (see the top row of Figure 5.10). If we have a sample
composed of 10 individuals and find that one person in our sample tests
positive for the disease, the posterior is located roughly equidistant between
the peaks of the prior and likelihood functions (see the left-hand column of
Figure 5.10). If the sample size increases to 100, holding constant the
percentage of individuals who are disease-positive (now 10 individuals), the



posterior peak is much closer to the position of the likelihood peak (see the
middle column of Figure 5.10). If the sample size increases further, still
maintaining the percentage of individuals with the disease in the sample, the
posterior appears indistinguishable from the likelihood (see the rightmost
column of Figure 5.10).
Figure 5.10 shows that the effect of the prior on the posterior density
decreases as we collect more data. By contrast, the influence of the likelihood
– the effect of current data – increases along with sample size. To explain
this, remember that the posterior is essentially a weighted average of the
likelihood and prior:

Because the above is a product, its behaviour is determined by whichever of
the terms is smallest. In the extreme, if either the likelihood or the prior is
zero, then the above ensures that the posterior is also zero. In general, as the
amount of data we collect increases, the likelihood of that data becomes
smaller (intrinsically there are many more different ways in which a larger
data set could be generated) and more peaked. This means that the posterior
peak becomes increasingly closer to the likelihood peak.
In Bayesian analysis, when we collect more data our conclusions become less
affected by priors. The use of a prior allows us to make inferences in small
sample sizes by using pre-experimental knowledge of a situation, but in
larger samples the effect of prior choice declines. In all cases, we have an
obligation to report whenever the conclusion of an analysis is sensitive to the
form of prior that is specified. Alternatively, a field called sensitivity analysis
actually allows a range of priors to be specified and combined to produce a
single posterior.
Figure 5.10 The effect of increasing sample size (left to right) on the
posterior density for the prevalence of a disease in a population (bottom
panels). Left: N = 10. Middle: N = 100. Right: N = 1000. All three have the
same proportion of disease cases in the sample (10%).



5.7.1 Caveat: zero priors always affect the posterior
Suppose that we strongly believe that the world is flat – so much so that we
give the probability that the world is non-flat a prior probability of zero. We
then collect data on star movements in the night sky and calculate the
likelihood of obtaining these results by assuming either a flat or non-flat
world, finding overwhelming support in favour of the non-flat world.
However, using Bayes’ rule here, the posterior probability of the world being
non-flat equals zero, since it is the product of a zero-valued prior and a finite
likelihood. Clearly, choosing a zero prior has (wrongly) dictated the ultimate
inferential result!
Figure 5.11 The effect of choosing a discontinuous prior (top-left panel) or
weakly informative one (top-right panel) on the posterior distribution for the
disease prevalence (bottom panels). Choosing a smoother prior with some
weight towards higher values of disease prevalence (top-right panel) results
in a less skewed mean (shown by black dashed line). In both cases, the data,
and hence likelihood, are assumed to be the same.



Alternatively, suppose that we wish to estimate the prevalence of a common
disease in a particular developing country. We speak with the Minister for
Health of the country in question, who says that he is ‘morally certain’ that
the prevalence of a disease is lower than 25%. As such, we decide to use a
zero-valued prior for values of prevalence greater than this value (see the top-
left panel of Figure 5.11). We then collect sample data on disease
transmission for families across the country, resulting in a likelihood that is
peaked nearer 30%. Multiplying together the prior and the likelihood to get
the posterior, we notice that we end up with a rather ugly distribution with a
kink in it. Apart from poor aesthetics, this posterior indicates unrealistic
estimates of the mean level of disease prevalence that lie quite a distance
away from the maximum likelihood value.
Choosing a zero-valued prior across a parameter range always results in a
corresponding zero posterior probability. For most cases, the type of



discontinuous prior shown in the top-left panel of Figure 5.11 should be
discouraged, and smoother, less definitive distributions chosen instead (see
the top right-hand panel for an example of one). Remember that priors should
represent our subjective viewpoints of the likelihood of a given event.
Choosing a zero-valued prior for such an event means that, from our
perspective, it is impossible. For most circumstances, we are not nearly this
sure, and we should be more cautious in our certainty. That is not to say we
should not use highly informative priors – just that we should use smoother,
more mathematically friendly distributions. There are also computational
benefits to using these types of priors, but we leave this discussion until after
we have covered more theory (see Section 11.7).



5.8 Chapter Summary
We now know that a prior is a probability distribution that represents our pre-
data knowledge about a particular situation. We also understand the
importance of selecting a valid prior density and the need to carefully test and
interpret a posterior that results from using an improper prior. Further, we
understand that when we want to draw conclusions solely from the data, a
vague prior may be most appropriate. This contrasts with situations when we
wish to use previous data or expert knowledge to help us draw conclusions,
in which case we specify a more informative prior. In all cases, however, we
recognise that we must be aware of the sensitivity of our inferences to the
choice of prior. We also realise that as the number of data points increases or
a better model is chosen, then the posterior density is less sensitive to the
choice of prior.
We are now nearly in a position to start doing Bayesian analysis. All that we
have left to cover is the denominator of Bayes’ rule. This element appears
benign at first sight but is actually where the difficulty lies in Bayesian
approaches to inference. For this reason, we devote the next chapter to
studying this final part of Bayes’ rule.



5.9 Chapter Outcomes
The reader should now be familiar with the following concepts:

why we need priors for Bayesian analysis
the need to use valid priors to ensure valid posterior probability
distributions result
Bayes’ box for discrete parameters
how Bayes’ rule combines a prior and a likelihood to yield a posterior
the difference between vague and informative priors
how expert knowledge can be encoded in priors
the influence of collecting more data on the shape of the posterior
distribution

5.10 Appendix
5.10.1 Bayes’ rule for the fish problem
In this case application of the discrete form Bayes’ rule results in:

5.10.2 The probabilities of having a disease
We assume that the probability an individual has a disease is θ, and specify a
uniform prior on this probability, p(θ) = 1. We calculate the probability that
out of a sample of two individuals, p(Y)=p(θ2), by applying the change of
variables rule:

In (5.13), θ(Y) = Y1/2 is the inverse of Y=θ2, and θ′ means the derivative with
respect to . Hence we derive the probability density for two individuals to
have the disease:



5.11 Problem Sets
Problem 5.1 Dodgy coins
Suppose there are three coins in a bag. The first coin is biased towards heads,
with a 75% probability of a heads occurring if the coin is flipped. The second
is fair, so a 50% chance of heads occurring. The third coin is biased towards
tails, and has a 25% probability of coming up heads. Assume that it is
impossible to identify which coin is which from looking at or touching them.
Problem 5.1.1 Suppose we put our hand into the bag and pull out a coin. We
then flip the coin and find it comes up heads. Let the random variable C =
{1,2,3} denote the identity of the coin, where the probability of heads is
(0.75, 0.50, 0.25), respectively. Obtain the likelihood by using the
equivalence relation (that a likelihood of a parameter value given data is
equal to the probability of data given a parameter value), and show that the
sum of the likelihood over all parameter values is 1.5.
Problem 5.1.2 What is the maximum likelihood estimate of the coin’s
identity?
Problem 5.1.3 Use Bayes’ rule to prove that:

where c = 1,2,3.
Problem 5.1.4 Assume that since we cannot visually detect the coin’s

identity we use a uniform prior  for c = 1, 2, 3. Use this to
complete Table P5.1 (known as a Bayes’ box) and determine the (marginal)
probability of the data.

Table P5.1 

Problem 5.1.5 Confirm that the posterior is a valid probability distribution.
Problem 5.1.6 Now assume that we flip the same coin twice, and find that it
lands heads up on both occasions. By using a table similar in form to Table
P5.1, or otherwise, determine the new posterior distribution.
Problem 5.1.7 Now assume that you believe that the tails-biased coin is



much more likely to be drawn from the bag, and thus specify a prior: Pr(C =
1) = 1/20, Pr(C = 2) = 5/20 and Pr(C = 3) = 14/20. What is the posterior
probability that C = 1 now?
Problem 5.1.8 Continuing on from the previous example, calculate the
posterior mean, maximum a posteriori (MAP) and maximum likelihood
estimates. Does the posterior mean indicate much here?
Problem 5.1.9 For the case when we flip the coin once and obtain X = H,
using the uniform prior on C, determine the posterior predictive distribution
for a new coin flip with result , using the expression:

Problem 5.1.10 (Optional) Justify the use of the expression in the previous
question.
Problem 5.2 Left-handedness
Suppose that we are interested in the prevalence of left-handedness in a
particular population.
Problem 5.2.1 We begin with a sample of one individual whose dexterity we
record as X = 1 for left-handed, X = 0 otherwise. Explain why the following
probability distribution makes sense here:

where θ is the probability that a randomly chosen individual is left-handed.
Problem 5.2.2 Suppose we hold θ constant. Demonstrate that under these
circumstances the above distribution is a valid probability distribution. What
sort of distribution is this?
Problem 5.2.3 Now suppose we randomly sample a person who happens to
be left-handed. Using the above function calculate the probability of this
occurring.
Problem 5.2.4 Show that when we vary θ the above distribution does not
behave as a valid probability distribution. Also, what sort of distribution is
this?
Problem 5.2.5 What is the maximum likelihood estimator for θ?



6 The Devil is in the Denominator
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6.1 Chapter Mission Statement
At the end of this chapter, the reader will recognise the importance of the
denominator term, , in Bayes’ rule. Furthermore, the reader will appreciate
that it is partly the complexity of calculating this term that motivates the
move away from exact Bayesian inference, towards the sampling
methodology that we discuss in Part IV:



6.2 Chapter Goals
Bayesian inference uses probability distributions, called posteriors, to make
inferences about the world at large. To be able to use these powerful tools,
however, we must ensure they are valid probability distributions. The
denominator of Bayes’ rule, p(data), is a number that ensures that the
posterior distribution is a valid probability distribution by normalising the
numerator term.
There is, however, another interpretation of the denominator. Before we get
the data, it is a probability distribution that represents our beliefs over all
possible data samples. To obtain the denominator we marginalise out all
parameter dependence in the numerator. The seeming simplicity of the
previous statement belies the fact that, for most circumstances, this
calculation is complicated and practically intractable. In this chapter, we will
learn why this difficulty arises, as well as a basic appreciation of how modern
computational methods sidestep this issue. We will leave the details of how
these methods work in practice to Part IV, but this chapter lays the
foundations for this later study.

6.3 An Introduction to the Denominator
6.3.1 The denominator as a normalising factor
We know from Chapter 4 that the likelihood is not a valid probability density,
and hence we reason that the numerator of Bayes’ rule – the likelihood
multiplied by the prior – is similarly not one. The numerator satisfies the first
condition of a valid probability density – its values are non-negative.
However, it falls down on the second test – its sum or integral (dependent on
whether the parameters are discrete or continuous) across all parameter
values does not typically equal 1.
A natural way to normalise the numerator is to divide it by the value of this
sum or integral. The denominator of Bayes’ rule, p(data) , is this normalising
factor. Notice that it does not contain the parameter, θ. This is because
p(data) is a marginal probability density (see Section 3.3.5), obtained by
summing or integrating out all dependence on µ. This parameter
independence of the denominator ensures that the influence of µ on the shape
of the posterior distribution is solely due to the numerator (see Section 6.5).
Why is it difficult to calculate the denominator of Bayes’ rule in practice?



There are two varieties of Bayes’ rule which we will employ in this chapter,
which use slightly different (although conceptually identical) versions of the
denominator. When µ is a discrete parameter, we sum over all possible
parameter values to obtain a factor that normalises the numerator:

We leave multiple-parameter inference largely to Part IV, although we
discuss how this complicates matters considerably in Section 6.4. The
multivariate method proceeds in similar fashion to expression (6.2), except
that the single sum is replaced by a number of summations, one for each of
the number of parameters in the model.
For continuous parameters we use the continuous analogue of the sum – an
integral – to calculate a denominator of the form:

Similarly, for multiple-parameter systems, the single integral is replaced by a
multiple integral. Next, we use examples to demonstrate how to use
expressions (6.2) and (6.3) in Sections 6.3.2 and 6.3.3, respectively.
Bayes box example of the denominator

6.3.2 Example: individual patient disease status
Imagine that we are a medical practitioner and want to calculate the
probability that a patient has a particular disease. We use θ to represent the
two possible outcomes:

Taking account of the patient’s medical history, we specify a prior probability

of  that they have the disease. We subsequently obtain data from a
diagnostic test and use this to re-evaluate the probability that the patient is
disease-positive. To do this we choose a probability model (likelihood) of the
form:



where we implicitly assume that the probability of a negative test result
equals 1 minus the positive test probabilities. Also, since Pr (test positive | θ
= 0) > 0 we are assuming that false positives do occur.
Suppose that the individual test result is positive for the disease. We can now
use expression (6.2) to calculate the denominator of Bayes’ rule in this case:

The denominator is a valid probability density, meaning that we can calculate
the counter-factual  We need to be careful
with interpreting this last result, however, since it did not actually occur; Pr
(test positive) is our model-implied probability that the individual will test
negatively before we carry out the test and obtain the result.
We then use Bayes’ rule to obtain the posterior probability that the individual
has the disease, given that they test positive:

In this case, even though we began with a fairly optimistic belief – a

probability that the individual has the disease of  – the strength of the data
has shone through, and we are now fairly confident in the alternative (see
Figure 6.1 for a graphical depiction of this change of heart). Bayesians are
fickle by design!
Figure 6.1 The Bayesian inference process illustrated for the disease example
described in the text: the prior (top panel) is multiplied by the likelihood
(second from top), resulting in the numerator (second from bottom), which is
then normalised by the denominator, to yield the posterior distribution
(bottom).



6.3.3 Example: the proportion of people who vote for
the Conservative Party in a UK general election
Suppose that we work for a pollster and aim to estimate the proportion of
voters, θ, who have voted for the Conservative Party in the UK, on the basis
of exit poll data. Also, suppose that Conservatives are relatively unpopular at
the time of the election, and we assume that, at most, 45% of the electorate
will vote for them, meaning we choose a uniform prior of the form shown in



the top panel of Figure 6.2. While we do not favour the use of these types of
uniform prior (see Section 5.7.1), we use it again to highlight its effects on
the posterior. The data comprise voter preferences from 100 individuals who
were surveyed when leaving a particular polling station. To simplify the
analysis, we assume that there are only two political parties, and all voters
must choose between either of these two options. We assume that the polling
station chosen is representative of the electorate as a whole, and voters’
choices are independent of one another. In this situation, we use a binomial
likelihood function (see Section 4.6.2):
Figure 6.2 The prior, likelihood, numerator (of Bayes’ rule) and posterior
distributions for the Conservative Party voting example.

where Z is a random variable that represents the number of individuals voting



Conservative in the sample and β ∈[0,100] is the variable’s specific value.
We assume that, in this case, 40 people out of the sample of 100 voted for the
Conservatives, resulting in the likelihood shown in the second-from-top panel
in Figure 6.2, which is peaked at the maximum likelihood estimate of 

We calculate the denominator by integrating the numerator of Bayes’ rule
(likelihood times prior) over θ ∈[0,1] (which amounts to finding the area
under the numerator curve shown in Figure 6.2):

≈ 0.018.
In the above, we assumed that since p(θ) = 0 for θ> 0.45, we can restrict the

integral to only the region below that value (the factor  is the uniform
density for (0 ≤ θ ≤ 0.45). The value Pr(Z = 40) ≈ 0.018 is obtained by
numerically integrating the second line.
After calculating the denominator, we use it to normalise the product of the
prior and the likelihood, resulting in the posterior distribution seen in Figure
6.2. The effect of truncating the uniform distribution at θ = 0.45 is to
artificially truncate the posterior distribution at this value. Because of this,
summary measures of centrality of the posterior will be skewed towards the
left of the peak, which is undesirable.
6.3.4 The denominator as a probability distribution
An alternative view of the denominator is as a probability distribution for the
data before we observe it – in other words, the probability distribution for a
future data sample given our choice of model. Here model encompasses both
the likelihood and the prior. The denominator is actually a marginal
probability density that is obtained by integrating the joint density p(data, θ)
across all θ:

where we have assumed that the parameter(s) is continuous. We obtained the
second line from the first by using the conditional probability formula
introduced in Section 3.3.6:



We are thus able to characterise the joint density of the data and the
parameter, p(data, θ). This joint density is a function of both the data and θ,
and so is a valid probability distribution. This contrasts with the numerator in
Bayesian inference (which is not a valid probability distribution), where we
vary θ but hold the data constant. We can draw the joint density for the
disease example in Section 6.3.2 as the discrete distribution shown in Table
6.1. We also show (in the rightmost column) the discrete probability
distribution for p(data), obtained by marginalising the joint distribution.

Table 6.1pdata 

6.4 The Difficulty with the Denominator
The previous examples illustrate that the denominator of Bayes’ rule is
obtained by summing (for discrete variables) or integrating (for continuous
variables) the joint density p(data, θ) across the range of θ. We have seen
how this procedure works when there is a single parameter in the model.
However, in most real-life applications of statistics, the likelihood is a



function of a number of parameters. For the case of a two-parameter discrete
model, the denominator is given by a double sum:

And for a model with two continuous parameters, we must do a double
integral:

While the two-parameter expressions (6.12) and (6.13) may not look more
intrinsically difficult than their single-parameter counterparts in expressions
(6.2) and (6.3), respectively, this aesthetic similarity is misleading,
particularly for the continuous case. While in the discrete case it is possible to
enumerate all parameter values and hence – by brute force – calculate the
exact value of p(data), for continuous parameters the integral may be difficult
to calculate. This difficulty is amplified the more parameters our model has,
rendering analytic calculation of the denominator practically impossible for
all but the simplest models.
As an example, imagine we are modelling high school test scores of
individuals within schools, and use a model where test scoreij for an
individual i within school j is normally distributed:

where μi and σj are the mean and standard deviation of test scores within
school j. If we have 100 schools in our data set, then the denominator term is
an integral of the form:

where p(data | μ1,σ1,...,μ100,σ100) is the likelihood, which equals the product
of individual normal densities (one for each of the schools);
p(μ1,σ1,...,μ100,σ100) is a prior distribution that we do not specify explicitly,
but suppose incorporates dependence between the parameters from each
school.
(Don’t worry if you think expression (6.15) looks hideously complicated –
that is actually our point in displaying it!) The above integral is 200-
dimensional, which is impossible to exactly calculate. Furthermore, any
approximate numerical scheme that uses a deterministic method to estimate
the above integral, for example Gaussian quadrature, will also fail to work.
So it looks like we are stuck! For relatively complex problems we simply



cannot calculate the denominator of Bayes’ rule. This means we cannot
normalise the numerator and, in doing so, transform it into a valid probability
distribution.
In fact, even if we could calculate the denominator of Bayes’ rule, we would
still have difficulties. A common summary measure of a posterior distribution
is the posterior mean. Suppose for our school test example we want to
calculate the posterior mean of μ1, which represents the mean test score for
school 1. In this case, we would want to calculate the integral:

where we have multiplied the posterior by μ1 to find the posterior mean of
this parameter. Since this integral is also 200-dimensional, we will have the
same problems as we did for the denominator. This means that, in most
circumstances, we cannot exactly calculate the mean, variance or any other
summary measure of the posterior for that matter!
So for relatively complex models, it seems that we are in trouble. This issue
originates from the inherent complexity of integrating multidimensional
probability distributions, not just the difficulty in calculating the denominator
term of Bayes’ rule.

6.5 How to Dispense with the Difficulty:
Bayesian Computation
If a model has more than about three parameters, then it is difficult to
calculate any of the integrals necessary to do applied Bayesian inference.
However, all is not lost. In these circumstances, we can take a different route.
There are two solutions to the difficulty:

Use priors conjugate to the likelihood (see Chapter 9).
Abandon exact calculation, and opt to sample from the posterior instead
(see Part IV).

Using conjugate priors still allows exact derivation of the posterior
distribution (and usually most summary measures) by choosing a
mathematically ‘nice’ form for the prior distribution. This simplifies the
analysis since we can simply look up tabulated formulae for the posterior,
avoiding the need to do any maths.
However, in real-life applications of Bayesian statistics, we often need to
stray outside this realm of mathematical convenience. The price we pay for a



wider choice of priors and likelihoods is that we must stop aspiring for exact
results. For example, we cannot hope to exactly calculate the posterior mean,
standard deviation and any uncertainty intervals for parameters. However, it
happens that, in these circumstances, we can sample from the posterior and
then use sample summary statistics to describe the posterior. We leave a full
description of these computational methods to Part IV, but to provide a clue
as to where we are heading, we write the posterior density as:

where we obtained the second line because p(data) is independent of θ – it is
a constant that we use to normalise the posterior. Therefore, the numerator of
Bayes’ rule tells us everything we need to know about the shape of the
posterior distribution, whereas the denominator merely tells us about its
height. Fortunately, we only require information on the shape of the posterior
to generate samples from it. This forms the basis of all modern computational
methods (see Part IV).



6.6 Chapter Summary
In this chapter, we introduced two interpretations of the denominator. Before
we observe data, it is a probability distribution that represents our beliefs over
possible data samples. After we obtain a particular sample of data, this
probability distribution collapses to a single number that normalises the
numerator of Bayes’ rule, to ensure the posterior is a valid probability
distribution.
Once we have specified a likelihood and a prior, the denominator term is
fully determined. To calculate it, we ‘marginalise out’ all parameter
dependence in the numerator of Bayes’ rule (the product of the likelihood and
prior). For discrete models, this is often not problematic because the
marginalisation involves a summation, which is computationally tractable
(unless the model has many parameters). However, for continuous models,
the marginalisation involves calculating a multidimensional integral. For
more than a few parameters this integral cannot be exactly calculated, or even
well approximated, using deterministic numerical integration methods. Since
most applied Bayesian analyses have more than a handful of continuous
parameters, this means that we are usually unable to exactly calculate the
posterior distribution.
In fact, even if we could calculate the posterior we would still run into
trouble. Typically, we want to summarise the posterior distribution by
calculating its mean or, instead, intervals of uncertainty. To calculate these
summaries exactly requires calculation of integrals as difficult as those
required to calculate the denominator.
There are two methods to avoid this difficulty. One of these approaches is to
use priors that are conjugate to the likelihood (see Chapter 9). This choice
ensures that the posterior is of the same distributional form as the prior, albeit
with different parameter values. Fortunately, however, the formulae for these
posterior parameters have been tabulated by others, meaning we can avoid
doing any calculations ourselves. Unfortunately, for all but the simplest
problems, conjugacy is not a feasible solution. An alternative approach is to
sample from the posterior distribution. We then use the properties of the
sample to approximate for the corresponding properties of the posterior
distribution. We shall see in Part IV that this forms the basis of most modern
computational approaches to applied Bayesian analysis.
In this chapter, we did not discuss how the denominator can be used to



compare the predictive fit of different models. In this guise, the denominator
is typically known as the marginal likelihood of the data. We prefer to leave
discussion of marginal likelihoods until Chapter 10, where we compare this
approach with other (better) methods to assess a model’s predictive power.
Now that we understand the three ingredients of Bayes’ rule, we suppose that
we can turn the handle and produce the posterior probability distribution –
the goal of Bayesian inference. In Chapter 7 we turn our attention to
discussing the various uses of this object.



6.7 Chapter Outcomes
The reader should now be familiar with the following concepts:

the denominator as a probability distribution over possible data samples,
before we actually observe the data
the denominator as a normalising factor
the difficulty with computing the denominator and other
multidimensional integrals that arise in Bayesian inference for models
with continuous parameters

6.8 Problem Sets
Problem 6.1 Too many coin flips
Suppose we flip two coins. Each coin i is either fair (Pr(H) = θi = 0.5) or
biased towards heads (Pr(H) = θi = 0.9); however, we cannot visibly detect
the coin’s nature. Suppose we flip both coins twice and record each result.
Problem 6.1.1 Suppose that we specify a discrete uniform prior on both θ1
and θ2. Find the joint distribution of the data and the coins’ identity.
Problem 6.1.2 Show that the above distribution is a valid probability
distribution.
Problem 6.1.3 We flip each coin twice and obtain for coin 1 {H,H} and coin
2 {H,T}. Assuming that the result of each coin flip is independent of the
previous result, write down a likelihood function.
Problem 6.1.4 What are the maximum likelihood estimators of each
parameter?
Problem 6.1.5 Calculate the marginal likelihood of the data (that is, the
denominator of Bayes’ rule).
Problem 6.1.6 Hence calculate the posterior distribution, and demonstrate
that this is a valid probability distribution.
Problem 6.1.7 Find the posterior mean of θ1. What does this signify?
Problem 6.1.8 Now suppose that away from our view a third coin is flipped,
and denote Z = 1 for a heads. The result of this coin affects the bias of the
other two coins that are flipped subsequently, so that:

Suppose we again obtain for coin 1 {H,H} and for coin 2 {H,T}. Find the
maximum likelihood estimators (θ1,θ2,Z). How do the inferred biases of coin
1 and coin 2 compare to the previous estimates?
Problem 6.1.9 Calculate the marginal likelihood for the coin if we suppose



that we specify a discrete uniform prior on Z, that is Pr(Z =1) = 0.5.
Problem 6.1.10 Suppose we believe that the independent coin flip model
(where there is no third coin) and the dependent coin flip model (where the
outcome of the third coin affects the biases of the two coins) are equally
likely a priori. Which of the two models do we prefer?
Problem 6.2 Coins combined
Suppose that we flip two coins, each of which has Pr(H) = θi where i∈
{1,2}, which is unknown. If their outcomes are both the same then we regard
this as a success; otherwise a failure. We repeatedly flip both coins (a single
trial) and record whether the outcome is a success or failure. We do not
record the result of flipping each coin. Suppose we model the number of
failures, X, we have to undergo to attain n successes.
Problem 6.2.1 Stating any assumptions that you make, specify a suitable
probability model here.
Problem 6.2.2 We obtain the data in denominator_NBCoins.csv for the
number of failures to wait before five successes occur. Suppose that we
specify the priors θ1 ~ U(0,1) and θ2 ~ U(0,1). Calculate the denominator of
Bayes’ rule. (Hint: use a numerical integration routine.)
Problem 6.2.3 Draw a contour plot of the posterior. Why does the posterior
have this shape?
Problem 6.2.4 Comment on any issues with parameter identification for this
model and how they might be rectified.
Problem 6.2.5 Now suppose that we have three coins instead of two. Here
we regard a success as all three coins showing the same result. Using the
same data as before, attempt to calculate the denominator term. Why is there
a problem?
Problem 6.2.6 Assuming a denominator term equal to 3.64959×10–169,
estimate the posterior mean of θ1.



7 The Posterior – The Goal of Bayesian
Inference
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7.1 Chapter Mission Statement
This chapter introduces posterior distributions and the approaches used to
summarise these objects. We then discuss how the posterior distribution can
be used for forecasting:



7.2 Chapter Goals
In Chapters 4 to 6, we explained how the various elements of Bayes’ rule
combine to produce a posterior probability distribution for a model’s
parameters. Calculating the posterior distribution is the focus of Bayesian
analysis. This probability distribution can be used to yield estimates of
parameters that interest us, to forecast and to test a model’s foundations. In
this chapter, we examine these topics and demonstrate some of the ways in
which posterior distributions are used in practice.
Bayes’ rule is the recipe for combining our pre-data beliefs with information
from our data sample to produce an updated set of beliefs. This process
involves first choosing a likelihood function (see Chapter 4). Likelihoods
have parameters that, when varied, produce a range of different system
behaviours. Even before we collect data, previous experience dictates that
some of those behaviours are more probable than others. We quantify these
pre-data preferences using a prior probability distribution (see Chapter 5).
Once a likelihood and a prior are selected, Bayes’ rule requires calculation of
a denominator term to ensure that the posterior is a valid probability
distribution (see Chapter 6). In this chapter, we explain intuitively how the
shape of the likelihood and prior influences the shape of the posterior.
In policy making, we may require point estimates of parameters in order to
make decisions. In Bayesian inference, we are free to choose which point
estimates we use to summarise the posterior distribution. In this chapter, we
discuss these options and argue that the posterior mean or median are
superior choices to the mode. Point estimates of parameters can be
misleading, particularly if there is considerable uncertainty associated with
them. Even when policy makers demand a point estimate, we prefer to
provide a measure of uncertainty in a parameter’s value. Again, in Bayesian
inference, there are a range of options available to us, and we discuss these in
this chapter. We also compare these Bayesian credible intervals with
Frequentist confidence intervals.
We may want to make predictions about a current, or future, state of the
world using a model. This process is trivial in Bayesian statistics. We just
estimate the posterior predictive distribution – itself a straightforward
extension of the posterior, which we introduce in Section 7.8. In Chapter 10
we shall see that the posterior predictive distribution is also an essential part
of Bayesian model checking.



7.3 Expressing Parameter Uncertainty in
Posteriors
Unlike looking out of the window to determine the weather, getting exam
results, or playing a hand at blackjack, in inference we typically do learn the
true state of the world. The uncertainty here is in both the present and future.
Partly because we can only imperfectly explain the world today, we are
unable to perfectly predict the state of the world tomorrow.
We represent our ignorance, or uncertainty, in a parameter’s value through
probability distributions. For example, suppose that we want to estimate the
proportion of individuals who will vote for the Democrats in an upcoming
election. We might, on the basis of past exit poll surveys, calculate the
posterior probability distribution shown in Figure 7.1.
Figure 7.1 A probability distribution representing our uncertainty over the
proportion of the electorate that will vote for the Democrats in an upcoming
election.

How can we interpret the probability distribution shown in Figure 7.1? And
further, how can we use it to express our uncertainty to a non-mathematician?
Often we describe a distribution by its summary characteristics. For example,
we often want to know the mean value of a parameter. This is essentially a
weighted mean (where the weights are provided by the values of the
probability density function). If we have the mathematical formula for the
distribution shown in Figure 7.1, we calculate this by the following integral
(see Section 3.3.3):



where in this case we have not provided the function p(θ) so you cannot do
the above calculation yourselves. However, note that the point estimate of the
proportion of individuals intending to vote for the Democrats coincides
roughly with the peak of Figure 7.1.
A point estimate is dangerous to use without some measure of our confidence
in the value. One useful measure of uncertainty is a parameter’s variance:

It is usually easier to understand an uncertainty if it is expressed in the same
units as the mean, which we obtain by taking the square root of the variance,
which yields a standard deviation of 5.3% for the distribution shown in
Figure 7.1. A larger standard deviation indicates that we believe a wider
range of outcomes are possible. In this case, a wider standard deviation
means we are less certain that the proportion voting for the Democrats in the
actual election will actually be 54%.
An alternative way to summarise uncertainty is by specifying an interval
rather than a point estimate. In Section 7.7 we compare and contrast the
Frequentist and Bayesian approaches to interval estimation.

7.4 Bayesian Statistics: Updating our Pre-
Data Uncertainty
In Bayesian statistics, the posterior distribution combines our pre-existing
beliefs with information from observed data to produce an updated belief,
which is used as the starting point for all further analyses. To calculate it we
must choose a likelihood function (see Chapter 4) that determines the
influence of the data on the posterior. This function is characterised by its
parameters, which affect the behaviour of our model system. In Bayesian
inference, these parameters are assigned priors that represent our pre-data
beliefs across the range of parameter values (see Chapter 5). The priors and
likelihoods are then combined in a certain way – using Bayes’ rule – to yield
the posterior distribution:

The posterior is the synthesis of past experience and information from
observed data and represents our updated state of knowledge. The uncertainty
in the posterior is usually (although not always) reduced compared to the
prior because the data allows us to better understand the world.



The next section illustrates this process with the example of determining a
ship’s location in stormy weather.
7.4.1 Example: Bayesian coastguard
Imagine you are stationed in a radio control tower at the top of a steep cliff in
the midst of a stormy night. The tower receives a distress call over the radio
from a ship – The Frequentasy – which has engine trouble somewhere in the
bay. It is your job to direct a search helicopter to rescue the poor sailors.
While you have received a radio communication that the ship is in trouble, its
GPS is not working, and so the sailors do not know their location. However,
you know the ship must be somewhere within 25km of the tower since this is
the maximum range of the radio. Accordingly, you represent this view with
the prior shown in the left-hand panel of Figure 7.2. Unfortunately, the search
area covered by this prior is far too wide for a rescue crew to find the
flagging ship before it sinks.
In an attempt to improve the odds, you radio the ship and ask that the crew
switch on their emergency transmitter. After radioing a number of times you
eventually receive a weak signal, which you feed into the computer. The
computer uses Bayes’ rule to produce the posterior probability density for the
ship’s location shown in the middle panel of Figure 7.2.
The issue is that the posterior still indicates a large uncertainty in the ship’s
position, and searching for the troubled vessel would again take too long.
Luckily for the crew, however, another nearby radio station has also picked
up the signal, and they share this information with you.
You use your previous posterior as a prior for a new analysis, where the
observed data sample is the information received from the other radio station.
Using the Bayesian computer you obtain a new posterior for the ship’s
location shown in the right-hand panel of Figure 7.2. Since there is only a
small area of high density, you direct the rescue helicopter to this region, and
it finds the captain and crew in time.
Figure 7.2 Searching for a distressed ship in a storm. Left: a contour plot of
the prior probability of the ship’s location. Middle: a contour plot of the
posterior density for the ship’s location after we receive its distress signal.
Right: a contour plot of the posterior density for the ship’s location after we
incorporate information received from the other control tower.



We began with a wide prior since we were very unsure of the ship’s location.
We then fed the data from the ship’s emergency transmitter, along with our
prior, into the computer – which used Bayes’ rule – to provide an updated
estimate of the ship’s location. This posterior was used as a prior for a new
analysis that used data from the other radio tower. The Bayesian computer
then produced a more accurate estimate of the ship’s location. This example
illustrates a key feature of Bayesian inference: the more data we collect (in
general), the better precision we obtain in our posterior.
While we did not show this, Bayesian inference also satisfies a property
known as data order invariance. This means that we could have obtained the
final posterior in one of two ways: the incremental process we used above,
where we used Bayes’ rule twice; and using the posterior from the first step
as a prior for the second step, where we use the new data. Alternatively, we
could use Bayes’ rule once using the initial prior, and a data set comprising
both radio signals, and we would obtain the same final posterior representing
our uncertainty over the ship’s location. Note that this logic assumes that the
ship does not move between receipt of the first and second radio signals,
otherwise data order invariance would not apply.

7.5 The Intuition Behind Bayes’ Rule for
Inference
In any application of Bayesian analysis, it is important to understand how
changes to the prior and/or data affect the posterior. While this might appear
like a difficult problem given the complexity of probability distributions, in
this section we use an example to illustrate how to determine the influence of
these two components on the posterior distribution for any applied analysis.
This means that, for most circumstances, we can predict how changes to our
model or data will influence our inferences before we actually estimate the
posterior.
Suppose that we model the proportion of individuals who have a disease
within a population, θ. We start by collecting a sample of 10 individuals and
choose a binomial model to explain the numbers of individuals with the
disease, X (see Section 4.6.2). Suppose that we find that two individuals in



our sample are disease-positive. We can use Bayes’ rule to write down an
expression for the posterior diseased proportion:

Explaining the intuition behind Bayesian inference

where we obtained the second line from the first because the denominator is
independent of θ.
To investigate how changes in the prior distribution p(θ) affect the posterior,
we use expression (7.5). This tells us that the posterior is a sort of weighted
geometric average1 of the likelihood and prior. This means that the posterior
peak will be situated somewhere between the peaks of the likelihood and
prior, so any changes to the prior will be mirrored by changes in the posterior
(see Figure 7.3).
1 A geometric average of a sample is the product of the individual data
points, all raised to the power of 1/n, where n is the sample size. It is typically
used in statistics to determine a central measure of data, when an outcome
depends strongly on small (or zero) values of the data points.
Figure 7.3 For the disease example described in the text the position of the
posterior peak (bottom panels) reflects movements in the prior (top panels)
for a fixed data sample (ensuring a fixed likelihood; middle panels).



Figure 7.4 For the disease example described in the text the position of the
posterior peak (bottom panels) reflects changes to the data through the
likelihood (middle panels) for a fixed prior (top panels). The columns
represent the inference process when we obtain X = 0 (left column), X = 5
(middle) and X = 10 (right) diseased individuals out of a sample size of 10.



Similarly, any changes to the data will cause changes in the likelihood which,
in turn, affects the posterior (see Figure 7.4). As we increase the numbers of
disease-positive individuals, from X = 0 (left column) to X = 5 (middle
column) to X = 10 (right column), we see that the likelihood shifts to the right
and, correspondingly, the posterior peak shifts to give more weight to higher
disease prevalences. In these instances, the posterior peak lies about midway
between the peaks of the likelihood and prior.
We can also demonstrate how the posterior changes as we increase the
sample size, yet maintain the proportion of disease-positive individuals in our
sample at 20% (see Figure 7.5). As the sample size increases, the likelihood
function becomes narrower and much smaller in value, since the probability
of generating a larger data set with any particular characteristics diminishes.
Since the posterior is related to the product of the likelihood and prior, it is
sensitive to small values of either part. This means that as the sample size
increases, and the likelihood function becomes smaller and narrower, the
position of the posterior shifts towards the location of the likelihood peak.
Figure 7.5 For the disease example described in the text the position of the
posterior peak (bottom panels) approaches the peak of the likelihood function
as the sample size increases (left to right). In the left, middle and right
columns, the sample size is 10, 20 and 100, respectively.



7.6 Point Parameter Estimates
While we can estimate the full posterior distribution for a parameter, we are
often required to present point estimates. This is sometimes to facilitate direct
comparison with Frequentist approaches, but more often it is to allow policy
makers to make decisions. We argue that, even if we are asked to provide a
single estimated value, it is crucial that we provide a corresponding measure
of uncertainty.
There are three predominant point estimators in Bayesian statistics:

the posterior mean
the posterior median
the maximum a posteriori (MAP) estimator

The posterior mean is just the expected value of the posterior distribution. For
a univariate continuous example, this is calculated by an integral:

For the discrete case, we replace the above integral with a sum (see Section
3.3.3). For multivariate posteriors, the calculation is more difficult and
involves a number of integrals or sums.
The posterior median is the point of a posterior distribution where 50% of
probability mass lies on either side of it. The MAP estimator is simply the



parameter value that corresponds to the highest point in the posterior and
consequently is also referred to as the posterior mode (see Figure 7.6).
While each of these three estimators can be optimal in different
circumstances, we believe that there is a clear hierarchy among them. At the
top of the hierarchy is the posterior mean. This is our favourite for two
reasons: first, it typically yields sensible estimates which are representative of
the central position of the posterior distribution; second, and more
mathematically, this estimator makes sense from a measure-theoretic
perspective, since it accounts for the measure. (Don’t worry about this last
point too much; we just wanted to mention it for completeness.) Next down
the hierarchy is the posterior median. This is usually pretty close to the mean
(see Figure 7.6) and is often indicative of the centre of the posterior
distribution. It is sometimes preferable to use a median if the mean is heavily
skewed by extrema, although the choice between the two estimators depends
on circumstance. At the bottom of the hierarchy, we have the MAP estimator.
Proponents argue that the simplicity of this estimator is a benefit. It is simple
to calculate because the denominator does not depend on the parameter (see
Chapter 6), meaning that, to find the posterior mode, we can simply find the
parameter value that maximises the numerator. However, its simplicity is
misleading. The mode of a distribution often lies away from the bulk of
probability mass and is hence not a particularly indicative central measure of
the posterior. This estimator also does not make sense mathematically
because it is based on the density, which depends on the particular
parameterisation in question. The bottom line is that you should not use the
MAP estimator unless you have a very good reason for doing so.
Figure 7.6 The mean, median and mode (MAP) for a skewed, multimodal
posterior distribution.



7.7 Intervals of Uncertainty
This section describes the Frequentist and Bayesian approaches to parameter
uncertainty intervals. While the two approaches both yield intervals that
express uncertainty, we argue that the Bayesian credible interval is more
easily interpreted than the Frequentist confidence interval.
7.7.1 Failings of the Frequentist confidence interval
The mainstay of the Frequentist estimation procedure is the confidence
interval. In applied research, these intervals often form part of the main
results of a paper. For example:

From our research, we concluded that the percentage of penguins with
red tails, RT, has a 95% confidence interval of 1% ≤ RT ≤ 5%.

This is often incorrectly taken as having an implicit meaning: ‘There is a 95%
probability that the true percentage of penguins with red tails lies in the range
of 1% to 5%.’ However, what it actually captures is uncertainty about the
interval we calculate, rather than the parameter in question.
In the Frequentist paradigm we imagine taking repeated samples from a
population of interest, and for each of the fictitious samples, we estimate a
confidence interval (see Figure 7.7). A 95% confidence interval means that
across the infinity of intervals that we calculate, the true value of the
parameter will lie in this range 95% of the time.
Figure 7.7 The Frequentist confidence interval for the penguin example
described in the text. For each possible sample we can draw from the
population, we can calculate a 95% confidence interval. Across all these
samples, the Frequentist confidence interval will contain the true parameter
value 95% of the time.



In reality, we draw only one sample from the population and have no way of
knowing whether the confidence interval we calculate actually contains the
true parameter value. This means that for 95% of our fictitious samples, the
confidence intervals we calculate will contain the true parameter value, but
for 5% of samples, the confidence intervals will be nonsense!
A confidence interval indicates uncertainty about the interval we obtain,
rather than a statement of probability about the parameter of interest. The
uncertainty is quantified in terms of all the samples we could have taken, not
just the one we observe.
7.7.2 Credible intervals
Bayesian credible intervals, in contrast to confidence intervals, describe our
uncertainty in the location of the parameter values. They are calculated from
the posterior density. In particular, a 95% credible region satisfies the
condition that 95% of the posterior probability lies in this parameter range.
The statement

From our research, we concluded that the percentage of penguins with
red tails, RT, has a 95% credible interval of 0% ≤ RT ≤ 4%

can be interpreted straightforwardly as ‘From our research, we conclude that
there is a 95% probability that the percentage of penguins with red tails lies
in the range 0% ≤ RT ≤ 4%.’
An arbitrary credible interval of X% can be constructed from the posterior
density by finding a region whose area is equal to X / 100.
In contrast to the Frequentist confidence interval, a credible interval is more
straightforward to understand. It is a statement of confidence in the location



of a parameter. Also, in contrast to the Frequentist confidence intervals, the
uncertainty here refers to our inherent uncertainty in the value of the
parameter, estimated using the current sample, rather than an infinite number
of counterfactual samples.
There are usually a large number of regions which represent an X% credible
interval. For example, all three of the posterior intervals shown in Figure 7.8
are 50% credible intervals. To reduce the number of possible credible
intervals, there are industry standards that are followed in most applied
research. We introduce two of the most frequently used metrics now, using a
treasure hunting example. In doing so, we provide some logic for choosing
between these two summary measures.
Figure 7.8 Three examples of 50% credible intervals for a parameter
representing the proportion of penguins with red tails.

Treasure hunting: the central posterior and highest
density intervals
Imagine that you (as a pirate) are told by a fortune teller that a treasure of
gold worth $1000 is buried somewhere along the seashore of an island.
Further, imagine that the mystic has gone to the trouble of using their past
experience, and observed data, to produce the posterior density for the
location of the treasure along the seashore, which is shown in Figure 7.9.
Suppose that you want to find the gold with 70% certainty, and maximise
your profit in doing so. To reach this level of confidence in plundering the
gold, you can choose between the two 70% credible intervals shown in
Figure 7.9: on the left, the central posterior interval and on the right, the
highest density interval.
Both of these intervals have the same area, so we are equally likely to find the
gold in either. So which one should we choose?
Figure 7.9 The two main types of Bayesian uncertainty interval: the central
posterior interval (left) and the highest density interval (right), representing
our uncertainty in the treasure’s position along the seashore (horizontal axis).



In both cases, the curves indicate the posterior probability density function.
Note that here the seashore is curvy since we are discussing an island, but we
can nonetheless represent the distance along it on a linear scale, as we have
done here.

The central posterior interval spans the range of 1.5km to 8.5km along the
beach. Suppose that the cost to hire a digger to excavate 1km of coastline is
$100. This means that to ‘dig up’ this interval would cost $700.
The highest density interval spans two non-contiguous regions, given by 1km
to 3km and 7km to 9km. Each has a cost of $200 to excavate, meaning a total
cost of $400. We hence pick the highest density region and cross our fingers.
If, instead, it was costly to drive a digger a given distance (without digging),
then we might change our minds and favour the contiguous region of the
central posterior interval over the highest density interval. However, in most
practical (non-pirate) situations, the most sensible thing to do is to report the
highest density interval.
To calculate the upper and lower bounds of an X% central posterior interval,
we find the (100 – X) / 2 and X + (100 – X) / 2 quantiles of the posterior
distribution. This results in an interval that is centred on the median
parameter value.
To calculate the X% highest density interval, we find the set of values which
encompasses this percentage of the posterior probability mass, with the
property that the probability density in this set is never lower than outside.
For a unimodal, symmetric distribution, the central posterior density and
highest density intervals will be the same. However, for more complex
distributions, this may not be true (see Figure 7.9).
7.7.3 Reconciling the difference between confidence and
credible intervals



It is easy to jump on the Bayesian bandwagon and favour credible intervals,
dismissing Frequentist confidence intervals as misleading. However, in doing
so, we are guilty of zealotry. The two concepts really just represent different
measures of uncertainty. As we explained in Section 2.5, Frequentists view
data sets as one of an infinite number of exactly repeated experiments, and
hence design an interval which contains the true value X% of the time across
all these repetitions. The Frequentist confidence interval represents
uncertainty in terms of the interval itself. By contrast, Bayesians view the
observed data sample as fixed and assume the parameter varies, and hence
calculate an interval where X% of the parameter’s estimated probability mass
lies.
The main problem with the Frequentist confidence interval is that it is often
interpreted incorrectly as a credible interval. It is not necessarily a problem
with the concept itself. It just depends on your personal preference, and
situation, which you find more useful. The following example hopefully
makes this difference in perspective clearer.
Explaining the difference between confidence and credible intervals

The interval ENIGMA
Suppose that at the outbreak of war, we are employed as code breakers in hut
8 at Bletchley Park. By monitoring enemy communications we can identify
the source of the message, although not its contents. The source of the
message is one of a submarine, boat, tank or aircraft. The messages contain
details of the next domestic target of the enemy and can be one of dams,
ports, towns or airfields; however, these messages are encrypted and hence
this information cannot be determined before the attack occurs.
Fortunately, previous code breakers have decoded a large proportion of
messages, and for each attack destination have calculated the historical
proportions of communications from each source that resulted in an attack on
that particular destination (see Table 7.1). We also know from experience that
the proportion of attacks on each destination is roughly similar.



Table 7.1 
Our job is to predict the next attack destination after we find out the specific
mode of communication. Since there is uncertainty over the attack
destination, our confidence intervals consist of groups of attack destinations.
These intervals are discrete because our parameter (the attack destination) is
discrete. To avoid unnecessary defence expenditure, we are told to use the
most narrow intervals that provide at least 75% coverage.
Feeding the historical data into a ‘statistics machine’ and pressing a button
that says ‘Frequentist confidence intervals’ results in the uncertainty intervals
shown in Table 7.2. Note that, in all cases, the sum of the probabilities in
each column exceeds the 75% threshold. This is because Frequentists
suppose that the parameter is fixed (the attack destination) and imagine the
data (the communication mode) varies across an infinite number of repeated
samples. So their intervals are constructed to ensure that, for every fixed
value of the parameter (the attack destination), the true attack destination lies
within the specified sets at least 75% of the time, across all possible data
samples (the communication modes).

Table 7.2Table 7.1 



We next press the button corresponding to ‘Bayesian credible intervals’ and
obtain the results shown in Table 7.3. Bayesians assume that the parameter
(the attack destination) is uncertain, whereas the data (the communication
mode) is fixed. They, therefore, ensure that, whatever the mode of
communication, the interval contains the true attack destination at least 75%
of the time. This corresponds to ensuring that the sum of probabilities in each
row exceeds 75%.

Table 7.3Table 7.1 

The difference between these two measures is subtle. In fact, as is often the
case, the intervals overlap considerably. But which should we choose? Using
the Frequentist confidence intervals, we are assured that whatever attack
location the enemy chooses, our interval will contain the true attack
destination at least 75% of the time. However, a Bayesian would criticise the



confidence interval for the case when an aircraft sends the message since this
is an empty interval. This is clearly nonsensical since we know that one of the
locations is about to be attacked. This error would be foolhardy if attacks
coordinated by aircraft are particularly costly. A Frequentist would argue that
since, at most, aircraft communications happen 18% of the time (for dams),
this is not something to worry about.
A Bayesian would also criticise the Frequentist confidence intervals, since for
a given communication mode, what is the use in worrying about all the other
communication modes? We are not uncertain about the communication
mode.
A Frequentist would argue that, for attacks on airfields, the Bayesian
confidence intervals correctly predict this as the attack destination only 66%
of the time. Again, if these types of attack are particularly costly, then this
interval might not be ideal. A Bayesian would argue that, assuming a uniform
prior, this type of attack happens only 25% of the time and so is not worth
worrying about. Further, for every mode of communication, our credible
intervals are guaranteed not to be nonsense, in contrast to the Frequentist
confidence interval.

7.8 From Posterior to Predictions by
Sampling
You might be wondering how to do forecasting using a posterior distribution.
Suppose, for example, that we want to use the posterior distribution shown in
Figure 7.1 to forecast the outcome of the upcoming US election. How do we
do this? While we delay a complete discussion of this until Chapter 10, we
now briefly outline what is involved in this process. There are two sources of
uncertainty in prediction: first, we do not know the true value of the
parameters; and second, there is sampling variability. The first of these
sources of uncertainty is represented by the posterior. The second is
represented by our choice of likelihood (see Chapter 4). To account for both
these sources of variation, we typically derive an approximate distribution
that represents our uncertainty over future data by iterating the following
steps:

1. Sample θi ~ p(θ | data), that is the posterior distribution.

2. Sample , that is the sampling distribution
(likelihood).



By repeating these steps a large number of times (keeping each sampled data
value), we eventually obtain a reasonable approximation to the posterior
predictive distribution. This distribution represents our uncertainty over the
outcome of a future data collection effort, accounting for our observed data
and model choice.
As an example, suppose that we estimate the prevalence of a particular
disease in the UK population using a sample of 10 individuals, where we find
that X = 1 individual is disease-positive. We use a binomial distribution to
explain disease prevalence θ in the sample (see >Section 4.6.2) which, along
with a uniform prior for the prevalence, results in a posterior shown in the
right-hand panel of Figure 7.10. We then follow the steps above to generate
an approximate posterior predictive distribution, which forecasts the number
of disease-positive individuals in a future sample of the same size. In each
iteration, i, we collect a paired sample (θi,Xi). We first independently sample
a value of disease prevalence from the posterior (θI ~ p(θ | X =1, N = 10)).
The posterior predictive distribution by sampling

Figure 7.10 Constructing an approximate posterior predictive distribution.
Top: the pairs of (Xi, θi) sampled in our iterative routine. Right: the marginal
distribution of disease prevalences, θ, sampled from the posterior. Bottom:
the posterior predictive distribution. Note that we have added horizontal jitter
to the number of disease cases in the top-left graph to make it easier to see the
individual samples; the actual number is a discrete count, not continuous as it
appears.



We then use this disease prevalence to characterise our binomial sampling
distribution and use it to independently sample a number of disease cases (XI
~ p (X | θi, N = 10)). The set of all samples for the number of disease-cases,
Xi, forms our posterior predictive distribution. This distribution is peaked at X
= 1 (see the bottom panel of Figure 7.10) and has an 80% predictive interval
of zero to four cases.
Because of the two sources of uncertainty included in our model – the
parameter uncertainty and sampling variability – the uncertainty of the
Bayesian predictive distribution is typically greater than the Frequentist
equivalent. This is because the Frequentist approach to forecasting typically
makes predictions based on a point estimate of a parameter (typically the
maximum likelihood value). By ignoring any uncertainty in the parameter’s
value, the Frequentist approach produces predictive intervals that are overly
confident.
One of the uses for posterior predictive distributions is to make forecasts, but
these distributions also have another important use: to check the validity of a
model’s assumptions. These so-called posterior predictive checks are
essential to the Bayesian modelling process, and we discuss these at length in



Chapter 10.



7.9 Chapter Summary
In this chapter, we completed our tour of Bayes’ rule. Perhaps the most
important part of this chapter is Section 7.5, where we saw that the posterior
distribution is essentially a weighted average of the position of the likelihood
(representing the effect of the data) with that of the prior (representing our
pre-data beliefs). This intuition for the mechanics of Bayesian inference is
essential, particularly when we move on to more complex models.
We also discussed how the posterior distribution can be used to produce
summary estimates of parameters. We argued that, in terms of point
estimates, the posterior mean or median are typically preferable to the MAP
estimator, because the former are better indications of the location of the bulk
of posterior probability mass. We also discussed how to use the posterior to
produce uncertainty intervals known as credible intervals. We then compared
and contrasted these with the analogous Frequentist concept, known as
confidence intervals, and reasoned that in many cases the Bayesian
formulation is more straightforward and intuitive.
Finally, we described how the posterior distribution can be used to forecast
by estimating posterior predictive distributions. These probability
distributions are typically estimated in Bayesian inference by sampling.
These distributions encompass two types of uncertainty: first, our uncertainty
in the value of the parameters (quantified by the posterior); and second, in the
data-generating process itself (quantified by the likelihood). By including our
epistemic uncertainty in parameter values as part of a forecast, this Bayesian
approach provides a better quantification of uncertainty than the equivalent
from Frequentist methods.
To build a good statistical model in Bayesian inference, we must know the
essential building blocks of an analysis. Part III is concerned with
acquainting the reader with these essential ingredients of Bayesian analyses:
the probability distributions that can be used for likelihoods or priors. We
shall also see that posterior predictive distributions have a crucial role to play
in model building, due to their use in model checking (see Chapter 10).



7.10 Chapter Outcomes
The reader should now be familiar with the following concepts:

expressing post-data uncertainty in a parameter’s value through
posterior probability distributions
the differences between Frequentist confidence intervals and Bayesian
credible intervals
summary measures of centrality: posterior mean and median, and the
MAP estimator (including the issues with the latter)
how to estimate the posterior predictive distribution by sampling and
how to use this for forecasting data in a future experiment

7.11 problem Sets
Problem 7.1 Googling
Suppose you are chosen, for your knowledge of Bayesian statistics, to work
at Google as a search traffic analyst. Based on historical data, you have the
data shown in Table P7.1 for the actual word searched and the starting string
(the first three letters typed in a search). It is your job to help make the search
engine faster by reducing the search space for the machines to look up each
time a person types.
Problem 7.1.1 Find the minimum coverage confidence intervals of topics
that are at least at 70%.
Problem 7.1.2 Find most narrow credible intervals for topics that are at least
at 70%.

Table P7.1 
Now we suppose that your boss gives you the historic search information
shown in Table P7.2. Further, you are told that it is most important to
correctly suggest the actual topic as one of the first auto-complete options,



irrespective of the topic searched.

Table P7.2 
Problem 7.1.3 Do you prefer confidence intervals or credible intervals in this
circumstance?
Problem 7.1.4 Now assume that it is most important to pick the correct
actual word across all potential sets of three letters, which interval do you
prefer now?
Problem 7.2 GDP versus infant mortality
The data in posterior_gdpInfantMortality.csv contains the GDP per capita (in
real terms) and infant mortality across a large sample of countries in 1998.
Problem 7.2.1 A simple model is fitted to the data of the form:

Fit this model to the data using a Frequentist approach. How well does the
model fit the data?
Problem 7.2.2 An alternative model is:

Problem 7.2.3 Construct 80% confidence intervals for (σ , β).
Problem 7.2.4 We have fitted the log–log model to the data using Markov
chain Monte Carlo. Samples from the posterior for (σ , β, σ) are contained
within the file post erior_posteriorsGdpInfantMortality.csv. Using this data,
find the 80% credible intervals for all parameters (assuming these intervals to
be symmetric about the median). How do these compare with the confidence
intervals calculated above for (σ , β)? How does the point estimate of σ from
the Frequentist approach above compare?
Problem 7.2.5 The following priors were used for the three parameters:

Explain any similarity between the confidence and credible intervals in this
case.
Problem 7.2.6 How are the estimates of parameters (σ , β, σ) correlated?
Why?



Problem 7.2.7 Generate samples from the prior predictive distribution. How
do the minimum and maximum of the prior predictive distribution compare
with the actual data?
Problem 7.2.8 Generate samples from the posterior predictive distribution,
and compare these with the actual data. How well does the model fit the data?
Problem 7.3 Bayesian neurosurgery
Suppose that you are a neurosurgeon and have been given the unenviable task
of finding the position of a tumour within a patient’s brain, and cutting it out.
Along two dimensions (vertical height and left–right axis) the tumour’s
position is known with a high degree of confidence. However, along the
remaining axis (front–back) the position is uncertain and cannot be
ascertained without surgery. However, a team of brilliant statisticians has
already done most of the job for you, generating samples from the posterior
for the tumour’s location along this axis which you will find in the data file
posterior_brainData.csv.
Suppose that the more brain that is cut, the more the patient is at risk of
losing cognitive functions. Additionally, suppose that there is uncertainty
over the amount of damage done to the patient during surgery. As such, three
different surgeons have differing views on the damage caused:

 Surgeon 1: Damage varies quadratically with the distance the surgery
starts away from the tumour.
 Surgeon 2: There is no damage if tissue cut is within 0.0001 mm of
the tumour; for cuts further away there is a fixed damage.
 Surgeon 3: Damage varies linearly with the absolute distance the
surgery starts away from the tumour. (Hard – use the fundamental
theorem of calculus for this part of the question.)

Problem 7.3.1 Under each of the three regimes above, find the best position
along this axis to cut.
Problem 7.3.2 Which of the above loss functions do you think is most
appropriate, and why?
Problem 7.3.3 Which loss function might you choose to be most robust to
any situation?
Problem 7.3.4 Following on from the previous point, which type of posterior
point measure might be most widely applicable?
Problem 7.3.5 Using the data, estimate the loss under the three different

regimes, assuming that the true loss .



Part III Analytic Bayesian Methods



Part III Mission Statement
This part of the book aims to familiarise the reader with the nuts and bolts of
analytic Bayesian inference, that is the subset of analyses where an exact
posterior distribution can be calculated, often using pen and paper. This
begins with Chapter 8, where we introduce the most useful distributions for
applied analyses. We then introduce the concept of a conjugate prior in
Chapter 9, which allows us to carry out exact Bayesian inference under
special circumstances. We then shift focus to model testing and comparison
in Chapter 10, before a final chapter on some of the attempts to make
Bayesian statistics objective.



Part III Goals
Up until now, we have built our knowledge of the tools necessary to
undertake a Bayesian analysis, first by learning the calculus of probability,
then by introducing the various elements of the Bayesian formula. In applied
Bayesian analysis, we must choose two parts of the Bayesian formula: the
likelihood and the prior. This gives us considerable freedom, and it pays to be
familiar with the available options. Chapter 8 introduces some of the most
common distributions used for likelihoods and priors in a non-mathematical
way. More than previous chapters, it is also supplemented with a number of
videos, which may be useful as a complementary source of information.
Before considering the fully unconstrained analyses we describe in Part IV,
we next introduce the reader to a special subset of problems where exact
Bayesian analysis is possible and can be conducted using only pen and paper.
While confining ourselves to this class of problems is restrictive, knowledge
of this type of analysis is a useful pedagogic step (towards unconstrained
analysis), and will also allow the reader to understand much of the literature.
We argue that an important part of Bayesian inference is the flexibility it
provides us in model testing. Unlike Frequentist analysis, where a standard
array of tests is used, somewhat mechanically, to test models, we believe
Bayesians are freer to decide the way to test their model. This added
flexibility may appear onerous since we must make another choice, but we
argue that it is ultimately beneficial in refining and choosing between models.
Bayesians recognise that the worth of a model depends on its ultimate
intended use, and recognise this when deciding how to evaluate a particular
model. Chapter 10 provides an introduction to this aspect of Bayesian
analysis. It also provides an introduction to the various measures used to
score the predictive power of a model.
Chapter 11 provides a short summary of the various attempts to make
Bayesian analysis objective. We argue that these attempts are somewhat
misguided, since any analysis is subjective, but it is nonetheless important to
be acquainted with these methods, to understand the existing literature.



8 An Introduction to Distributions for the
Mathematically Uninclined
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8.1 Chapter Mission Statement
At the end of this chapter, the reader should be familiar with the likelihood
and prior distributions used in many applied analyses.



8.2 Chapter Goals
Often texts on Bayesian analysis assume a familiarity with probability
distributions that is appropriate for statistics fanatics, but not for the
occasional user of Bayesian inference. The absence of this presumed
knowledge makes it difficult to penetrate the literature and makes Bayesian
inference appear more difficult than it actually is. The aim of this chapter is
to redress the balance, by introducing the commonly used distributions,
highlighting their interrelationships, and the types of situation when they
could be employed. We hope that, by using practical examples, we can turn
an otherwise dry subject into something more palatable for bedtime reading.
Generally, there are two classes of distributions: those that can be used for
likelihoods and those that can be used for priors. However, there is
considerable overlap between these groupings (particularly for continuous
distributions), meaning that we will often encounter the distributions twice.
It is important to remember that all distributions are related to one another
(see Section 8.3). Knowledge of these interrelations is illuminating and
practically useful since it makes it easier to remember them.
Throughout the chapter, there are considerable interactive elements. It is
hoped that the reader will take the opportunity to use this material to gain
hands-on experience. In particular, there are videos which take the reader
through some of the basic properties, and uses of, the distributions.
At the end of the chapter is Figure 8.33, a tree diagram that helps guide a
reader to choose a likelihood. While not exhaustive, it is hoped that this tree
will nonetheless be a useful starting point in an analysis.
It should be stressed that this chapter, perhaps more than some of the others,
need not be read in its entirety. While we recommend reading all of Section
8.4, it is not necessary to read the entirety of Section 8.5. There is much to be
gained from persevering but, to avoid boredom, it may be better to refer to
the relevant section in the event that you encounter a hitherto unknown
distribution, either in reading this book or in applied work.

8.3 The Interrelation Among Distributions
This chapter introduces the reader to a multitude of different distributions,
and one could be forgiven for becoming overwhelmed by the sheer number
of them. However, it is important to remember that the distributions are all
related to one another. The nexus of resultant connections is not merely
academic – it is informative when choosing a distribution for an analysis, as



well as for recollection. While it is not expected that the reader will
remember all of the connections between the distributions, it is hoped that
exposure to the graph shown in Figure 8.1 is nevertheless worthwhile. We
strongly encourage the student to refer back to this graph when reading this
chapter, as it may help with the understanding.
Figure 8.1 Some of the interrelations among common statistical distributions.
Discrete distributions are shown in rectangular boxes and continuous ones in
ovals. Black lines indicate that the resultant is a special case of the former,
dashed lines indicate approximate or limiting cases, and red lines indicate that
the latter can be made by a transformation of the former. Note that the
relationships shown here are not exhaustive.

8.4 Distributions for Likelihoods
The first class of distributions that we encountered in Part II were those used
for likelihood functions. These likelihood models should satisfy our
assumptions about the system under examination. They also define the
parameters that we will infer. Specifying an appropriate likelihood is the most
important decision in Bayesian inference. To help make these decisions, it is
essential to have an appreciation of possible likelihood distributions. While
there are an infinite number of these available, we believe that the
distributions we present here are the most commonly used in applied
analyses.



8.4.1 Bernoulli
Distribution checklist:

✓ Discrete data
✓ A single trial
✓ Only two trial outcomes: success and failure (These do not need to
literally represent successes and failures, but this shorthand is typically
used.)

Example uses: to model the outcome of flipping a coin, a single clinical trial
or a presidential election.
Imagine that we are interested in the outcome of a single horse race. For
simplicity, we suppose that we only care whether the horse wins or loses, not
its position in the field, should it not come first. Any position after first we
deem a loss. We use the random variable, X, which associates the following
numerical values with each of the outcomes:

We assume that the outcome of a single race is influenced by a latent
probability of the horse winning, 0≤ θ ≤1. We do not actually witness this
probability, and after the discussion in Chapter 2, we are not sure it really
exists. In the Frequentist paradigm, θ is the proportion of races that the horse
has won historically (and would win in total, if we continued racing for ever).
For Bayesians, θ merely gauges our subjective confidence in the event of the
horse winning (see Section 2.6).
We can now calculate the probability of the two distinct possible outcomes.
The probability that the horse wins is just p(win) = θ, meaning that the
probability of a loss is p(loss) = 1 – θ. In the left-hand panel of Figure 8.2, we
show this probability distribution for two different values of θ. As we
increase this parameter, the horse is more likely to win and, hence, the
distribution gives more weight to this outcome.
An introduction to the Bernoulli and binomial distributions

We can also write down the likelihood of each outcome. Remember that a
likelihood is not a valid probability density, and is found by holding the data
(here the race outcome) constant while varying the parameters.
Suppose that the horse had a good meal of carrots this morning and wins by a
country mile. By the equivalence relation, the likelihood of this event is given



by L(θ | X = 1) = p(X = 1 | θ) = θ (see the red line in the right-hand panel of
Figure 8.2).
Figure 8.2 Left: the Bernoulli probability distribution for two different values
of θ Right: the Bernoulli likelihoods for the two possible outcomes of the
horse race, where the maximum likelihood estimates are shown as dashed
lines in each case.

Alternatively, if our horse spent the night in the midst of night-mares and
loses, then the likelihood is given by L(θ | X = 1) = 1 − θ (see the black line in
the right-hand panel of Figure 8.2).

The maximum likelihood estimates in each case are given by  if the

horse wins, and  if it loses.
We can write down a single expression that yields the likelihood, or
probabilities (dependent on viewpoint), for both possible outcomes:

This distribution is known as the Bernoulli, after the famous Swiss
mathematician Jakob Bernoulli, who first discovered it in the late seventeenth
century. Among his modest achievements, Bernoulli proved the Law of
Large Numbers, did important work on differential equations, and discovered
the fundamental mathematical constant e. Bernoulli chose a graph of a
logarithmic spiral for his gravestone. When he died in 1705, however, the
spiral inscribed by stonemasons was an Archimedean spiral. We can forgive
him for turning (or perhaps spiralling) in his grave!

Properties:



8.4.2 Binomial
Distribution checklist:

✓ Discrete data
✓ A fixed number of total trials
✓ Each trial has two possible outcomes (see the Bernoulli; often called
successes and failures)
✓ Trial outcomes are independent
✓ Probability of success is the same in each trial
✓ The outcome is the aggregate number of successes

Example uses: to model the aggregate outcome of clinical drug trials, to
estimate the proportion of the population voting for each political party using
exit poll data (where there are only two political parties).
Suppose that we have data from a number of Bernoulli events. For example,
imagine that we have a sample of 10 willing students who have chosen to
undertake a clinical trial that lasts for 1 week. At the start, the students are
infected with a flu virus by an injection. Halfway through the experiment,
they are given an experimental drug that is thought to help the immune
system fight the infection. At the end of the week, the consulting physician
records the number of volunteers who still show flu-like symptoms and those
who do not. Since it usually takes a patient about 2 weeks to recover from
this particularly nasty version of the flu virus, any recoveries during the week
are deemed to be due to the drug. To build a statistical model of these
outcomes, we need some assumptions. In particular, we assume that the
students’ data are independent and identically distributed. This might be
violated if, for example, some of the volunteers have asthma, and hence are
unlikely to be cured by the wonder drug. We create a random variable, X,
representing the outcome of the trial for a single volunteer, which equals 1 if
the trial is successful (the volunteer is no longer symptomatic), and 0 if not.
We record the aggregate number of successes across all 10 volunteers. Here,
it makes sense to create another helper random variable, 0 ≤ Z ≤ 10, which
represents the aggregate outcome of the overall trial:

After the drug trial, we find that five volunteers successfully recovered from
the virus during the week. We reason that the following outcomes could have
led to this aggregate result: X = {1,1,1,1,1,0,0,0,0,0}, where the first five
volunteers appeared to react well to the treatment. Feeling satisfied, we



present our results to the pharma company executives who developed the
drug. They look slightly perturbed and say that X = {1,0,1,0,1,0,1,0,1,0}
could also have been possible. Realising our mistake, we see that there are a
large number of individual trial outcome combinations that are consistent
with the aggregate result that five individuals recovered. Thankfully, we
realise that the number of such combinations is given by the binomial nCr

formula (see >Section 4.6.2), meaning that there are  possible
individual outcome combinations consistent with this aggregate outcome.
With this realisation, we can write down the likelihood. Since we assumed
that the individual trial outcomes were independent, we can calculate the
overall probability by multiplying together the individual probabilities,
accounting for the 252 possible combinations:

where θ is the probability that an individual recovers over the course of the
week.
As for the Bernoulli case, we would like a compact way of writing the
likelihood to cover any eventuality. In general, suppose that the number of
volunteers is given by n, and the probability of individual treatment success is
θ, where we find k successes in our sample:

This is known as the binomial distribution.
If we hold n constant and increase the probability of success, θ, the discrete
probability distribution shifts to the right as expected (see the left-hand panel
of Figure 8.3).
Figure 8.3 Left: the discrete probability distribution for the number of
successful trials. Right: the binomial likelihood functions for three different
study outcomes, where the maximum likelihood estimates are shown as
vertical dashed lines in each case.



For our current example, where 5 out of 10 individuals recovered, we find

that the maximum likelihood estimator of θ occurs when  so that it
equals the proportion of individuals that recovered in the sample (see the
black line in the right-hand panel of Figure 8.3).
If the drug were less effective and only two patients recovered, the likelihood

would shift leftwards, peaking now at  (see the grey line in the right-
hand panel of Figure 8.3). By contrast, if the patients responded well, and 9
out of 10 recovered during the week, then the likelihood would shift
rightwards (see the dashed line in the right-hand panel of Figure 8.3).

Properties:

8.4.3 Poisson
Distribution checklist:

✓ Count of discrete events
✓ Individual events occur at a given rate and independently of other
events
✓ Fixed amount of time or space in which the events can occur

Example uses: estimating the failure rate of artificial heart valves, estimating
the prevalence of violent crimes in different districts, approximating the
binomial which is, itself, being used to explain the prevalence of autism in
the UK.
Suppose that we want to estimate the rate at which new outbreaks of



Legionella disease1 occur worldwide. Public health officials have the count
of Legionella outbreaks that have occurred each year, X, for a number of
years. We assume that the outbreaks appear spontaneously and independently
of one another, at a mean rate of λ per year. A probability distribution
function that satisfies this condition is:

1 A nasty disease carried by bacteria that thrive in warm water, named for its
first reported occurrence among conference attendees at a Philadelphia
convention of the American Legion.
which is known as the Poisson distribution, after the prominent French
mathematician Siméon Denis Poisson born in the late eighteenth century.
Apart from his work on probability theory, Poisson made major contributions
to the study of planetary motion and to the theory of attraction (including his
famous partial differential equation that is used to calculate gravitational or
electric fields). He was clearly a man of few non-academic interests and was
famously quoted as saying, ‘Life is good for only two things: doing
mathematics and teaching.’ Not perhaps the best man to go to Ibiza with then,
we suspect!
An introduction to the Poisson distribution

This discrete Poisson probability distribution is shown for different values of
λ in the left-hand panel of Figure 8.4. We can see that as we increase λ, the
distribution shifts rightwards.
To graph the likelihood we vary the mean number of outbreaks that occur per
year, λ, and hold the data sample constant. The likelihood is shown for three
different data samples (each of the same sample size) in the right-hand panel
of Figure 8.4. In this plot, we can see that increasing the mean number of
disease outbreaks that we obtain in our sample leads to a rightward shift in
the likelihood function. For the Poisson distribution, the maximum likelihood
estimate is given by the sample mean.
Figure 8.4 Left: the Poisson distribution for different values of λ. Right: the
Poisson likelihood functions for the Legionella example corresponding to
three different data samples, with the maximum likelihood estimators shown
in each case (dashed lines). For the Poisson likelihood calculation, the data
consisted of a sample of size 10.



The Poisson distribution is defined only for non-negative integer data, which
makes it ideal for modelling the count of event occurrences. The mean rate λ
is not constrained to the integers, however, and can equal any non-negative
real value. This distribution is based on the assumption that the individual
events (the entities being counted) occur independently of each other. In our
Legionella example, this assumption would be violated if there were an issue
with the data collection that meant some of the outbreaks were not, in fact,
new outbreaks, and were caused when the infection spread from another
outbreak.
Notice that, in the properties listed below, the mean and variance of this
distribution are the same, and equal λ. This limits the use of this distribution
to circumstances when the data sample satisfies these properties, at least
approximately. However, when we cover the negative binomial (Section
8.4.4) we shall see that the addition of an extra parameter, which governs the
degree of overdispersion in the data, allows the extra flexibility required to
handle data with a variance that exceeds the mean.

Properties:

8.4.4 Negative binomial
Distribution checklist:

✓ Count of discrete events
✓ Non-independent events; it is sometimes said that the events can
exhibit contagion, meaning that if one event occurs, it is more likely that



another will also occur
✓ Can model a data-generating process where the variance exceeds the
mean
✓ Fixed amount of time or space in which the events can occur

Example uses: everything the Poisson can do and more, to model the number
of measles cases that occur on an island, or the number of banks that collapse
in a financial crisis.
We sometimes want to model the count of events which occur in clumps,
either in time or in space. This clumping behaviour results when the
occurrence of one event makes it more likely that another will also occur.
Suppose that we work as epidemiologists, this time modelling the occurrence
of flu over a winter season in three small villages, Socialville, Commuterville
and Academicville, all of the same size. To keep things simple, we imagine
that, in each village, the magnitude of the outbreak is determined by a
parameter θ. If this number was known, we assume that the numbers of flu
cases, X, can be modelled by a Poisson distribution:

θ can be thought of as measuring the strength of social interactions between
the villagers, and λ measures the underlying rate of infection common to all
social interactions. In Studentville, θ = 1.35, because people spend their time
getting drunk and going to parties. In Commuterville, θ = 1, because people
spend most of their time with the families, and only go outside to work. In
Academicville, θ = 0.65, because the villagers mostly stay in their houses
(writing papers). Across all villages the mean number of cases is λ (1.35 + 1
+ 0.65) / 3 = λ. Here we take λ = 10.
Figure 8.5 Left: the probability distribution for the number of flu cases for
each of the towns and the average number of flu cases overall. Right: a
comparison of the overall distribution with a Poisson distribution (grey
circles) of the same mean.



Considering now the occurrence of the disease, Studentville gets the most flu
cases, because people are most likely to become infected and then pass on the
illness to others (red diamond distribution shown in the left-hand panel of
Figure 8.5). In Commuterville, because people have contact with one another
only when at work, the number of flu cases is, in general, fewer than in
Studentville (grey square distribution shown in the left-hand panel of Figure
8.5). Finally, in Academicville, only a few people get sick because most
people are complete hermits (black circle distribution shown in the left-hand
panel of Figure 8.5). We can model the average number of disease cases
across all three villages by averaging across all the village-specific
distributions (see the red triangle distribution shown in the left-hand panel of
Figure 8.5). The resultant distribution should have an overall mean of 10.
However, due to the added uncertainty associated with the intra-village
uncertainty, the distribution is wider than a simple Poisson (see the right-
hand panel of Figure 8.5).
Figure 8.6 Left: example negative binomial distributions as a function of
their (inverse)dispersion κ for the disease example discussed in the text. All
three cases have a mean of 8. Right: a contour plot of the likelihood surface
for the data sample {0, 5, 0, 5, 8, 10, 15}, with the maximum likelihood
estimates indicated by dashed lines. The parameter κ here represents the
inverse dispersion, with smaller values indicating less dispersion.



Suppose that we now want to predict the number of flu cases across a large
number of equally sized villages. Imagine that we do not collect data on the
social networks in the various villages but we can assume that the strength of
social interactions across the villages varies according to θ ~ Γ(κ, 1 / κ) (see
Section 8.4.9 for a full explanation of the gamma distribution). This
assumption means that the average level of θ across all villages is 1. This
implies that the mean number of flu cases across all villages is λ. If the
villages were all equally sociable, then θ = 1 in each of them, resulting in the
overall distribution being described by a Poisson(λ) distribution, with a
variance of λ. However, because of the variance in θ across the villages, we
obtain a variance in cases given by:

which would exceed the variance in overall numbers of individuals with flu if
all the towns were identical.
More generally, we see that this distribution has a variance that is greater than
that of the Poisson distribution. This extra flexibility comes at a cost of extra
complexity because the distribution is characterised by two parameters rather
than one. The parameter κ quantifies the degree of dispersion in the data.
Note, however, it is an inverse measure of dispersion – the larger its value,
the smaller the variability (see the left-hand panel of Figure 8.6). The inflated
variance of this distribution compared to the Poisson means that it is



sometimes called the overdispersed Poisson. However, its more common
name is the negative binomial.
We can also calculate the likelihood function for the negative binomial
distribution although, now, because this distribution has two parameters – λ
(the mean) and κ (a measure of the inverse width of the distribution) – we
need three dimensions to display it fully (two dimensions for the parameters,
another one for the function’s value). Instead, we use a contour plot to
display the likelihood surface (see the right-hand plot of Figure 8.6). It
happens that the maximum likelihood estimator of λ equals the sample mean
in the data, and because the data sample has a large variance we estimate a
low value of κ.
This distribution has three commonly used parameterisations, each of which
we describe below.

Properties:
Here κ represents the inverse dispersion.

Here κ represents the dispersion.

This final parameterisation is probably the most common. Here we suppose
that we have an experiment consisting of a sequence of Bernoulli trials, each
of which can either be a success (with probability θ) or failure. The negative
binomial is the probability distribution over the number of failures that would
be obtained before r successes occur.



Be careful: Γ in the above distributions is the gamma function, not the
gamma distribution.
8.4.5 Beta-binomial
Distribution checklist:

✓ Discrete data
✓ Multiple trials with a fixed number of total trials
✓ Each trial has two possible outcomes (which are often referred to as
successes and failures)
✓ Overall data we measure is the aggregate number of successes
✓ Probability of success varies across trials

Example uses: everything the binomial can do and more, to estimate breast
cancer prevalence across heterogeneous patient groups, or to determine the
number of votes for the Republican Party with a sample composed of data
across many states.
The beta-binomial is to the binomial what the negative binomial is to the
Poisson. By assuming that there is heterogeneity in the probability of success,
this leads to a variance that exceeds that of the basic binomial. This is another
example of an overdispersed distribution. As the following example
illustrates, overdispersion results when there is heterogeneity across groups.
Imagine that we want to quantify the efficacy of a drug, which aims to cure
depression. We conduct a number of separate trials, where in each case a
drug is given to a number of individuals diagnosed with depression, and we
record the number of recoveries. For an individual group, we might assume
that the number of successes, X, can be modelled by a binomial distribution:
X ~ B(n, θ). Here n represents the sample size, and θ is the probability of
recovery for an individual patient.
Suppose that we replicate our drug trial for two patient groups, each
comprising 10 individuals. The groups differ in the seriousness of their
condition: in one, the individuals have mild depression; in the other, the
individuals are diagnosed with a more severe version of the disorder. We
suppose that the drug is most efficacious for the mild group, so that the
drug’s success probability is greater, θmild > θsevere. Suppose that we create a
sample of individuals of size 10, where five individuals were drawn from the
mild group and the other five from the severe group. The probability
distribution for the combined sample would then be the average of a binomial



distribution for the mild group and another binomial distribution for the
severe group (see the left-hand panel of Figure 8.7). Because of the
heterogeneity among individuals in the combined sample, there is more
uncertainty than would be present for a homogeneous sample, where the
outcome can be adequately described by a binomial distribution (see the
right-hand panel of Figure 8.7 and the problem set at end of the chapter).
Figure 8.7 Left: binomial distributions for the number of recoveries from
depression after taking the drug for the two groups and overall. Right: a
comparison of the overall distribution with a binomial distribution with the
same mean. In all cases, the sample size is 10.

More generally, consider a sample of a number of individuals, where each
individual has a different response to the drug, manifesting in individual-
specific success probabilities that are drawn from an overarching beta
distribution, θ ~ beta(α, β). In this case, the aggregate number of individuals
that recover from depression in the sample is given by a beta-binomial
distribution. The variance of this distribution exceeds that of the binomial
distribution (see problem set at the end of the chapter), which is useful
whenever a sample is composed of individuals of considerable heterogeneity.
Figure 8.8 Top-left: the beta distribution for three different sets of parameter
values. Lower-left: the beta-binomial distribution for the corresponding
parameter values. Right: the likelihood contour plot for the following
numbers of successes across five different studies: {1,10,8,3,8,9}. The dashed
lines show the maximum likelihood estimates of the parameters, and the
arrow shows the combinations of parameter values which result in the same
mean. The sample size is 10 in all cases.



In the left-hand panels of Figure 8.8 we illustrate how changes to α and β
affect the distribution for θ (top panel) which, in turn, are reflected by
corresponding changes in the probability distribution for the data (bottom
panel). In the right-hand panel of the figure we also show a contour plot of
the likelihood in (α, β) space for a given sample of data. In this plot we notice
that there is significant correlation between our estimates. This is because the
mean of the beta-binomial depends on the ratio of these parameter values. For
example, for a sample size of 10, if α = 1 and β = 1 we obtain a mean of 5. If,
instead, we use α = 2 and β = 2, we also obtain the same mean. Therefore, it
is unsurprising that we find it difficult to separately identify these parameters
since different combinations of them can result in the same mean (indicated
by the arrow in the right-hand panel of Figure 8.8).

Properties:

Here  dt and is known as the beta function.
8.4.6 Normal
Distribution checklist:

✓ Continuous data



✓ Unbounded outcomes, at least practically unbounded, for example
the weight of adults aged 30 (This is bounded by zero, since weight
cannot be negative, but this bound is never approached by data.)
✓ Outcome is the result of a large number of additive factors

Example uses: to model the error in regression models, to describe the
intelligence of individuals, as an approximation to the binomial distribution

when the sample size is large and the probability of success is close to , as
an approximation to the Poisson distribution when its mean is large.
The normal is the most commonly occurring distribution in nature (hence its
name). This is because of the central limit theorem (see Section 3.5), which
predicts its occurrence whenever there are a large number of additive factors
that produce an outcome.
Imagine that we want to explain the distribution of body temperatures among
people. We might imagine that measurements of body temperature depend on
a number of factors: the amount of exercise taken before the appointment, the
outside temperature, how much water the person has drunk, as well as genetic
and other physiological characteristics. When we have no information on
these individual-specific factors, we might invoke the central limit theorem
and suppose that body temperatures are normally distributed within a
population.
Figure 8.9 Left: the normal probability density functions for three different
sets of (μ, σ). Right: a contour plot of the normal likelihood for a sample of
body temperatures: {36.4, 37.2, 35.8, 36.4, 37.1, 35.6, 36.4, 37.6, 37.5, 37.1}.
The maximum likelihood estimates are shown by dashed lines. All
temperatures are given in degrees centigrade.



This distribution is specified by two parameters: μ, its mean, and σ, its
standard deviation. Changing these has the expected outcome of translating
the position of the peak, and changing the distribution’s width, respectively
(see the left-hand panel of Figure 8.9).
Suppose that we measure the body temperature of 10 participants. Since the
distribution is specified by two unknown parameters, the likelihood function
corresponds to a surface, and it is easiest to understand by looking at contour
plots (see the right-hand panel of Figure 8.9). Unsurprisingly, the maximum
likelihood estimates of the mean and standard deviation (dashed lines)
essentially correspond to their sample equivalents.

Properties:

8.4.7 Student-t
Distribution checklist:

✓ Continuous data
✓ Unbounded outcomes, or, at least, practically unbounded
✓ Outcome is the outcome of a large number of additive factors
✓ Data sample composed of heterogeneous individuals

Example uses: same uses as normal and more, for example to model stock
returns.



Like the binomial and Poisson, the normal distribution has an overdispersed
cousin – the Student-t distribution – which can be used to handle data sets
with greater variability. Like some other cases, this distribution can be shown
to be equivalent to a mixture of other, simpler, distributions. In particular, the
Student-t distribution is a mixture of individual normal distributions with
differing variances.
Suppose that we measure the mean test score for a standardised arithmetic
test for two neighbouring schools: Privilege High, where the times are easy
and the fees extortionate; and Danum Comprehensive, where schooling is
free and kids of all abilities attend. We suppose that, controversially, a local
newspaper has done some research and determined that the mean test scores
are the same across both schools. However, Privilege High has a lower
variance in test scores than Danum Comprehensive. Since a student’s test
score is likely the result of a combination of factors including work ethic,
family education and brilliance in maths, a normal distribution may be a
reasonable approximation for the distribution of test scores for a number of
individuals (see Section 8.4.6).
Suppose that we are employed by the local education authority who wants us
to develop a model for the combined schools’ test scores, to help them decide
whether to merge the schools. We can think of the resultant distribution as an
average of the school-specific distributions, meaning that its head will rise, its
shoulders will fall and its tails will fatten (see the left-hand panel of Figure
8.10). The distribution for the combined schools will have a greater
variability in test results than a normal distribution of the same mean would
allow (see the right-hand panel of Figure 8.10). This variability is not
necessarily borne out in the variance of the distribution, but will be evident in
higher-order moments (for example, the fourth moment, often used to
compute the kurtosis, which represents the ‘fatness’ of a distribution’s tails).
Imagine that we are now combining the data from a large number of schools,
each with the same mean arithmetic score, but differing variances. If we
suppose that the school-level variances are distributed as σ2 ~ Inv - Γ(v / 2, v /
2) then the distribution across all schools is a Student-t distribution2 with v
degrees of freedom.3 Unsurprisingly, this distribution can encompass a larger
amount of variation than is possible with a normal distribution.
2 Named after the pseudonym used by William Sealy Gosset, a Guinness
brewery worker. Remarkable, as this is perhaps the first but not last time that
statistics and alcohol were found to mix well!



3 While ‘degrees of freedom’ suggests that v is discrete, it is not. Any
positive real value is allowed for this input of the Student-t distribution.
Figure 8.10 Left: the distribution of test scores for each school and overall
(imagine merging the two schools – a nightmare for Privilege High parents!).
Right: a comparison of the combined school’s distribution and a normal
distribution with the same mean and standard deviation.

As we increase v, the variance of the inv-gamma distribution decreases and
the distribution of test scores becomes closer in shape to a normal distribution
(this is a consequence of the central limit theorem discussed in Section 3.5).
Figure 8.11 illustrates how changes to the parameters σ and v, which
characterise this distribution, affect its shape.
Now suppose that we have a sample of six test scores by randomly picking
individuals from the combined list of students across all schools. Since we
have three unknown parameters in our distribution, the likelihood function is
three-dimensional, which is not easy to plot in our paltry three spatial
dimensions (since we need a fourth dimension to represent the value of the
likelihood function). However, we can use pairwise contour plots of the
variables to illustrate the marginal distributions of the likelihood surface (see
Figure 8.12). These indicate little correlation between the estimates of the
mean of the distribution with either of the parameters σ and v (bottom panels)
because the contours of constant likelihood in the bottom panels are
horizontal with respect to each of these. However, since both of these latter
parameters affect the variability of the Student-t distribution, the likelihood
surface indicates a correlation between estimates of these two parameters
(top-left panel of Figure 8.12). Intuitively, there is not enough information in
the data to differentiate between the effects of σ and v.
Figure 8.11 Student-t distributions drawn for three parameter sets of (μ,σ,ν).



Figure 8.12 Pairwise contour plots of the likelihood surface for a data sample
of {124, 97, 34, —101, 120, 67}. The dashed lines indicate the positions of
the maximum likelihood estimates of the parameters. In each of the plots, the
remaining variable is set at its maximum likelihood estimated value.



When v = 1 the Student-t distribution has very fat tails and is sometimes
called the Cauchy distribution (see Section 8.5.2). However, this choice of v
has a cost – the mean and variance no longer exist. However, in
circumstances where there are occasionally very extreme observations, this
distribution is a robust choice. In fact, in the popular book The Black Swan,
Nassim Taleb strongly advocates the use of this type of sampling distribution
to account for rare (black swan) events [36].

Properties:



8.4.8 Exponential
Distribution checklist:

✓ Continuous, non-negative data
✓ Often used to measure the amount of time or space between events
that occur independently, and at a constant rate through time or space

Example uses: to estimate failure rates for artificial heart valves, to determine
the distance between appearances of new plant species in a study area.
Suppose that we work for the World Health Organization and want to model
the time between new outbreaks of Ebola. We define these epidemics as
those not caused by contagion from existing outbreaks, and suppose that the
source of each new outbreak is the result of a single transfer of the virus from
an animal (most likely bats) to a human. We assume that these crossover
events occur independently of one another, and at a constant rate through
time. In this circumstance, an exponential model for the times between
outbreaks is likely a good choice. This distribution has the following
probability density function:

This distribution depends on a single parameter λ, which is actually the same
parameter that characterises the mean of a Poisson process over some
predefined time length (see Section 8.4.3). For our current example, suppose
that the time scale is measured in years. In this case, the number of Ebola
outbreaks that occur per year is given by a Poisson(λ) distribution. As we
increase λ, more outbreaks occur, with a shorter time between consecutive
epidemics (see the left-hand panel of Figure 8.13).
Suppose that we measure the mean amount of time, in years, between
consecutive outbreaks across three different 10-year periods. Graphing the
likelihood for each of these separate data samples (see the right-hand panel of
Figure 8.13), we find that, in each case, the maximum likelihood estimate of
the parameter is the reciprocal of the mean amount of time between the
emergence of consecutive epidemics.
Figure 8.13 Left: the exponential probability distribution for three values of
λ, which corresponds to the number of Ebola outbreaks per year. Right: the
likelihood function for three data samples with differing sample mean times
between consecutive outbreaks. The dashed vertical lines indicate the
maximum likelihood estimates of the parameters in each case. In all cases,
our sample constituted 10 observations. Note that the likelihood functions
have been scaled to be comparable with one another.



Properties:

8.4.9 Gamma
Distribution checklist:

✓ Continuous, non-negative data
✓ Greater flexibility than the exponential, but more complex
✓ Can be used to model the time taken for n independent events to
occur

Example uses: to estimate the time taken for the nth diode in a computer to
fail, or to model daily rainfall amounts.
Suppose that we work for a company which organises lotteries in a city, and
that for a particular lottery game, there is always a single jackpot winner.
During one night in the holiday season, the company organises a ‘bonanza’
night, where there are three different games. People can enter all three,
although they can win only one of them. The unusual twist in the lotteries run
by this company is that the jackpot amount decreases with time after the prize
draw. Further, suppose that the time taken for a jackpot winner to claim their
prize is thought to be exponentially distributed from the moment the winning
numbers are announced, with a rate λ–1 per day. The company wants to know
what the aggregate reaction time is across all three players. So if one player
takes 1 day, another 2 and the last 3, the aggregate reaction time is 6 days.
An introduction to the gamma distribution



The combined reaction time is given by the sum , where Ti is
the time taken for person i to claim their winnings. For one person, it is most
likely that they will come forward immediately, as the exponential density is
highest at 0. However, for all three people, it is unlikely that they all claim
their prize instantly, and the maximum density for the aggregate reaction time
hence lies away from 0 (see the left-hand panel of Figure 8.14). Assuming
that all three prize winners act independently of one another, the mean time
taken for all three to come forward is the sum of the means for each person (1
day), producing an aggregate mean reaction time of 3 days. The aggregate
time distribution, in this case, is described by a gamma distribution with scale
parameter equal to 3 and shape parameter equal to 1; symbolically, X ~
Γ(3,1).
The distribution shifts further rightwards if we, instead, consider a night with
five lotteries, rather than three (see the left-hand panel of Figure 8.14). Now
the distribution for the aggregate reaction time has a mean of 5.
Imagine that the maximum jackpot value declines, resulting in people with
less incentive to claim their prize so that now λ = 0.5 per day. For each
individual there is now greater uncertainty in the time taken to claim,
meaning that the aggregate distribution across all three people is much wider.
Also, because people have less incentive to claim, the distribution for the
aggregate reaction time shifts rightwards (see the right-hand panel of Figure
8.14). Now the aggregate density is a X ~ Γ(3,0.5) distribution for a night
where three lotteries are played. As before, if we consider a night with five
lotteries, the distribution shifts further to the right, and is more extreme than
the corresponding distribution for the case of λ = 1 per day.
Suppose that we collect data on the collective time taken (in days) for three
people to claim their prizes. To examine the shape of the likelihood surface
for this sample, we again use a contour plot (see the left-hand panel of Figure
8.15). The mean of the distribution equals the ratio α/β of the parameters
(with the Γ(α, β) parameterisation), resulting in a strong positive correlation
between them. A given mean can be obtained in a number of different ways.
For example, a mean of 2 can be obtained from α = 2 and β = 1, or α = 4 and
β = 2. We illustrate combinations of parameter values that result in the same
mean by the arrow in the left-hand panel of Figure 8.15. This strong



correlation can be problematic for inference, both theoretically (since it may
be difficult to identify both parameters) and practically (many Markov chain
Monte Carlo (MCMC) methods will be slow to converge here).
Figure 8.14 The distribution for aggregate lottery claim times for λ = 1 per
day (left) and λ = 0.5 per day (right), as a function of the number of lotteries
played (coloured lines).

Figure 8.15 A contour plot of the likelihood surface for two different
parameterisations of the gamma distribution – left: using the (α,β)
formulation, and right: using the (μ,σ) formulation. The dashed lines indicate
the maximum likelihood estimates of the parameters in each case. The arrow
in the left-hand panel indicates the combinations of parameter values that
result in the same mean (5). The sample of data we used here was {5.5, 7.5,
2.25, 1.75, 8.1, 4.9, 6.0, 4.1, 4.9, 5.0}.

In the right-hand panel of Figure 8.15, we show the likelihood surface for the
same data, but with the Γ(μ, σ) parameterisation (see properties below). Using
this alternative parameterisation has, to some extent, decreased the
correlation between the two parameters, which now represent the mean (μ)



and standard deviation (σ). We find that in some circumstances this latter
parameterisation is preferable (we also prefer it because it is more intuitive).
This distribution has three parameterisations:

Properties:

8.4.10 Multinomial
Distribution checklist:

✓ Discrete data
✓ Multiple trials with a fixed number of total trials
✓ Trial outcomes are independent
✓ Each trial has k ≥ 2 outcomes
✓ Individual outcome probabilities are not determined by a factor that
varies systematically across individuals
✓ Probability of obtaining each category is the same in each trial
✓ Overall data we record is the aggregate number of outcomes in each
category
✓ Generalisation of the binomial to handle an arbitrary number of
outcome categories

Example uses: modelling political party affiliation across a group of people
(for example, Republican, Democrat Independent, or none), or explaining the



choice of treatment sought for back pain (for example, osteopath,
acupuncture, physiotherapy, surgery or none).
Suppose that we work for the Department of Health and want to build a
model to explain the prevalence of blood types for a sample of people drawn
from the wider US population. For simplicity, we suppose that there are only
three blood types: A, B and O. We assume that our sample of n people is
randomly sampled from the US population.
Figure 8.16 The multinomial probability distribution for the numbers of
individuals with blood types A and B, where the underlying proportion of the

population with each type is given by .

Let’s consider how we might design a distribution to cope with the three
categories of blood types. Before we consider a sample of n individuals we
first create a model for a single individual. The probabilities of the individual
having each blood type are equal to the proportions of each type in the
population, which we call p = (pA, pB, pO). We now create a set of binary
random variables for a single individual,{XA, XB, XO} , each of which equals
1 only if that person has the respective blood type. For example, if a person
has blood type A then XA = 1, XB = 0, and XO = 0. For a given individual the
sum across all of these binary indicators is always 1 (since a person can have
only one blood type). We would like our distribution to return the respective
probabilities for each of the blood types, in other words Pr(Xi = xi, X-i = 0 | p)



= pi, where i∈{A, B, O} and X-i represents the other two random variables.
For example, the probability that a randomly sampled individual has blood
type A is Pr(XA = 1, XB = 0, XO = 0 | p) = pA,. We can achieve this behaviour
from a categorical distribution (the generalisation of the Bernoulli to more
than two categories):

With our distribution for a single individual designed, we can use this to
construct a distribution for the aggregate blood type counts for a sample of n
individuals. If our data consists of a random sample from the population, the
overall distribution function will be proportional to the product of the
individual categorical distribution functions, each of the form above. We now
define new random variables, which equal the aggregate numbers of people

in our sample with each blood type,  where i∈{A, B, O}. So,
for example, ZO = 5 means that we found five individuals with blood type O
in our sample. The overall distribution function has the form:

where n!/ ZA! ZB! ZO! is the multiple-category version of the nCr term that we
had for the binomial case, and equals the number of combinations of
individual blood types that result in the same aggregate counts of people with
each blood type in our sample.
In Section 8.5.1 we will see a trick that allows us to graph this distribution
and its likelihood, as a function of all three blood types. However, since there
are only three categories, only two of the variables are free to vary for a given
sample size. This simplification means that we can draw the probability
distribution in two dimensions.
Figure 8.16 shows the probability distribution across ZA and ZB, with Zo = 5 −
ZA − ZB for a sample size of five, where the population blood type

proportions are  The density for this
distribution is zero for all points above the line ZA + ZB = 5 since this would
constitute a sample size greater than five.
Figure 8.17 shows the likelihood surface in (pA, pB) space for a combined
data sample comprising three separate studies of individuals’ blood types,
where there are five individuals in each study. The likelihood surface is



shown as a lower triangle in this space, because to the right of the main
diagonal the sum of probabilities exceeds 1. Since all of the samples we pick
have a high proportion of blood type B, the contours of high likelihood are
squashed into the upper-left-hand corner of the graph.
Figure 8.17 A contour plot of the multinomial likelihood across (pA, pB)
space. The data sample we collect consists of three different samples of
individuals’ blood types, each of size 5: (pA, pB, pO) = (1,3,1),(0,4,1),(0,5,0),
for the numbers of individuals with blood types A, B and O respectively. The
dashed lines show the maximum likelihood estimates of pA and pB (the
estimate for the proportion with blood type O is given by 

Properties:

8.4.11 Multivariate normal and multivariate Student-t



The following is somewhat more advanced (at least mathematically) than the
preceding distributions. Unless you are in need of multivariate models and
have a grasp of vectors, and matrices, then it can be left until required.
Distribution checklist:

✓ Multivariate distribution: used to specify likelihoods for vectors of
random variables
✓ Continuous, unconstrained data
✓ Parameterised by two distinct parts: a vector of mean parameters; and
a matrix of parameters that describes the covariances between pairs of
random variables
✓ Use multivariate Student-t distribution to allow for more uncertainty
in the data-generating process

Example uses: to describe gene expression magnitudes for multiple genes, to
model test scores for members of a family, or to explain temperature
variation in neighbouring villages.
Imagine you get a job at a prestigious hedge fund as an analyst. Your
manager gives you your first task: to model the risk of a portfolio containing
the stocks of two different companies in a particular industry sector. You are
told that, if both stocks have a daily loss of 10% or greater, then the portfolio

goes bankrupt. Further, your boss tells you that a risk of  for bankruptcy
is acceptable, but no more. If the risk is below this threshold the hedge fund
will buy the stocks, otherwise it will wait for a better opportunity.
You obtain the historical daily stock returns for the past year (shown in the
left-hand panel of Figure 8.18). Looking at the historical returns, you notice
that when one increases, the other tends to increase as well. You plan to use a
model that will account for this covariance in stock returns. Bearing this in
mind, you do some research and decide to use a multivariate normal
distribution to model the returns of the two stocks, r:

In expression (8.26), the bold typeface for parameters indicates that we are
dealing with vectors and matrices, rather than scalar quantities. For our two
stock example, μ is a vector of length 2, where the two elements correspond
to the mean returns for each of the two stocks (which can be different from
one another). Σ is a covariance matrix, which for our example is written
explicitly as:



Figure 8.18 Left: the actual daily stock returns for two different stocks, from
all days of trading in the last year. Middle: 1000 simulated data points from a
bivariate normal fit to the data. Right: 1000 simulated data points from a
bivariate Student-t distribution fit to the data. The days on which the portfolio
would go bust are shown in black.

where  and  represent the variances in the returns of stock 1 and 2,
respectively; ρ is the correlation in the daily stock returns of the two
companies. So overall in our model, there are five parameters. Contour plots
of the probability density for a bivariate normal distribution with different
values of ρ are shown in the top row of Figure 8.19.
You fit the bivariate normal to the data using maximum likelihood and use
the fitted model to simulate 1000 replicate daily returns, resulting in the data
points shown in the middle panel of Figure 8.18. Feeling happy that none of
the samples are in the danger zone, you go to your boss and tell her to invest.
Your boss, being an analytical person, asks you to show her your model basis
and reasoning. When you explain the model and show her the graph of
simulated stock returns, she quickly realises that something is amiss: ‘Why is
there more variability in the actual returns than we see in your fake data? I
think you should go away and rethink your model.’
Feeling ashamed, you retreat to your desk and realise the error of your ways.
How could you have fallen into the trap of so many before and used a
distribution that allows insufficient uncertainty in the data-generating
process? You do a quick bit of Googling and find that the multivariate
Student-t distribution is a more robust alternative to the multivariate normal
(see the bottom row of Figure 8.19). You fit a bivariate Student-t distribution
to the data and then, as before, you simulate 1000 pairs of stock returns. To
your shock, there are now a number of points in the danger area (see the
right-hand plot of Figure 8.18). What’s more, because there is more than one
point that would cause the portfolio to go bankrupt, the modelled risk exceeds

the threshold of . You slink over to your boss and tell her, ‘Sorry – here



are the results. We shouldn’t invest.’ She recognises that people make
mistakes and that your new work is of much better quality than before, and
says, ‘That’s better. Go to lunch. We need you in a meeting in half an hour.’
Figure 8.19 Top: a contour plot of the two-dimensional multivariate normal
density. Bottom: a contour plot of the two-dimensional Student-t density,
with ν = 3, using the same covariance matrix as for the normal case.

This cautionary tale should have conveyed the seriousness of ensuring that
your modelling choices sufficiently account for extreme data. In situations
where there is evidence of this type of behaviour in the real data, and some
would argue even if there is not (see Mandelbrot’s Misbehaviour of Markets
[25] and Taleb’s The Black Swan [36]), there is an argument for replacing
normal distributions with Student-t distributions. The Student-t gives much
more weight to the tails of the distribution and hence is much better equipped
to handle extreme variation in the data.
The multivariate normal has the properties shown below. Here k is the
number of elements of X; in our example, k = 2, because we consider the
returns of two stocks.

Properties:



The multivariate Student-t distribution’s properties are shown below.
Properties:

8.5 Prior Distributions
The first step in a Bayesian analysis is choosing a likelihood function. The
second step is choosing prior distributions to set on the parameters that
characterise the behaviour of the likelihood functions (see Chapter 5). In a
similar vein to the likelihoods, there are also a large range of distributions
available to us to use as priors. Here, we focus on some of the most common
choices used in applied research for prior distributions.
There are a number of different categories of parameters in likelihood
functions: probabilities and proportions, which are constrained to lie between
0 and 1; location parameters, for example the mean; shape parameters, for
example variances, which are non-negative; and more exotic entities like
simplexes or covariance matrices.
While we will re-encounter some of the distributions we met in Section 8.4,
we believe the difference in focus here is sufficient to merit these repetitions.
8.5.1 Distributions for probabilities and proportions
It is common to encounter parameters that are naturally constrained to lie
between 0 and 1. Examples include probabilities and proportions. In these
cases, it is important to use priors that are appropriate for this purpose, since
a poor choice can lead to nonsensical values which lie outside of the [0,1]
range.
Uniform
Prior checklist:

✓ Continuous parameters
✓ Parameters bounded between a and b, where for the case of
probabilities, and proportions, a = 0 and b = 1

A common choice of uninformative (although in Section 5.6.1 we argued for



calling these vaguely informative) priors for variables constrained to lie
between 0 and 1 is the continuous uniform prior (see Figure 8.20). This
choice of prior might be warranted if there is an emphasis on ‘objective’
analysis; for example, when undertaking an analysis of a clinical trial for a
new drug.
Figure 8.20 The continuous uniform distribution with bounds equal to [0,1].

We argue that the uniform distribution bounded between 0 and 1 is
superseded by the beta distribution (see p. 173) since the uniform is a special
case of this more flexible distribution. However, since many analyses still use
this distribution, it is worth knowing about it.

Properties:

Beta
Prior checklist:

✓ Continuous parameters
✓ Parameters bounded between 0 and 1
✓ Encompasses a wide range of priors, ranging from vaguely
informative to strongly informative
✓ beta(1,1) equivalent to a U(0,1) distribution

A beta distribution is a more flexible version of the uniform distribution for
parameters constrained to lie between 0 and 1. There are a number of reasons
why we prefer to use a beta distribution over a uniform distribution.
Importantly, this distribution encompasses a range of priors, ranging from
vaguely informative (grey line in the left-hand panel of Figure 8.21) to more
strongly informative (black line).



To provide an example use of a beta prior, consider obesity rates in the UK.
We know that the percentage of people who are obese is less than 50%, so it
does not make sense to specify a prior here that gives equal weight to all
values between 0 and 1. In this case, we might specify a beta(2,10) prior, for
example (black line in the right-hand panel of Figure 8.21). This prior gives
most weight to an obesity rate between 5% and 30% and so could be a
reasonable choice here.
An introduction to the Beta distribution

Figure 8.21 Left: three symmetric beta distributions centred on .
Right: two non-symmetric beta distributions.

The beta distribution also has the property that it is conjugate to some useful
distributions, and so allows analytic calculation of the posteriors in these
cases. (Don’t worry if this talk of conjugacy has gone over your head, as we
devote the entirety of Chapter 9 to discussing this concept.)

Properties:

Logit-normal
Prior checklist:

✓ Continuous parameters



✓ Parameters bounded between 0 and 1
✓ Encompasses a wide range of priors, ranging from weakly
informative to strongly informative

In life, there are often multiple choices that result in a similar outcome. In
statistical inference, it is no different – there are two commonly used
distributions to model probabilities and proportions (discounting the uniform
since it is a special case of the beta distribution): the beta distribution and the
logit-normal. Here we continue with the obesity example from the beta
distribution section. The idea behind the logit-normal is to allow an
unconstrained variable to vary according to a normal distribution, then
transform it to lie between 0 and 1, using a logistic transform:

A large set of prior distributions is possible with this parameterisation (see
Figure 8.22). However, care must be taken to ensure that the prior does not
place too much weight near 0 or 1, which can happen if we choose σ to be
high (red line in Figure 8.22).
This distribution is useful because its multivariate analogue is a
generalisation of the Dirichlet distribution (that we cover next) which allows
for correlation between probabilities.

Properties:

Figure 8.22 Left: logit - N(0,σ) densities across different values of σ. Right:
logit - N(1,σ) densities for the same values of σ



Dirichlet
Prior checklist:

✓ Vector of continuous parameters
✓ Sum of parameters equals 1
✓ Encompasses a wide range of priors, ranging from weakly
informative to strongly informative

Imagine that we want to estimate the proportions of individuals who will vote
for each of the three political parties: Republican, Democrat and Liberal. If
people are obligated to vote (and cannot spoil their ballot paper) the sum of
the proportions of individuals voting for each of the parties must equal 1.
Accordingly, we need a model that satisfies this constraint.
We start by considering the case where there are only two political parties:
Republican and Democrat. We can represent the possible voting proportions
as points along a line (see the left-hand panel of Figure 8.23) of length 1. If
we consider the leftmost point on the line, this represents the case where
nobody votes Republican and everyone votes Democrat, with the rightmost
point being the exact opposite. At the mid point, 50% vote Republican and
50% vote Democrat.
Now, considering three political parties, we can represent all feasible
combinations of voting proportions as those points that lie within an
equilateral triangle of height 1. Here the axes corresponding to the
proportions voting for each party extend from each vertex to the opposite
midpoint of each edge (see the right-hand panel of Figure 8.23). This
triangular representation can be justified by imagining a three-dimensional
space defined by axes that represent the proportions voting for each party,



(pR, pD, pL). The set of allowable points corresponds to the plane defined by
pR + pD + pL = 1, where all probabilities must be greater than or equal to 0.
This set of points corresponds to an equilateral triangle-shaped plane in this
space.
The Dirichlet distribution is characterised by k parameters, α1, α2,…, αk,
which can be thought of as weights for each category. For our three-party
example, we start by specifying a Dirichlet(2,2,2) prior on the proportions,
(pR, pD, pL). This prior gives equal weight to all three categories, with the
result that the distribution has a broad peak towards the centre of the
equilateral triangle (see the left-hand panel of Figure 8.24). If we instead
specify a Dirichlet(5,5,5) prior, this results in a prior that again gives most
weight to equal proportions voting for each party. In this case, however, by
specifying higher weights we assert that we are more confident in a three-way
equal split, with the resultant prior distribution now being more strongly
peaked in the centre of the triangle. Finally, if we specify a Dirichlet(4,2,2)
distribution, this gives a higher prior weight to individuals voting for the
Republican Party. The peak of the resultant prior distribution is hence in the
corner that corresponds to the top of the pR axis.
This distribution allows for a large range of prior distributions for the
individual category proportions. The marginal distribution for an individual
category proportion is a beta distribution, meaning that we can, for example,
specify a uniform distribution for a given category proportion, or instead
choose a prior that is more informative about it.
Figure 8.23 Left: the feasible region for probabilities for two categories.
Right: the feasible region for probabilities for three categories.

Figure 8.24 The Dirichlet distribution for (αR, αD, αL) equal to (2,2,2), (5,5,5)
and (4,2,2), in the left, middle and right plots, respectively.



However, the Dirichlet distribution is not fully flexible, because it cannot
allow for an arbitrary correlation structure between the category proportions.
For example, a Dirichlet prior distribution might be inappropriate for the
analysis of a survey which asked participants’ percentage of travel by train,
bike, car or other. Individuals who prefer to travel by train might also like
biking, since these are more carbon-friendly modes of transport than cars,
meaning that we believe there could be a positive correlation between the
train and bike categories (and a negative correlation of each of these with the
car category). The Dirichlet distribution could not handle this set of
correlations. However, it turns out that the multivariate equivalent of the
logit-normal is capable of allowing such relationships between category
probabilities.

Properties:

8.5.2 Distributions for means and regression coefficients
In some probability models for continuous data, for example the normal
distribution, the distribution is characterised by a location parameter – the
mean – and a scale parameter – the variance, standard deviation or some
other measure of distributional width. Interest usually focuses on the location
parameter, for example the mean proportion of the electorate that votes
Republican, the average success rate for a new drug or the median stock
returns. Alternatively, in linear regression models, the interest usually centres



on the estimation of regression coefficients, which are multiplied by the
independent variables to yield the mean (usually of a normal distribution).
This section is devoted to showcasing some of the more popular choices of
priors for these types of parameters.
Normal
Prior checklist:

✓ Continuous unconstrained, or practically unconstrained, parameters
✓ Encompasses a wide range of priors, ranging from weakly
informative to strongly informative

We already saw in Section 8.4.6 that we can use a normal distribution for
likelihoods under a wide range of situations; however, here we detail its use
for an altogether different purpose: specifying prior distributions.
For example, consider the problem of trying to estimate the global mean sea
temperature using a sample of many worldwide temperature measures. We
might suppose that a range of factors contribute to the temperature θi that we
measure at location i: time of year, geography and measurement error, for
example. This multitude of factors might justify the use of a normal
distribution for the likelihood (see Section 8.4.6):

This distribution is characterised by two parameters – its mean µ and its
standard deviation σ. From experience we know that the mean sea
temperature is likely in the range of 10–22 degrees Celsius, although it varies
by location, and from year to year. In this circumstance, we might specify a
weakly informative normal prior for µ with a mean of 16 degrees and a
standard deviation of 10.
Properties: See Section 8.4.6.
Student-t
Prior checklist:

✓ Continuous unconstrained, or practically unconstrained, parameters
✓ Robust version of the normal, allowing for a greater range of
parameter values

In Section 8.4.7 we suggested using the Student-t distribution in
circumstances when there is more variation in the data than can be accounted
for by the normal distribution. Similarly, we advocate using the Student-t
distribution for a prior when we wish to allow a wider range of parameter
values, a priori, than is possible with a normal distribution.
To be clear, it is possible to set the parameters of a normal distribution so that



its variance is the same as that of a Student-t distribution (so long as ν > 2).
However, the nature of that variance will not be the same (see the left-hand
panel of Figure 8.25). Whereas the normal is more evenly spread about its
centre, the Student-t distribution is sharply peaked, with less weight on its
shoulders and more on its tails. The difference in shape between these
distributions is controlled by a parameter, v, called the degrees of freedom.
As we increase this parameter, there is a greater correspondence between the
normal and Student-t distributions, and in the limit that v → ∞ they are the
same (see the right-hand panel of Figure 8.25).
Properties: See Section 8.4.7.
Figure 8.25 Comparing normal and Student-t distributions with the same
mean and standard deviation for low (left) and high (right) values of the
Student-t’s degrees of freedom, v.

Cauchy
Prior checklist:

✓ Continuous unconstrained, or practically unconstrained, parameters
✓ Robust version of the Student-t and normal distributions, allowing for
a greater range of parameter values
✓ A special case of the Student-t distribution where v = 1

Imagine that we are building a model to help understand the effect of a new
microfinance scheme on the wages of individuals in an unspecified country.
Apart from the scheme, there are a number of factors that also influence a
person’s wage: education, social status and health, for example. Based on
previous analyses we assume that the relationship between wage and the
amount borrowed using the microfinance scheme is linear:

where ∊ ~ N(μ, σ) represents the myriad of other factors influencing wage,
financei represents the amount borrowed through the scheme over a given



time period, and wagei is the amount of income earned over the same period.
We assume that both the variables are standardised (have mean equal to 0 and
standard deviation equal to 1), meaning that β is the average increase in wage
(in standard deviations) for a 1 standard deviation increase in the amount
borrowed. Suppose proponents of micro-finance schemes argue that they
typically have a positive impact on wages, by allowing individuals the
freedom to devote more time to producing a specialist good or service. Those
in opposition perhaps argue that the moral hazard it induces can lead people
to make worse choices, and hence detrimentally affects income. After reading
these views we imagine that we are quite uncertain about the impact of our
microfinance scheme, and want to allow a wide range of possibilities,
including positive and negative values of β, before we do our analysis.
Figure 8.26 Comparing prior distributions for the effect of a microfinance
scheme on income. The normal and Student-t distributions shown both have
variances equal to 0.64; for the Cauchy distribution the mean and variance do
not exist.

In this case, we may choose to specify a prior distribution that is wider than a
normal or Student-t distribution (with more than 1 degree of freedom),
instead choosing the fatter-tailed Cauchy (see Figure 8.26). This distribution
actually corresponds to a Student-t distribution with 1 degree of freedom. The
Cauchy is named after the mercurial French mathematician Augustin Louis
Cauchy, who lived during the nineteenth century in post-revolutionary
France. While Cauchy is rightly famous for his work on complex analysis,
this distribution’s naming is an example of Stigler’s Law of Eponymy – that a
scientific discovery is never named after its original discoverer – since much
of the initial work on this distribution was done by others, including the
brilliant French mathematicians Fermat and Poisson. Before its current
naming, the distribution was actually known by the mysterious title, ‘The



Witch of Agnesi’, named after an Italian mathematician, Maria Gaetana
Agnesi, who published work on it. It is likely that ‘witch’ is actually a
mistranslation of the Italian word versiera, meaning ‘adversary of God’ or
‘she-devil’. Either way, the name is quite apt since its properties mean the
distribution can behave in quite an unholy manner. In particular, the tails are
so fat that the distribution has no mean or variance. This may look confusing,
especially since the distribution is symmetric about its median. However,
drawing repeated samples from this distribution is illuminating, as the
running mean does not converge! Whether these costs are more than
compensated for by its added robustness depends on the circumstances. It is
recommended that this distribution be used only for those situations where
we want to allow a large prior range for the parameter value. In other, less
extreme cases, the Student-t distribution (with degrees of freedom greater
than 1) or the normal distribution will most likely suffice.

Properties:

Multivariate normal and multivariate Student-t
The following is somewhat more (at least mathematically) advanced than the
preceding distributions. Unless you are in need of multivariate models and
have a grasp of vectors and matrices, then it can be left unread until required.
Prior checklist:

✓ Multivariate distribution: used to specify priors for a number of
parameters simultaneously
✓ Continuous unconstrained, or practically unconstrained, parameters
✓ Mostly useful in hierarchical models, although can be used in non-
hierarchical settings

Imagine that we want to evaluate how the size of a house, S, and its number
of bedrooms, B, affect the price it sells at, P. Based on graphs of the data we
assume a linear relationship between the predictors and the price at which a
house is sold:

where i∈{1,..., N} indicates individual cases in our sample of houses. Before
we start our analysis we might suppose that there will be some correlation in



the estimated effects of the variables Si and Bi. Intuitively, since larger houses
tend to have more bedrooms, we expect that if we give more weight to the
effect of size, then we will have to give less weight to bedrooms for the house
price to remain the same. We could choose independent priors for the
parameters β1 and β2, but these would not represent our beliefs of their
interrelation. Forgetting α for now, in this circumstance, we might specify a
prior of the following form:

Here ρ < 0 captures our pre-analysis belief that these estimates should be

negatively correlated, μ1, μ2 are the prior mean effect sizes and  are
the prior variances. To allow greater freedom in the estimates of the
parameters, we could instead use a multivariate Student-t distribution (see
Section 8.4.11).
Properties: See Section 8.4.11.
8.5.3 Distributions for non-negative parameters
There is a wide class of parameters that are naturally constrained to be non-
negative in value. Examples include variances and a range of other
parameters, including the mean of a Poisson distribution, the shape parameter
of a gamma, and so on. Although with Stan MCMC software it is possible to
use an unbounded continuous distribution coupled with explicit bounds on
parameter values, it is often preferable to set a prior distribution that naturally
has support (also called positive density) on the positive real numbers only.
This section introduces those distributions that are constrained to the positive
real numbers.
Figure 8.27 Left: three prior distributions for λ ~ Γ(α, β) where in all cases
the mean is 10. Right: the resultant posterior distributions for the
corresponding prior case for the following sample of data: {17, 6, 11, 13,
16}.



Gamma
Prior checklist:

✓ Continuous parameters constrained to be non-negative
✓ Typically allows lower uncertainty than the inverse-gamma or half-
Cauchy

Suppose that we want to build a statistical model for the count, Xi, of road
accidents occurring on a given day, i, in a particular (small) geographic area,
to help allocate emergency service resources. If the weather is similar over
the days when data collection took place, then a reasonable model here might
be the Poisson distribution: Xi ~ Poisson(λ). Historically, we know that the
number of incidents per day has a mean near 10, although there is some
variance around this value. In this circumstance, we might specify a gamma
prior for λ, partly because of its mathematical convenience (due to its
conjugacy; see Chapter 9), but also because this distribution can represent our
reasonably confident prior beliefs. In the left-hand panel of Figure 8.27, we
show three possible gamma prior distributions, each with a mean of 10.
While these example prior distributions encompass a range of possible prior
beliefs, after we collect five data points, the resultant posterior distributions
are very similar (see the right-hand panel of Figure 8.27). Even though we
have only a modest amount of data, changes to the prior have minimal effect
on the posterior; the information from the data swamps our prior beliefs.
Properties: See Section 8.4.9.

Half-Cauchy, inverse-gamma, inverse-χ2 and uniform
Prior checklist:

✓ Continuous parameters constrained to be non-negative
✓ Often used for variances and shape parameters (parameters which



govern the curvature of a distribution rather than its central position)
✓ Variants can be used to specify vaguely informative priors
✓ For vaguely informative priors we recommend using a half-Cauchy
over the alternatives

Suppose that we want to build a statistical model to describe the length, L, of
fully grown adult male crocodiles. Since size is determined by a range of
factors (genetics, climate, local competitors), we invoke the central limit
theorem and suppose that a normal sampling model is appropriate: L ~ N (μ,
σ). Further, imagine that our study is novel, being the first attempt to describe
the lengths of these animals, so previous data are scarce.
Suppose that our primary purpose of the analysis is to focus on the parameter
µ, which represents the mean length of the male members of the species,
thought to be around 4.5 from previous observational evidence. The other
parameter, σ, gives the spread of the crocodile lengths about the population
mean, and in this circumstance is considered a nuisance parameter, since it is
not the primary purpose of estimation. Nevertheless, in Bayesian inference,
we must set a prior for this parameter.
There are two related distributions that are commonly used to specify priors
on the normal variance which have nice mathematical properties (in
particular, conjugacy; see Section 9.5): the inv-gamma and the inv-χ2. The
latter is a special case of the former, although since both are used in the
literature, we consider them separately here. Both of these distributions are
derived from the bit after the inverse in their names. An inv-Γ(α, β) is simply
the distribution of ζ–1 where ζ ~ Γ(α, β). In words, we imagine sampling a
value, ζ, from a gamma distribution, then taking 1 / ζ. If we took enough
samples we would obtain a histogram that has the shape of an inv-Γ(α, β).
The inv-χ2 distribution is derived from the χ2 distribution (not discussed in
this book, but is a special case of the gamma distribution) in the same way as
the inv-gamma, although is a simpler distribution, parameterised by a single
input parameter. Both of these distributions are often used to specify vaguely
informative priors for variance parameters. For the inv-gamma, a vaguely
informative prior is obtained by choosing small values for each of its inputs;
for the inv-χ2, a vaguely informative prior is obtained by specifying small
parameter values.
Figure 8.28 The probability density functions for distributions often used as
priors for standard deviation parameters.



Another distribution popularised by Andrew Gelman is the half-Cauchy
distribution, which is a truncated version of a Cauchy distribution (see
Section 8.5.2) constrained to have zero density for negative parameter values.
A final alternative sometimes used for vaguely informative priors is a
continuous uniform distribution over some non-negative (and finite) set. An
issue with using this distribution is setting its upper bound, which is
necessary to ensure that the distribution is a valid probability density. These
sorts of priors can also prove troublesome with MCMC, meaning that the
samplers often take much longer to converge than weakly informative
alternatives (see Part IV).
In Figure 8.28 we compare the probability density functions for the priors
that we discussed in this section. For the prior for the variance parameter, we
prefer to use the half-Cauchy distribution due to its gentle-sloping nature,
which means it does not allocate probability mass to areas of parameter space
that are infeasible (see [13] for a more quantitative argument for the half-
Cauchy).
Properties: We list properties only for our preferred distribution – the half-
Cauchy – and refer the reader to Table 8.1 for the properties of the inv-
gamma and inv-χ2. The continuous uniform distribution is discussed in
Section 8.5.1.



Log-normal
Prior checklist:

✓ Continuous parameters constrained to be non-negative
✓ Possible parameter values could exist across a wide range

Imagine again that we want to build a model for the counts of traffic
accidents, Xi, this time for a location with considerable variability in weather.
Due to this variability, we might choose a negative binomial likelihood (see
Section 8.4.4): X ~ NB(μ, κ). We use the particular form of the distribution,
where var[X] = λ + λ2 / κ, where κ represents the inverse dispersion, and in
the limit κ → ∞ this distribution becomes the Poisson.
If we did not have access to historical counts of the local traffic incidents,
then we might suppose that a large range of κ values is possible. In the left-
hand panel of Figure 8.29 we show that increases in κ up until 40 have a
considerable effect on the resultant sampling distribution. Hence, we want to
use a prior distribution that allows this much variation in the parameter value.
A log-normal distribution satisfies this requirement. Mathematically, this
means that we set a normal prior distribution for the log of κ, log(κ) ~ N(μ, σ).
Because we effectively set a prior on log(κ) this distribution has a density that
can span across a wide range of possible values, although care must be taken
when using it, as it is extremely sensitive to its input parameters (see the
variance’s dependence on µ and σ in the properties section below). If you
decide to use this distribution as a prior, we advocate plotting its density at
the chosen parameter values to ensure it looks as you expect it to (see
example of the log-normal probability distributions displayed in the right-
hand panel of Figure 8.29).
Figure 8.29 Left: negative binomial probability distributions, each with the
same mean, for different values of κ. Right: possible log-normal prior
distributions for κ, each with values of (μ, σ).



Properties:

8.5.4 Distributions for covariance and correlation
matrices
There are circumstances, particularly for hierarchical models, where it is
necessary to specify priors for covariance and correlation matrices. The
distributions that can be used as priors for these objects are quite different to
those that we have discussed thus far, because they describe objects that are
highly constrained. As such, the following section is more advanced than
those previous to it.
There are two basic choices for covariance and correlation matrices. Up until
recently, the usual choice was to opt for Wishart or inverse-Wishart
distributions for these matrices due to their nice conjugacy properties (see
Chapter 9). However, Stan gives us the freedom to choose non-conjugate
alternatives. The most popular of these is a recently described distribution
known as the LKJ distribution, which is more flexible than the Wishart
varieties [23]. We cover this distribution first because we believe that, in
many cases, it should replace the Wishart distributions that were commonly
used before. However, there are still analyses that hinge on the conjugacy
properties of the Wishart distributions, so we cover these subsequently.



LKJ
Prior checklist:

✓ Prior distribution for correlation matrices. Can also be used as a prior
for covariance matrices by specifying an independent prior for a vector
of scale parameters that multiply the correlation matrix.
✓ By their nature, the parameters of these matrices are constrained (the
matrices must be positive definite; see below)
✓ Mostly useful in hierarchical models, although can be used in non-
hierarchical settings
✓ A better alternative to the inv-Wishart and Wishart for many
circumstances (apart from when conjugacy is required for computational
efficiency reasons)

Suppose that we want to model the comorbidity (the coincidental presence of
the condition in a patient) of a number of distinct psychological conditions:
major depression, schizophrenia, obsessive compulsive disorder and
anorexia. Before our analysis, we do not know whether a patient that suffers
from one of these disorders is more likely to suffer from another. There is
also uncertainty regarding the underlying rates of these conditions. Suppose
that we have a sample of 1000 patients’ scores on diagnostic tests for each of
the conditions. For each patient we thus have four scores, one for each of the
conditions, which we choose to model using a normal likelihood (see Section
8.4.11):

where d is a vector of length 4, and its elements are each patient’s test scores
for major depression, schizophrenia, obsessive compulsive disorder and
anorexia, respectively. The four-element vector, µ, represents the mean test
scores for each of these disorders in the population and ∑ is a 4 × 4
covariance matrix representing the variances (on the diagonals) and
covariances (off-diagonals) in the performance across the tests.
If we specify independent priors for the mean vector and covariance matrix,
then we can consider the latter on its own. This, however, means that we need
a prior distribution for covariance matrices, meaning that we need to
associate a probability density with each admissible covariance matrix. It is
important to emphasize the word admissible in the previous sentence. There
are an infinite number of 4 × 4 matrices, but not many of these can be
covariance matrices. So what are the properties of a covariance matrix?

The diagonal terms are variances and so must be positive.



The off-diagonal terms can be positive or negative, representing positive
or negative covariance, respectively.
There is symmetry between the off-diagonal elements since, for
example, the covariance between depression and anxiety must be the
same and vice versa.
For two elements of the vector, the square of their covariances must be
less than the product of their variances.

These conditions are satisfied if a matrix is positive definite and symmetric.
These requirements greatly reduce the number of admissible covariance
matrices, and we must take care when constructing an appropriate prior
distribution. Fortunately, we do not actually need to construct such a
distribution, because the work has already been done for us by the authors of
[23]. To use their method we first decompose our covariance matrix as
follows [8]:

where τ is a vector representing the variance scales of each variable and Ω is
a correlation matrix. Correlation matrices are similar to covariance matrices,
but with the additional requirement that the diagonal elements are all 1 (the
correlation of anything with itself). We can use a weakly informative non-
negative prior (see Section 8.5.3) for each of the elements of τ, and, to keep
things simple, we assume it is independent of the prior on Ω. We now use the
LKJ distribution (named in honour of the names of the authors of [23]) for
our prior on the correlation matrix:

where | Ω | represents the determinant of the correlation matrix Ω. This is a
distribution over admissible correlation matrices and hence applies only if the
matrices are symmetric, positive definite and have unit diagonals.
But what does this distribution actually look like? And how does the
parameter η affect it? Here we describe some of the ways to visualise these
distributions but refer the interested reader to [38] for a more thorough
exposition of these methods (from which we borrow a few suggestions).
It is helpful for our purposes to ascribe some meaning to the determinant of a
covariance matrix. This is sometimes referred to as the generalised variance,
which captures the overall freedom of the system to vary. If the off-diagonal
elements are 0, then the system is free to vary, and has a higher generalised
variance (and a high determinant). In our example, this would correspond to
each of the mental health conditions being determined mostly by outside
factors that do not influence one another, resulting in low pairwise correlation



for the test scores. Here the system that we study – a person’s score on the
four diagnostic tests – has a high generalised variance because it is possible
that a person may score highly for one of the tests, and none of the others
(since they are independently determined). This means that our sample (at
least in terms of individuals’ psychological states) will comprise individuals
with considerable heterogeneity. There may be people with just depression,
those with both depression and anorexia, those with all four disorders, and so
on.
In contrast, if the off-diagonal elements increase, the variance of the system
in one direction is not free of another (since the two covary), meaning that
there is less generalised variance overall (and a lower determinant). In our
example, this would mean that there is considerable co-occurrence of all of
the conditions, resulting in high pairwise correlations. Here there is low
generalised variance because, if a person has one mental disorder, it is likely
that they will have the others as well. Or, if they do not have one condition, it
is likely that they will have none of the others. The sample of individuals
here, therefore, comprises mostly two types of people – those with all four
disorders and those with none of them.
Similarly, we can think of the determinant of a correlation matrix as a kind of
generalised correlation, having a maximum of 1 (where all the elements are
independent) and a minimum of 0 (where everything is the same). The LKJ
distribution gives a positive density to all possible values of generalised
correlation, but, dependent on the value of η, will favour some areas of this
spectrum more than others.
If η = 1, then expression (8.44) gives equal weight to all admissible
correlation matrices (of any determinant). But what does the distribution of
‘admissible correlation matrices’ actually look like? For a 2 × 2 correlation
matrix, the only choice is for the off-diagonal element, ρ12 (the correlation
between depression and schizophrenia if we only considered the first two
disorders), which must lie between –1 and 1. Since all values of ρ12 result in
valid correlation matrices, the distribution of allowable correlation matrices
has ρ12 values that are uniformly distributed between −1 and 1. For a 3 × 3
matrix, we are more constrained in our choice of ρ12 since there are two other
free parameters to choose, ρ13 and ρ23, which overall must ensure that the
matrix is symmetric and positive definite. Choosing ρ12 to be close to 0
results in more admissible correlation matrices since this places fewer



restrictions on the other two parameters, resulting in a distribution that is
peaked at ρ12 = 0. For higher-dimensional matrices, it is harder to construct a
positive definite matrix due to the numerous interactions between its
elements, meaning that there is a lower density for more extreme values of
ρ12 (see the middle panel of Figure 8.30). In our example, this prior
specification would mean that we have an a priori belief that each of the
conditions most likely occurs independently of the others, but we do not
discount the possibility of there being comorbidity between pairs of the
disorders.
When η >1, the distribution gives more weight to those correlation matrices
with higher determinants; in other words, those matrices that have greater
generalised correlation and, hence, are closer to the identity matrix. This
means that each of the correlation terms, for example ρ12 and ρ23, are
constrained to be close to zero (see the right-hand panel of Figure 8.30).
Therefore, in our example, by setting η > 1 in our prior, we would be
implicitly assuming that there is little co-occurrence between the four
disorders; they present independently of one another.
In contrast, if η < 1, there is greater weight given to those matrices with
smaller determinants. These correspond to correlation matrices with lower
generalised correlation because the correlation of each variable with another
one is typically non-zero. The result of this is that, compared with the η = 1
case, weight is reallocated from ρ12, ρ23 = 0 towards either −1 and 1. For
example, when η = 0.1 and Ω is 4 × 4 dimensional, the LKJ marginal
probability density of either ρ12 or ρ23 is roughly uniform between −1 and 1
(see the left-hand panel of Figure 8.30). In our example, by specifying η < 1
we would implicitly be giving quite a lot of weight towards there being co-
occurrence of all of the conditions. In other words, we believe that it is quite
possible that an individual who has depression will also have anxiety.
Importantly, we note that in the three regimes of η that we consider, both the
marginal distributions of correlation terms (the histograms above or to the
side of the main plots in Figure 8.30) and the joint distributions of correlation
terms (the main density plots in Figure 8.30) are well behaved. For example,
when η = 0.1, the marginal distribution looks roughly uniform for each of the
correlation parameters, which is mirrored by the two-dimensional joint
density (see the left-hand panel of Figure 8.30). This is different to the
behaviour of the inv-Wishart distribution (and, to a lesser extent, the Wishart



distribution), where examining the marginal densities alone can give a
misleading impression of the joint distribution, which can have quite
unexpected and, generally, undesirable properties.
In summary, the LKJ distribution encompasses a wide variety of prior beliefs
for a correlation matrix. Its distribution function is stated in terms of a
function of the determinant of the correlation matrix. By varying η we can
give greater prior weights to those matrices closer to the identity (where there
is little correlation between elements of the data vector), or alternatively
towards correlation matrices with strong pairwise correlation. Finally, when
combined with a suitable prior distribution for a set of scale parameters, the
LKJ distribution can be used to specify priors for covariance matrices.
Figure 8.30 The joint distribution (the main density plots) and marginal
distribution (histograms above and to the side of the main plots) of ρ12 and
ρ23 resulting from sampling the LKJ distribution for three different values of
η: η = 0.1 (left), η = 1 (middle) and η=100 (right). In all cases, the plots were
generated using 500,000 samples from an LKJ distribution for a 4 × 4
correlation matrix. Note that the individual points in the joint density plots
represent samples and the shading indicates a high local density of samples.

Properties:

Wishart and inverse-Wishart
Prior checklist:

✓ Prior distributions for covariances matrices



✓ By their nature, these matrices are constrained (the matrices must be
positive definite)
✓ Mostly useful in hierarchical models, although can be used in non-
hierarchical settings
✓ Conjugate to multivariate normal likelihoods
✓ Represent quite restrictive correlations between parameters. A better
prior to use in many applied settings is the LKJ distribution
✓ Gamma distribution is a special case of the Wishart distribution and
the inv-gamma distribution is a special case of the inv-Wishart
distribution

In the past, the most frequently used prior distributions for covariance
matrices were the inv-Wishart and Wishart distributions, in order of
importance. While we prefer the LKJ matrix for most settings, there are times
when conjugacy is useful, mostly for reasons of computational speed, and so
we discuss the Wishart family here.
We continue with our example from the LKJ section on the prevalence of
four mental health conditions: depression, schizophrenia, obsessive
compulsive disorder and anorexia. Recall that we had assumed a multivariate
normal distribution for the scores, d, of individuals on separate diagnostic
tests of four different mental health disorders:

In Chapter 9 we will discuss the conjugacy properties of the inv-Wishart and
Wishart distributions and for now just focus on the behaviour of these as we
vary their input parameters. Considering first the inv-Wishart:

we see that this distribution is parameterised by two parameters: Ψ, a scale
matrix, and v, the degrees of freedom. The probability distribution function
for an inv-Wishart is much more complicated than for the LKJ case and so
we do not explain its behaviour from first principles. Instead, we describe the
behaviour of the inv-Wishart distribution as we vary v, assuming an identity
scale matrix, Ψ (which makes all variables exchangeable [38]), by
independently sampling from this distribution.
When v is small, the marginal distributions for the partial correlations ρ12 and
ρ23 are each fairly uniform between −1 and 1 (see the histograms in the top-
left-hand panel of Figure 8.31). In our example, this would correspond to our
believing that there could be strong pairwise correlations between the scores
of individuals for two different mental health disorders. However, unlike in



the LKJ case which also results in uniform marginal densities (see the left-
hand panel of Figure 8.30), the joint density is much more complex for the
inv-Wishart (see the top-left-hand panel of Figure 8.31). Specifically, it
allocates considerable weight to the corners of parameter space, for example
in the upper-left corner of the joint density, where ρ12 = −1 and ρ23 = 1. In
our example this would correspond to our having a belief that there is a
strong negative correlation between the occurrence of depression and
schizophrenia, but a strong positive correlation between schizophrenia and
obsessive compulsive disorder. While this might be reasonable, we recognise
that this distribution also gives the same weight to the exact opposite case,
where there is a strong positive correlation between the occurrence of
depression and schizophrenia, but a strong negative correlation between
schizophrenia and obsessive compulsive disorder (corresponding to the
bottom-left-hand corner of the joint density). It seems odd for us to specify a
prior distribution that gives equal weight to these completely opposing views!
As we increase v, we obtain a distribution that favours diagonal matrices (see
the bottom-left-hand panel of Figure 8.31). In our case, this corresponds to
the four disorders occurring independently of one another in a patient.
Remember that the Wishart family are distributions over covariance matrices,
not correlation matrices like the LKJ. This means that these distributions also
determine what the variance of each element of the data vector should be.
When v is low, the inv-Wishart allows considerable variance in the score of
individuals for each of the mental health disorders (see the top-right-hand
panel of Figure 8.31; note it has a log scale). When we increase v, we indicate
that there is much lower variability in the scores on these diagnostic tests (see
the bottom-right-hand panel of Figure 8.31). We find it cumbersome to have
a single parameter that changes both the covariances and variances of the
elements in our data vector, d. Instead, we prefer to use an LKJ distribution to
determine the correlation structure of our correlation matrix, and an
independent prior on a vector of positive weights (τ in expression (8.43)),
which multiplies the correlation matrix to yield a covariance matrix. Our
choice of prior for the weight vector then influences the scale of the elements
of d, independently from their covariances.
Next we consider the behaviour of the Wishart distribution:

Although this distribution is typically used as a prior for the inverse of the
covariance matrix (because of its conjugacy properties), we are free in Stan



nonetheless to use this distribution as a prior for a covariance matrix. Again,
we assume that Ψ equals the identity matrix, and examine the effects of
changes in v. As an aside, the inv-Wishart distribution is obtained by first
sampling C ~ W(Ψ, v), then inverting X = C–1 (hence the name inverse). The
Wishart distribution also turns out to be the sampling distribution for
covariance matrices, where the data has been generated by sampling from
multivariate normals.
The Wishart distribution is, in general, better behaved than its inverse sister.
In particular, the joint distribution for the correlation of partial correlations
ρ12 and ρ23 is less complex for low values of v (see the top-left-hand panel of
Figure 8.32). This means that the marginal distributions for the partial
correlations are more reflective of the joint distribution, meaning that we
specify a prior belief with fewer unexpected, and often inconsistent,
relationships. Again, as we increase v, we obtain covariance matrices which
are closer to being diagonal (see the lower-left-hand panel of Figure 8.32). In
contrast to the inv-Wishart, the variances (the diagonal terms of our matrix)
increase when we increase v (compare the top and lower panels of Figure
8.32). This is unsurprising since, as we described in the previous paragraph,
to sample from the inv-Wishart distribution we take the inverse of matrices
sampled from the Wishart distribution.
In summary, we advise using the LKJ distribution over the Wishart family of
distributions to model covariance and correlation matrices. This is because,
while the Wishart family have been used historically (mainly due to their
conjugacy with the multivariate normal), their use can be highly restrictive,
and can result in inconsistent prior beliefs.
Figure 8.31 Left: the joint distribution (the main density plots) and marginal
distribution (histograms above and to the side of the main plots) of ρ12 and
ρ23 resulting from sampling the inv-Wishart distribution for two different
values of ν: ν = 5 (top panels) and ν = 100 (lower panels). Right: the
distribution for the variances corresponding to these two values of ν. In all
cases, the plots were generated using 500,000 samples from an inv-Wishart
distribution for a 4 × 4 covariance matrix. Note that the individual points in
the joint density plots represent samples and the shading indicates a high
local density of samples. Also, note that the scales of the right-hand plots are
logarithmic.



Figure 8.32 Left: the joint distribution (the main density plots) and marginal
distribution (histograms above and to the side of the main plots) of ρ12 and
ρ23 resulting from sampling the Wishart distribution for two different values
of ν : ν = 5 (top panel) and ν = 100 (lower panel). Right: the distribution for
the variances corresponding to these two values of ν. In all cases, the plots
were generated using 500,000 samples from a Wishart distribution for a 4 × 4
covariance matrix. Note that the individual points in the joint density plots
represent samples and the shading indicates a high local density of samples.
Also, note that the scales of the right-hand plots are logarithmic.



Inverse – Wishart properties:

Wishart properties:

8.6 Choosing a Likelihood Made Easy
Figure 8.33 shows a tree diagram that gives a simple way of choosing a



likelihood that is appropriate for a given circumstance. While, of course, this
diagram is not exhaustive, and should not be followed blindly, it is hoped that
it will nonetheless be useful as a starting point.
Figure 8.33 A guide for choosing a likelihood. Circled text represents an
appropriate choice of distribution. The uncircled ‘Many Possibilities’
indicates that there are many multivariate discrete distributions possible here.

8.7 Table of Common Likelihoods, their
uses and Possible Priors
The properties of the various distributions encountered in this chapter are
summarised in Table 8.1. For an interactive guide to the distributions, take a
look at: https://study.sagepub.com/lambert

https://study.sagepub.com/lambert


8.8 Chapter Summary
The reader should now have a good idea of the array of likelihood and prior
distributions which are available to us; however, this chapter was not meant
to be all-encompassing. It is almost inevitable that in applied analysis the
reader will find circumstances when none of the distributions we discussed
here will be appropriate. It is hoped, however, that this chapter provides some
guidance for where to look in the literature. It is also often the case that a
suitable distribution can be constructed using the distributions that we
discussed in this chapter as building blocks.
One of the most important decisions when choosing a likelihood and prior is
how much variability to allow for. We have stressed the benefits of the robust
versions of sampling distributions (for example, the negative binomial to the
Poisson and the Student-t distribution to the normal) and similarly for choices
for priors (again, the Student-t distribution to the normal and the LKJ to the
Wishart distribution). However, how should one decide on just how robust to
make a model? We shall postpone some of this discussion until Chapter 10,
where we will see there is a general methodology to help us to make these
decisions. But it would be remiss not to mention in passing an important cost
of using more robust models: they are typically more complex and can
significantly lengthen the time taken for modern computational samplers to
run (see Part IV). This cost must be balanced against the needs of the
situation, although we advise to always err on the side of robustness.
We have, in passing, mentioned conjugate priors. This is a set of conditions
that make it possible to calculate some posterior distributions by hand,
without the need to appeal to a computer for sampling. In many
circumstances using conjugate priors can be limiting, but these models can
nonetheless be useful starting points for an analysis. This class of priors also
helps us to build further our intuition for the mechanics of Bayesian
inference. In Chapter 9 we discuss these conjugate beasts.



8.9 Chapter Outcomes
The reader should now be familiar with the following concepts:

the sampling distributions (likelihoods from a different perspective) that
can be chosen, which encompass discrete and continuous random
variables, as well as multivariate outcomes
the robust versions of sampling distributions that allow greater
variability
prior distributions to use for:

probabilities and proportions
means and regression coefficients
non-negative parameters for scale and shape
covariance and correlation matrices

the robust versions of priors that allow a wider possible range of
parameter values

Table 8.1
Note, for the prior and likelihood columns, NA does not mean that a
distribution cannot be used as such – just that this is uncommon practice.





8.10 problem Sets
Problem 8.1 Drug trials
Suppose that we are testing the efficacy of a certain drug which aims to cure
depression, across two groups, each of size 10, with varying levels of the
underlying condition: mild and severe. We suppose that the success rate of
the drug varies across each of the groups, with θmild > θservere. We are
comparing this with another group of 10 individuals, which has a success rate
equal to the mean of the other two groups, θhomogeneous = (θmild + θservere) / 2.
Problem 8.1.1 Calculate the mean number of successful trials in each of the
three groups.
Problem 8.1.2 Compare the mean across the two heterogeneous groups with
that of the single group of 10 homogeneous people.
Problem 8.1.3 Calculate the variance of outcomes across each of the three
groups.
Problem 8.1.4 How does the variance across both heterogeneous studies
compare with that of a homogeneous group of the same sample size and same
mean?
Problem 8.1.5 Now consider the extension to a large number of trials, where
the depressive status of each group is unknown to the experimenter, but
follows θ ~ beta(α, β). Calculate the mean value of the beta distribution.
Problem 8.1.6 Which combinations of α and β would make the mean the
same as that of a single study with success probability θ?
Problem 8.1.7 How does the variance change, as the parameters of the beta
distribution are changed, so as to keep the same mean of θ?
Problem 8.1.8 How does the variance of the number of disease cases
compare to that of a single study with success probability θ?
Problem 8.1.9 Under what conditions does the variance in disease cases tend
to that from a binomial distribution?
Problem 8.2 Political partying
Suppose that in polls for an upcoming election there are three political parties
that individuals can vote for, denoted by {A, B, C}, respectively.
Problem 8.2.1 If we assume independence among those individuals who are
polled then what likelihood might we choose?
Problem 8.2.2 In a sample of 10 individuals we find that the numbers who
intend to vote for each party are (nA, nB, nC) = (6,3,1). Derive and calculate



the maximum likelihood estimators of the proportions voting for each party.
Problem 8.2.3 Graph the likelihood in (pA, pB) space.
Problem 8.2.4 If we specify a (a, b, c) prior on the probability vector p = (pA,
pB, pO) the posterior distribution for a suitable likelihood is given by a
Dirichlet(a + nA, b + nB, c + nC). Assuming a Dirichlet(1,1,1) prior, and for
the data given, find the posterior distribution and graph it in (pA, pB) space.
Problem 8.2.5 How do the posterior means compare with the maximum
likelihood estimates?
Problem 8.2.6 How does the posterior shape change if we use a
Dirichlet(10,10,10) prior?
Problem 8.2.7 How does the posterior shape change if we use a
Dirichlet(10,10,10) prior but have data (nA, nB, nC) = (60,30,10)?
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9.1 Chapter mission statement
At the end of this chapter the reader should appreciate that, under special
circumstances, it is possible to specify ‘conjugate priors’ that allow exact
calculation of a posterior density.



9.2 Chapter goals
Bayesian analysis requires us to compute the denominator of Bayes’ rule to
exactly calculate the posterior. For most realistic models of phenomena, this
is usually a bridge too far, since this involves calculating a high-dimensional
integral, which is practically intractable. However, there is a class of models
– pairs of likelihoods and priors – where this calculation is possible.
Furthermore, previous researchers have tabulated the formulae for the
posterior probability distribution functions that result from particular
combinations of likelihoods and priors, meaning that we do not need to do
any maths at all! The priors that result in these nice posterior properties are
referred to as conjugate. By choosing a prior that is conjugate to a given
likelihood, the resultant posteriors are actually in the same family of
distributions as the priors themselves, making it even easier to remember and
use this class of models.
Choosing conjugate priors is usually overly restrictive, but can nevertheless
be a useful starting point before moving on to more realistic models, which
are typically estimated by computational sampling (see Part IV).
Additionally, because many texts assume a basic understanding of conjugate
priors, it is important to be familiar with their use.
This chapter is deliberately kept short for three reasons. First, we believe that
a few indicative examples can provide sufficient insight into how to use
conjugate priors. Second, the whole point of using conjugate priors is that we
do not need to do the maths – so why learn it! Third, the use of conjugate
priors is typically restrictive and now less important with computational
sampling.

9.3 What are conjugate priors and why are
they useful?
Suppose that we run a restaurant and want to build a model for the number of
people who have food allergies in a particular sitting, X, in order to inform
the buying of ingredients. If we assume that the allergy status of one person is
independent of everyone else’s then a reasonable choice is a binomial
sampling model (see >Section 4.6.2),X ~ B(n,θ), where n is the number of
people in a sitting and θ is the probability that a randomly chosen individual
has an allergy. We can write the binomial likelihood as:



What is a conjugate prior?

Since the beta distribution is defined over the [0,1] interval and can represent
a range of prior beliefs (see Section 8.5.1), we use a beta prior for θ (see
Section 8.5.1). The beta distribution’s probability density function (PDF) can
be written as:

where B(α,β) is a beta function, which is not dependent on θ.
We notice that expression (9.1) for the sampling distribution and expression
(9.2) for the prior both contain a term of the form θa(1–θ)b. When we use
Bayes’ rule to calculate the posterior, we are required (in the numerator) to
multiply together the likelihood and the prior, resulting in:

where α’= α+k and β’ = β+n–k. In this case, the posterior PDF has exactly the
same θ dependence as the beta prior’s PDF. Furthermore, since the prior is a
valid probability distribution, the posterior must also be one. This means that,
because the posterior PDF has the same functional form (in terms ofθ) as a
beta distribution’s functional form, it must actually be one. Alternatively, if
we actually do the denominator calculation in Bayes’ rule, we find it equals
B(α’,β’), meaning that the posterior PDF is a beta distribution, although with
different parameters to the prior. Here we say that the beta prior is conjugate
to the binomial likelihood since the posterior is also a beta distribution.
OK, let’s step away from the maths for a minute and examine what happens
to the beta posterior as we include data from our restaurant (see the left-hand
panels of Figure 9.1). If there are more allergy sufferers in our sample the
likelihood shifts to the right, which is, in turn, mirrored by the beta(α+k,β



+n–k) posterior. Alternatively, if we maintain the same number of people
with allergies in our sample and adjust our priors, the posterior now moves in
accordance with the prior (see the right-hand panels of Figure 9.1).
So we see that using a binomial likelihood with a beta prior leads to a beta
posterior, and that the behaviour of the estimated posterior behaves as we
would expect it to intuitively. However, we are yet to define what is meant by
a conjugate prior. We can describe conjugacy through the following flow
diagram, which represents the Bayesian inference process:

In the allergy example, this process is described by:

So, we specified a beta prior, and the data, through the binomial likelihood,
updated our beliefs and resulted in a beta posterior (albeit with different
parameters, hence why beta’ is used above). Conjugate priors are always
defined relative to a particular likelihood and means that both the prior and
the posterior come from the same family of distributions. Diagrammatically,
we have that for a specified likelihood, L, and a prior distribution from a
particular family, f ∈ F:
Figure 9.1 The effect of different numbers of individuals with allergies (left)
and priors (right) on the posterior distribution. In all cases, the sample size
was 30.



where f′ ∈ F is another member of the same family of distributions. For
example, if we feed a gamma prior into our Bayesian updating rule, we
should get a gamma posterior out (as is the case for a Poisson likelihood). If
we feed a normal prior in, we should get a normal posterior out (for particular
normal likelihoods), and so on.
For all conjugate prior examples, we can write down a mechanistic rule using
our flow diagram for how to update our prior beliefs in light of data. In our
example above:

By using this simple rule we can avoid doing any maths since we can just
substitute our numbers into the above formula (which we can look up in
Table 9.1) to yield the posterior PDF. This really is Bayesian statistics made
easy!

9.4 Gamma–Poisson example: counting cars



As another example, imagine that we work for a department for transport and
want to build a model that predicts the number of cars, Y, that approach a
particular intersection over a certain period of the day. Here we might use a
Poisson likelihood if we believe that the cars arrive independently of one
another (see Section 8.4.3). We can write down the likelihood in this case as:

where y represents a data vector comprising the numbers of cars that
approached the intersection over n samples, and we have used 

If we use a gamma prior to describe our prior preferences (see Section 8.4.9),
we can write down its PDF in the following form:

Again, we notice a common term in both the likelihood and prior expressions
(this time λae–bλ). This means that when we multiply the two terms together
in the numerator of Bayes’ rule, we obtain a posterior PDF given by:

where  and β’ = β + n. Again, since the dependence on the
parameter λ is the same in both the posterior and prior PDFs, and because the
prior is a valid probability distribution, the posterior must be from the same
family of distributions – in this case a gamma distribution. Writing down the
updating rule for this example, we find that:

Note that this rule is only correct for the form of gamma distribution
parameterised as in expression (9.9). If we used a different parameterisation
of the gamma prior, we would need to adjust the rule accordingly.
Let’s now apply this rule to our example of cars arriving at an intersection.
Suppose that we collect hourly counts of the number of cars that arrive at two



different intersections. We use the above rule to calculate the posteriors in
each of these cases (see the left-hand plots of Figure 9.2). We see that
increases in the average number of cars in the sample leads to an increase in
α’, resulting in a shift rightwards in the posterior, in accordance with the
likelihood. Similarly, if we change the prior parameters (α,β), this leads to
changes in (α’,β’) for the posterior, resulting in a corresponding shift in the
posterior (see the right-hand panel of Figure 9.2).
Figure 9.2 The effect of (left) different samples and (right) different priors on
the posterior distribution for the car example described in the text. The prior
shown in the top-left-hand panel is a Г (10,1) distribution. The data sample in
the right-hand columns had a mean of 21. In all cases the sample size is 5.

9.5 Normal example: giraffe height
Suppose that we are modelling the average height of adult male giraffes in a
particular nature reserve. Since the height of a giraffe is the result of a



multitude of different factors – both genetic and environmental – we might
use a normal likelihood (see Section 8.4.6). Furthermore, we assume that the
heights of the individual giraffes in our sample,z = {z1, z2,..., zn}, are
independent of one another, resulting in a likelihood of the form:

To construct a conjugate prior, we reason from previous examples that its
functional form must be similar to the likelihood. This means that we require
a prior distribution of the form:

We could separate the prior using the law of conditional probability into
p(μ,σ2) = p(σ2)× p(μ | σ2), where we have:

This prior structure turns out to be reasonable for a range of circumstances.
The following priors have the above structure [14] (see Section 8.5.3 for a
discussion of the first):

Gelman et al. [14] label the joint prior specified by these assumptions as an 

 distribution, in other words a normal
inverse chi-squared distribution. Multiplying together the normal likelihood
function and our chosen prior PDF, we obtain the numerator of Bayes’ rule,
which dictates the functional form of the posterior density. We will not go
into the maths here, but it is possible to derive the parameters (see [14]) of
the posterior ᷒ – Inv-χ2 distribution, which are:



While the expressions above are perhaps bewildering, there is intuition in the
results. The posterior mean giraffe height μ′’ is a weighted average of the
prior mean and the mean from the data, with more weight given to the data
for larger samples. The posterior variance parameter σ′2 is a weighted average
of the prior variance for σ2, the data sample variance s2 and a third term
which represents the difference between the prior mean and the sample mean.

Table 9.1Section 9.5 

Note that here we have assumed that both parameters of the likelihood are
unknown beforehand. In some circumstances, one of (μ,σ2) may be known,
and simpler conjugate priors can be found (see Table 9.1).

9.6 Table of conjugate priors
Since this information is widely available online (see, for example,
https://en.wikipedia.org/wiki/Conjugate_prior), we give the conjugate prior
update rules for only a few common cases in Table 9.1.

9.7 The lessons and limits of a conjugate
analysis

https://en.wikipedia.org/wiki/Conjugate_prior


Using conjugate priors means that there is no need to actually do any of the
maths ourselves, as we can stand on the shoulders of past giants and use their
tabulated results. All we need to do is plug our numbers into these convenient
formulae, and then we can exactly derive a form of the posterior distribution
which is a weighted average of the prior and likelihood, as we expect.
While the use of conjugate priors makes Bayesian statistics easy, it can limit
us. These limits are quickly approached when we need greater modelling
flexibility, which is especially the case when using hierarchical models (see
Part V).
Continuing with the giraffe heights example, suppose that we fit a normal
distribution to our sample, first by the method of maximum likelihood (see
Chapter 4) to give us an initial insight into the problem. We then compare the
fitted normal distribution’s PDF with the actual data sample, and find that it
has insufficient variability to explain the data (see the left-hand panel of
Figure 9.3). Instead, we decide to use the Student-t distribution since we
know that it is a more robust alternative to the normal distribution (see
Section 8.4.7). This time the maximum likelihood estimates of the parameters
of this distribution represent a much better fit to the data (see the right-hand
panel of Figure 9.3).
Figure 9.3 Fitting giraffe height data using (left) a normal distribution and
(right) a Student-t distribution. The curves indicate the maximum likelihood
fits of each distribution to the data (shown in red).

We now want to use what we have learned to do full Bayesian inference
using our giraffe heights data. We know that the normal likelihood has a
conjugate prior (a normal–inv-χ2 distribution) meaning that we could derive
an exact form for the posterior distribution. However, our pre-Bayesian
analysis has hinted that a normal likelihood is not fit for purpose here and so
we want to use a Student-t distribution instead. As such, we consult Table 9.1
to look for the conjugate prior to a Student-t distribution. Alas! There is no



corresponding entry. This means that simply choosing a more appropriate
sampling distribution has made it impossible to use a conjugate prior. This
leaves us with a choice. Either we stay with a normal likelihood, which we
know to be inadequate, or we abandon the conjugate-ship and use
computational methods (see Part IV). There is only one correct answer here –
we should not allow our analysis to be determined by the complexity of
choosing a more appropriate distribution, and should use Markov chain
Monte Carlo. Of course, we can use the normal distribution, with its normal–
inv-χ2 conjugate prior, to gain some understanding of the problem, but the
Student-t distribution will ultimately be more satisfactory.



9.8 Chapter summary
The reader should now understand how choosing a conjugate prior can help
to simplify Bayesian inference. However, this simplicity comes at a cost! In
most real-life examples of inference, the constraint of choosing likelihood–
prior conjugate pairs is too restrictive and can lead us to use models that
inadequately capture the variability in the data. However, there are
circumstances when conjugate pairs are appropriate, but, as always, we need
to check the suitability of our chosen modelling framework before drawing
any conclusions.
Bayesians happen to have at their disposal powerful and flexible ways of
checking the adequacy of their models. We now concentrate on this
underused and, perhaps, most important aspect of Bayesian modelling.



9.9 Chapter outcomes
The reader should now be familiar with the following concepts:

the definition of a conjugate prior
how to use Table 9.1 to find a conjugate prior for a particular likelihood
as well as write down (not calculate!) the posterior PDF
the limits of conjugate priors and the need for computational methods

9.10 Problem sets
Problem 9.1 The epidemiology of Lyme disease
Lyme disease is a tick-borne infectious disease spread by bacteria of species
Borrelia, which are transmitted to ticks when they feed on animal hosts.
While fairly common in the United States, this disease has recently begun to
spread throughout Europe.
Imagine you are researching the occurrence of Lyme disease in the UK. As
such, you begin by collecting samples of 10 ticks from fields and grasslands
around Oxford, and counting the occurrence of the Borrelia bacteria.
Problem 9.1.1 You start by assuming that the occurrence of Borrelia bacteria
in one tick is independent of that in other ticks. In this case, why is it
reasonable to assume a binomial likelihood?
Problem 9.1.2 Suppose the number of Borrelia-positive ticks within each
sample i is given by the random variable Xi, and that the underlying
prevalence (among ticks) of this disease is θ. Write down the likelihood for
sample i.
Problem 9.1.3 Suppose that in your first sample of size 10 you find X1 = 1
case of Borrelia. Graph the likelihood here and hence (by eye) determine the
maximum likelihood estimate of θ.
Problem 9.1.4 By numerical integration show that the area under the
likelihood curve is about 0.09. Comment on this result.
Problem 9.1.5 Assuming that θ =10%, graph the probability distribution
(also known as the sampling distribution). Show that, in contrast to the
likelihood, this distribution is a valid probability distribution.
Problem 9.1.6 (Optional) Now assume that you do not know θ. Use calculus
to show that the maximum likelihood estimator of the parameter, for a single
sample of size 10 where you found X ticks with the disease, is given by:

(Hint: maximise the log-likelihood rather than the likelihood.)



Problem 9.1.7 A colleague mentions that a reasonable prior to use for θ is a
beta(a,b) distribution. Graph this for a = 1 and b = 1.
Problem 9.1.8 How does this distribution change as you vary a and b?
Problem 9.1.9 Prove that a beta(a,b) prior is conjugate to the binomial
likelihood, showing that the posterior distribution is given by a beta(X + a,10
– X + b) distribution.
Problem 9.1.10 Graph the posterior for a = 1 and b = 1. How does the
posterior distribution vary as you change the mean of the beta prior? (In both
cases assume that X = 1.)
Problem 9.1.11 You now collect a larger data set (encompassing the
previous one) that has a sample size of 100 ticks in total, of which you find 7
carry Borrelia. Find and graph the new posterior using the conjugate prior
rules for a beta(1,1) prior and binomial likelihood.
Problem 9.1.12 You collect a second data set of 100 ticks, this time finding
that 4 carry the disease. Find and graph the new posterior (across both data
sets) using the conjugate prior rules for a beta(1,1) prior and binomial
likelihood. How does it compare to the previous one?
Problem 9.1.13 Now we will use sampling to estimate the posterior
predictive distribution for a sample size of 100, using the posterior
distribution obtained from the entire sample of 200 ticks (11 of which were
disease-positive). To do this we will first sample a random value of θ from
the posterior: so θi ~ p(θ|X). We then sample a random value of the data X by
sampling from the binomial sampling distribution Xi ~ B(100,θi). We repeat
this process a large number of times to obtain samples from this distribution.
Follow the previous rules to produce 10,000 samples from the posterior
predictive distribution, and then graph it using a histogram.
Problem 9.1.14 Does our model fit the data?
Problem 9.1.15 Indicate whether you expect this model to hold across future
sampling efforts.
Problem 9.1.16 If we assume a uniform prior on θ, the probability that a
randomly sampled tick carries Lyme disease, what is the shape of the prior
for θ2? (This is the probability that 2/2 ticks carry Lyme disease.) (Hint: do
this either using Jacobians (hard-ish), or by sampling (easy-ish).)
Problem 9.2 Epilepsy
In the data file conjugate_epil.csv there is a count of seizures for 112 patients
with epilepsy who took part in a study [2]. Assume that the underlying rate of



seizures is the same across all patients, and that the event of a seizure
occurring is independent of any other seizures occurring.
Problem 9.2.1 Under these assumptions what model might be appropriate for
this data?
Problem 9.2.2 Write down the likelihood for the data.
Problem 9.2.3 Show that a gamma prior is conjugate to this likelihood.
Problem 9.2.4 Assuming a Γ(4,0.25) prior (with a parameterisation such that
it has mean of 16), find the posterior distribution, and graph it.
Problem 9.2.5 Find or look up the posterior predictive distribution, and
graph it.
Problem 9.2.6 Comment on the suitability of the model to the data.
Problem 9.3 Light speed
The data file conjugate_newcomb.csv provides Simon Newcomb’s (1882)
measurements of the passage time (in millionths of a second) it took light to
travel from his lab to a mirror on the Washington Monument, and back again.
The distance of the path travelled is about 7.4km. The primary goal of this
experiment is to determine the speed of light, and to quantify the uncertainty
of the measurement. We assume there are a multitude of factors that
additively result in measurement error for the passage time.
Problem 9.3.1 Why might a normal distribution be appropriate here?
Problem 9.3.2 Write down the likelihood for all the data.
Problem 9.3.3 Derive the maximum likelihood estimators of all parameters.
Problem 9.3.4 Based on the likelihood function, what functional form for the
prior p(μ,σ2) would make it conjugate?
Problem 9.3.5 Assuming a decomposition of the prior p(μ,σ2) = p(σ2) × p(μ|
σ2), what priors might we use?
Problem 9.3.6 (Difficult) Using these priors, find the parameters of the
posterior distribution.
Problem 9.3.7 Comment on the suitability of the model to the data. (You can
use the MLEs here, or, if you are feeling ambitious, the full posterior
predictive distribution.)



10 Evaluation of model fit and hypothesis
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10.1 Chapter mission statement
At the end of this chapter, the reader will grasp the powerful methods that a
Bayesian has at their disposal to evaluate the fit of their models to data as
well as to select between different models.



10.2 Chapter goals
Models are interpretations of real life, and are, necessarily, reduced versions
of it. However, a good model can, despite its simplicity, suggest valuable
strategies for navigating the real world. This begs us to ask, ‘What is a good
model?’ Such a model should incorporate just enough realism so that we trust
its outputs, while being simple enough to allow interpretation and
extrapolation. But how in practice can we determine whether our model
meets these criteria?
The Bayesian testing framework which allows us to judge the fit of a model
to data is known as posterior predictive checks (PPCs). The idea behind this
umbrella of methods is simple. If the model is a good fit to the data, then fake
data that we generate from the fitted model should look indistinguishable
from the real thing. In practice, this is not usually fully attainable, so, instead,
we choose a model that captures the characteristics of the data most important
to us. This means that we are free to choose which features of the data to use
to assess the fit of a model to data, and this choice, hence, becomes an
important part of Bayesian model checking. The beauty of PPCs is that they
allow us to understand the ways in which a model is good and the ways in
which it is deficient. Examining models through this multidimensional lens is
more rewarding than more commonly used evaluation criteria and easier to
understand.
In the scientific process, we often encode different hypotheses in each of our
models. To determine which, if any, of the hypotheses best represents the
data, we hence want to identify the most predictive model. Recently, criteria
have been introduced that estimate a model’s predictive capability in a more
Bayesian spirit than the more conventionally used AICs or DICs (if you don’t
know these, don’t worry – we cover them in this chapter). Towards the end of
this chapter, we introduce these relatively new additions to the modeller’s
arsenal and discuss their use. This section is inevitably a little more
mathematically advanced than those preceding it, although we endeavour to
focus on the intuitive nature of the maths, rather than dwell on the algebraic
details.

10.3 Posterior predictive checks
10.3.1 Recap – posterior predictive distributions
We discussed how to estimate the posterior predictive distribution in Section



7.8, but we briefly review this process now, as it is crucial to what follows. If
we fit a Bayesian model to data, x, we obtain the posterior distribution, p(θ |
x) . We can then use this distribution to generate samples from the posterior
predictive distribution, which is a probability distribution over possible
values of future data x’. In particular, we iterate the following:

1. Sample θi ~ p(θ | x): that is, sample a parameter value from the posterior
distribution.

2. Sample : that is, sample a data value from the
sampling distribution conditional on the parameter value from the
previous step.

For clarity, we have termed p(x′ | θi) a sampling distribution rather than a
likelihood because we hold the parameter fixed at θi. This two-stage process
reflects the two sources of uncertainty that we have: the uncertainty in the
parameter value (reflected in the posterior distribution) and the uncertainty
due to sampling variation (reflected by the sampling distribution).
If the two above steps are iterated a sufficient number of times, then the
resultant histogram of our data samples approaches the shape of the exact
posterior predictive distribution, were we to calculate it by integration. For
the majority of cases, we estimate the posterior predictive distribution by
sampling since the high-dimensional integrals involved are often intractable.
10.3.2 Graphical PPCs and Bayesian p values
Now that we understand the methodology for calculating the posterior
predictive distributions, we can discuss PPCs. In doing so, we need to discuss
what is meant by a good model.
It does not make sense to talk of an unconditionally good model. Since a
statistical model is always a simplification of reality, it will not reproduce
real life exactly. Typically, models are good at reproducing some aspects of
the real world, but worse at others. Usually, when we build a model, we plan
to use it for a particular purpose. Hence, a good model is one that can account
for the variation in data that is pertinent to this specific purpose.
In Bayesian analyses, we leverage the power of the posterior predictive
distribution to test whether our model can replicate the behaviours that are
most important to its eventual use. Specifically, we use these distributions to
generate fake data samples, which we then compare to the real thing. These
comparative tests are what constitute PPCs. We interpret the data that we
generate from the posterior predictive distributions as being the data sample



that we might collect tomorrow if the data-generating process remained the
same as it is today.
Graphical visualisations are a great way to test the performance of our model.
By visually comparing key aspects of the simulated and actual data samples,
we can quickly determine if our model is reasonable. The choice of
visualisations tests our creativity and familiarity with the problem at hand,
but definitely gets easier with more experience in PPCs. Graphical PPCs are
an important first step in testing a model’s performance, but they may
become cumbersome if we want to carry out many of these tests across a
large number of replicates. Instead, a numerical measure of a model’s
coherence with the data is often used, which is known as a Bayesian p value.
Both of these concepts are better explained through application, and we have
created the following examples to convey their use and usefulness. It is not
possible to be exhaustive here since the range of possible tests is essentially
infinite, but the following should provide a flavour of the different types of
tests that we can apply in practice. Note also that the ‘real’ data used in the
following examples is not actually real but created to aid with understanding
PPCs.
What is a posterior predictive check and how is it useful?

Amazon staff hiring
Imagine that we work as part of Amazon’s logistics team and are tasked with
building a statistical model to describe the weekly UK order volume. The
company has helpfully collected data on the weekly orders in the UK over the
past year (see the top-left panel of Figure 10.1). We might then ask: What
eventualities would we want our model to be able to handle?
Suppose that our model is to be used for planning the number of staff to hire
in UK warehouses next year. In this case, we want to hire sufficient staff
numbers to handle those weeks with the highest order volumes, with some
confidence that we can meet the demand. Perhaps we are content if our model
can generate the maximum order volume that we see in the real data in at
least 20% of simulated scenarios, since we believe that last year’s maximum
is relatively unlikely to be reached this year. However, we are constrained by
costs and so we do not want this probability to exceed 80% – this would
correspond to our being overly cautious about next year’s demand. We fit an
(unspecified) model to the data and then use it to generate samples from the



posterior predictive distribution.
In Figure 10.1 we show the actual order data from last year (in black), along
with 15 fake yearly samples (grey and red) that were generated from the
posterior predictive distribution of our model. We colour those sets in grey
that produce at least one observation that exceeds the highest order volume
from the actual data, and those in red if they fail to do so.

We find that  of the fake data sets have a maximum that exceeds the
highest order volume from last year’s data. Since this lies between 20% and
80%, we conclude that for this particular application (planning staff
allocation) we are reasonably confident in our model’s capability.
The proportion of cases where the maximum of our fake data sample
maximum exceeds the maximum of the actual data set is referred to as a
Bayesian p value, by analogy with Frequentist hypothesis tests. However, we
should take care not to interpret it in the same way. In contrast to Frequentist
p values, we need to be aware of either low or high values of this statistic. In
our example, if p < 20%, then the model does not generate enough extreme
observations. Whereas if p > 80%, then the model is, for our purposes, overly
cautious with uncertainty.
Figure 10.1 The weekly order volume for Amazon in the UK over the past
year (black) and 15 simulated yearly data sets from the posterior predictive
distribution of our model. The dashed line in each case indicates the value of
the highest weekly order volume from the real data. If the sample has at least
a single data point whose value exceeds this maximum, then the graph is
shown in grey, and red otherwise. Note that in those red cases above, some
appear to have a maximum greater than the actual, but this is a result of
binning the data.



As this example indicates, it is usually best to start with graphical checks of a
model’s performance, then move onto p values. The danger of starting right
away with a p value is that you will not fully understand the source of your
model’s problems resulting in erroneous conclusions.
Mosquito lifetime
Mosquito lifetime is an important determinant of malaria transmission, so
knowledge about this characteristic is much sought after. One of the ways of
determining the lifetime of mosquitoes in the wild is to use so-called mark–
release–recapture experiments. In this method a large number of mosquitoes
are marked with a fluorescent dye and are then released into the wild. By
capturing batches of mosquitoes over time and counting the number of
marked mosquitoes recaptured, this provides a way of gauging mortality
(plus migration technically). The faster the marked mosquito count decays,
the faster the mosquitoes are dying.
Suppose that we carry out one of these experiments, and obtain the data
series shown in Figure 10.2, indicating the number of recaptured marked
mosquitoes since release (on day 0). Since we know the number of
mosquitoes we released, we use a binomial regression model (where time is
the independent variable), where mosquito death reduces the number of
marked mosquitoes we expect to capture over time. This model assumes that
individual recapture events are independent of one another (see Section
8.4.2). After setting priors on the relevant distribution parameters, we
estimate the posterior and use it to generate samples from the posterior
predictive distribution (see top-left panel of Figure 10.2). It is evident from
this graph that the binomial sampling model does not capture the variation in



the data across all time points (the real data points frequently lie outside of
the simulated lines).
Figure 10.2 Top: the real recaptures of marked mosquitoes (red dots) versus
simulations from the posterior predictive distribution (lighter red lines) for
the binomial (left) and the beta-binomial (right) models. Bottom: residuals
from the simulated data versus actual for both model types over time.

A reason for this discrepancy could be that we assumed that captures of the
individual mosquitoes were independent. In practice, we might expect that
mosquitoes respond similarly to weather conditions – making them all more
or less likely to be captured at a given point in time. Similarly, if they exist in
swarms, they may be easier to catch en masse, again violating the
independence assumption. In these circumstances, we might change our
likelihood to a beta-binomial distribution since this allows for non-
independent events. We find that this model is a better fit to the data since
only a small proportion of the actual data points lies outside of the bulk of
samples from the posterior predictive distribution (see the top-right panel of
Figure 10.2). We would hence be more confident in making any inferences
about mosquito longevity using the results from the beta-binomial model.
Another way of displaying this data is to look at the residuals over time. In
the bottom panels of Figure 10.2 we see that both models under-predict the
number of mosquitoes recaptured on the first few days. This could be because



immediately after release the mosquitoes behave differently, meaning that
they are easier to recapture. A future iteration of this model might directly
model this behaviour, by introducing a parameter which inflates the recapture
probability for the first few days following the release.
Snow days
Suppose that we work for the New York City Council, which is responsible
for planning road gritting during the winter. As such, we wish to build a
model capable of reproducing realistic sequences of days in which the
average temperature falls below freezing (and, hence, the roads need
gritting). Suppose that we have the data from the previous April (see the top-
left panel of Figure 10.3) and want to build a model to generate possible
weather patterns for the coming April, to help inform policy making.
We begin by modelling the probability of a freeze occurring on a day t,Xt = 1,
as an independent Bernoulli process (see Section 8.4.1):

where θ is the probability that a freeze occurs on any given day in April. We
fit the model to the real data and use it to generate fake data samples from the
posterior predictive distribution. In planning the gritting, it is particularly
important to have knowledge of the persistence in freezing conditions as this
affects the buying of the salt and the hiring of temporary workers. A measure
of persistence is to calculate the length of the longest run of freezing days
which occurs in the data. We show this measure for the real and fake data
samples in Figure 10.3, shading those data samples grey that have a
maximum freezing spell duration equal to, or longer than, that of the real
data.
We find that the model cannot reproduce this aspect of the real data
particularly well, because in only 1 case out of 15 fake data samples (see
Figure 10.3) was the simulated duration of the longest run of freezing days
greater than the corresponding quantity from the real data, resulting in 

. Since p is small, we conclude that we need to change our
model. In particular, we want to choose a new model that better accounts for
autocorrelation in the state of the weather. For example, we might use a
model incorporating a persistent latent process, which represents the
predisposition to freezing.
Figure 10.3 The real data set (black) and 15 fake samples from the Bernoulli
model. Above each plot, we display the length of the longest freezing spell



that occurs in that data sample. If the fake data has a maximum freezing spell
duration that exceeds that of the real data, then we colour the graph grey, and
red otherwise.

Word distributions within topics
Google is interested in automatically decomposing corpuses of text into a set
of constituent topics to allow it to better understand the nature of the content
that is within them. This, in turn, means Google can build better algorithms
for its search engines (see [27]). If the corpus of text can be represented by a
group of documents (where each document might correspond to a single
website, for example) then Google might want to understand the differing
mixes of topics that are represented in each document. For example, a
website called ‘exotic-animals.com’ may devote much of its content to
discussing cool facts about animals, although it may also devote some
attention to wildlife conservation activities; a website called ‘pet-
funeral.com’ will probably spend less time discussing animals facts, and none
to conversation activities, and much of its content will be about the funereal
services offered to grieving pet owners. The most popular way to estimate the
topic content of documents is using a method known as Latent Dirichlet
Allocation (LDA) [5]. We do not go into the detail of this method, but
nonetheless believe that this example nicely illustrates the use of a PPC. The
assumptions of LDA are that each document is composed of a small number
of topics, with each word’s creation being attributable to one of these topics.



Importantly, the distribution of words within each topic is assumed to be the
same multinomial probability distribution (see Section 8.4.10), independent
of the particular document in question [5].
We can test the validity of this independence assumption by an appropriate
PPC. Specifically, if we look at the frequencies of words that belong to a
particular topic, then the independence assumption indicates that this
distribution should not vary across documents. As an example, imagine that
we have seven different documents and examine the frequency of the word
kitchen, which belongs to the house topic which concerns descriptions of
people’s houses. In LDA, we do not assume that the percentage of the topics
within each document is the same; however, within a certain topic, this model
assumes that the distribution of word frequencies is the same.
To test this we use the posterior predictive distribution for our fitted LDA
model to generate samples of text for each document; we then count the
occurrence of the word kitchen across the different documents (see Figure
10.4). We see that, for some of the documents, the actual frequency of the
word lies outside of the bounds of the fake data samples (notably documents
2, 5, 6 and 7), which leads us to question the assumption of independence. It
is possible to allow for greater variance in the word distribution by
incorporating extra document-level multinomial variance, using Dirichlet
compound distributions [27], or to add extra covariates that might explain
this systematic variation [5].
Figure 10.4 Frequencies of the word kitchen across seven different
documents (black dots), with simulations from the posterior predictive
distributions for the LDA model shown as box and whisker charts.

Bacterial infection
Suppose that we are working in a lab at the Centre for Disease Control and
are trying to understand why some of our samples often become
contaminated with a particular species of bacteria. First, we graph the



infection status of the 16 samples by the order they were pipetted (see the
top-left panel of Figure 10.5). We next decide to use an independent
Bernoulli likelihood for the infection status of each sample, supposing that
the source of the infection is airborne, meaning that all samples are equally
likely to become contaminated. We then generate fake data sets from the
posterior predictive distribution of the fitted model. Deciding that an
important aspect of the data to recreate is the number of infected samples, we
evaluate whether the recreated samples have a number of infected samples
greater than the real.
Doing so, we find that 6 out of 15 fake data samples have more infected

samples than the true number, resulting in . Confident that
we have created a model that adequately simulates the real data, we go to the
lab manager and tell her that the source of the infection is airborne. She looks
at us with consternation. This is surprising to her, since the bacteria species
that are colonising the samples is not known to travel through the air. She
advises that we go back and repeat the laboratory experiment to see if our
airborne model stands up to the test.
Figure 10.5 The real data set (black) and 15 fake data samples from the
Bernoulli model. If the number of infected samples in the fake data set
exceeds the real, then we colour the graph red, and grey otherwise.

Demoralised at the lack of confidence in our ability, and not excited by the
prospect of redoing the experiment, we go back and repeat it. In three repeats,
with 16 samples in each, we find {0,7,15} samples are infected. We then



assess the model’s capability using the previous PPC. Although the middle
case, where seven samples are infected, is produced in the fake data, the
extremes are not. Something is amiss with our model!
We go back to our desk and start to rethink things. Suddenly we realise the
error of our ways. We were graphing the infection status of our original
sample by the order the tubes were filled, but this is not the way the tubes are
organised during the experiment – they are in a 4 × 4 array. We then graph
the infection status of the samples in this fashion (see Figure 10.6). When
viewed in this light, we see that all of the infected samples were actually next
to one another – it looks like, rather than transmission through the air, the
bacteria simply ‘crawl’ from one tube to its neighbours. To test this
hypothesis, we generate fake data samples from the original Bernoulli model
and compare the number of separate infected blocks in these with the
original. By an ‘infected block’ we mean a single contiguous collection of
neighbouring samples that are all infected with the bacteria. For example, the
panel second from the top and second from the left of Figure 10.6 shows a
sample where there are two separate infected blocks.
In Figure 10.6 we see that only 1 sample out of 15 had a single block of

infection, resulting in . Since this value is quite low we
conclude that the original model is not a good fit to the data. Examination of
the experimental repeats also illustrates a similar result – they each only have
a single block of infection. To account for the spread of the infection, we
need a model that allows for a spatial covariance in infection status.
Figure 10.6 The real data set (black) and 15 fake data samples from the
Bernoulli model. If the number of separate blocks of infection (count
displayed above each panel) exceeds that of the real, then we colour the graph
red, and grey otherwise. Note that here we assume that diagonal touching
does not constitute a contact.



We go back to the supervisor and tell her we were wrong before; the
infection is not airborne and is spread simply by contact. She is pleased we
have come to this conclusion ourselves, albeit after a little prodding.
This example demonstrates that it is imperative to use the correct
visualisation for our data (the example was inspired by an example in [14]).
Misleading visualisations lead to false conclusions being drawn, as we saw
here. The example also demonstrates that it is essential to use a PPC that is
appropriate for the particular situation. Again, using the wrong form of PPC
leads to incorrect conclusions.

10.4 Why do we call it a p value?
As discussed earlier, we can generate simulations from the posterior
predictive distribution,ysim , and statistics, T(ysim,θ), calculated on the fake
data samples to capture some key aspect of the data-generating process. We
then generate a Bayesian p value by comparing the simulated data test



statistic with its value on the actual data, T(y,θ) [14]:

where the probability is calculated by, first, comparing the real and fake data
statistics for each fake data sample that we generate from the posterior
predictive distribution, and then, second, we count the number of fake data
samples where the simulated statistic exceeds the actual, which equals p. This
differs from the Frequentist p value because here we do not condition on the
parameter value θ and, instead, allow for its variation in accordance with the
posterior distribution. This is due to a difference in perspective, where
Bayesians regard the data as fixed and the parameter to vary, whereas
Frequentist statisticians see the converse (see Chapter 2).
The quantity p is a probability, although unlike Frequentist p values it is not
Pr(hypothesis is true | data). It is simply a measure of model (mis)fit. So
unlike Frequentist p values, values near 0 or 1 indicate a discrepancy between
the model and the data; values of p = 0.5 are the ideal. Typically, p values
lower than 5%–10% or higher than 90%–95% are chosen as thresholds to
indicate significant misfit. However, these are only rules of thumb. The
thresholds that we choose should ultimately be governed by the model’s
intended use.

10.5 Statistics measuring predictive
accuracy: AIC, DIC, WAIC and LOO-CV
10.5.1 Out-of-sample prediction and overfitting
We build statistical models to explain the variation in a data sample because
we believe that the insight this gives us applies to wider circumstances. One
way to measure the wider applicability of a statistical model is to evaluate its
predictive power on out-of-sample data. By fitting our model to one sample
of data and then using it to predict data in another, we hope to produce an
unbiased measure of a model’s capacity to generalise. The problem is that we
generally do not have access to out-of-sample data. (If we did, we would
usually include this as part of our sample!) One way out of this issue is to use
the same sample twice: once to fit the statistical model and again to test its
predictive power. The trouble with this approach is that we bias the odds in
our favour and leave ourselves susceptible to overfitting.
Overfitting is a statistician’s equivalent of cheating on a test in high school. If
we steal the test beforehand, we can work away – textbook in hand – to write
down the answers to the test before we take it. Unsurprisingly, when we take



the test we perform well, artificially well, in fact. However, if we take
another test – written by, for example, a teacher from another school – we
would perform badly. In this case, our learning is overfit. We perform well in
one particular application, the test that we have learned beforehand, but our
performance generalises poorly to other tests. In this case, the performance
on the first test is biased upwards and does not actually represent our inherent
knowledge of the subject matter. The second test performance – because it is
independent of the first – more adequately represents our state of knowledge
or, more likely, lack thereof. We would do better to actually learn the
material, and then our performance on the first test should be more similar to
that on the second. Our new model of learning would generalise much better
to out-of-sample data.
What is true of high school tests is also true of statistical models. If we try
hard enough we can build a model that predicts a given data set perfectly, by
adding layer upon layer of additional complexity. In producing a more
complex model, we make more extreme assumptions about the data-
generating process that may or, more likely, may not, be true. When we
obtain a fresh data set, these assumptions are tested and often found wanting,
meaning that the model is terrible for prediction.
In machine learning (a statistical framework for developing the most
predictive models), overfitting is avoided by splitting a data set into a
training set and a cross-validation set. The models are fitted to the training
set, which is then assessed by its performance on an independent cross-
validation set.
While we would ideally carry out this sort of partitioning in statistical
inference (in fact, one measure we discuss, LOO-CV, does exactly this),
often the computational task of refitting a model on many data sets makes it
prohibitive to do so. Also, the nature of the data can make it difficult to
decide on an appropriate data split. Among other reasons, these two issues
have led to a demand for other measures of model predictive capability,
which can be calculated without the need for re-estimation on a cross-
validation set.
These measures are, at best, approximations to the cross-validation ideal [15].
They aim to correct for the bias inherent in trying to assess a model’s
performance on the same data set which was used to fit the model in the first
place. Over the next few sections we introduce the most popular of these
measures.



What is meant by overfitting?

10.5.2 How to measure a model’s predictive capability?
If we obtain new data  there are a few
different ways we might measure the fit of a model. A popular way of
summarising the discrepancy between the model’s predictions 

 and the real data ynew is to measure the
mean squared error (MSE):

This measure is easy to calculate but does not have any theoretical
justification (apart from when a normal likelihood is used), which limits its
scope. A more theoretically justified Bayesian measure would be to use the
posterior predictive distribution (see Section 10.3.1) to measure a model’s
ability to predict new data. In particular, we could choose a model with the
highest posterior probability of generating the new data, p(ynew | y) .
Since the log function is a monotonic transformation, the score obtained by
using the logarithm of the posterior predictive distribution will mirror the
posterior predictive distribution. We favour using the log form because of its
connection with a concept called the Kullback–Leibler (KL) divergence,
which is a measure of the difference between the true density and the
estimated one. If we maximise the log of the posterior predictive distribution,
this is equivalent to estimating the posterior predictive density with the
lowest KL divergence from the true density (see Section 10.5.3). The scoring
function hence used is:

which can also be written as:

where Eposterior denotes the expectation with respect to the posterior
distribution.
10.5.3 The ideal measure of a model’s predictive
accuracy
This section is fairly mathematically involved, with a few integrals making an



appearance. (If you don’t fancy this mathematical odyssey, then feel free to
skip ahead to Section 10.5.4, as this section is not crucial to understanding
the rest of the material in this chapter.)
For simplicity, imagine that we start by considering a single new data point,
ynew, which amounts to replacing ynew (a vector) by ynew (a scalar) in
expression (10.4). Usually, we do not have access to this extra data, and so
the new data ynew is unknown. If we knew the true distribution f(y) for a
single new data point, we could evaluate the expectation of expression (10.4),
which Gelman et al.[14] call the expected log predictive density (elpd):

where Ef denotes expectation under the true data distribution f(y). This
measure quantifies how close the estimated posterior predictive distribution,
p(ynew | y) , is to the true distribution, f(y). Accordingly, expression (10.6) is
maximised when the estimated distribution equals the true one (see Figure
10.7).
The ideal measure of a model’s predictive fit

While expression (10.6) appears abstract, it is actually full of intuition. A
useful concept here is the Kullback–Leibler divergence (KL ≥ 0), which is a
measure of discrepancy between two distributions (see Figure 10.9 below).
For two continuous distributions, p(x) and q(x), we can quantify the
‘distance’ of q(x) from p(x) (the measure is not symmetric) by the following:

If the distributions are the same (that is, q(x) = p(x)), then we have:

Interestingly, the KL divergence can be related back to Morse code. This
code was optimised for the English language. This is why the most common
letter in English, e, has the shortest Morse code equivalent ( . ) whereas a less
common letter, q, has a longer representation ( –.- ). We can think about these
letter frequencies in English text as being governed by a distribution, p. The
KL divergence tells us the informational penalty, in terms of the length of



Morse messages versus the optimum that we would pay if we used the same
code to transmit messages in Spanish, which has letters with a different
frequency q. This is why the KL divergence is not a symmetric measure; the
inefficiencies from going English–Spanish are not the same as Spanish–
English since in both cases we are comparing the inefficient code with code
optimised to the target language. We can also think of the letter frequencies
in a Scrabble game as being optimised to help people make the most number
of words in their particular language. The KL divergence associated with
using an English board to play Scrabble in Spanish would measure something
like the reduction in average length of words used versus using a Spanish
board. So, in general, we can think about the KL divergence as measuring
some sort of informational penalty in going from something optimised to
distribution p to code for another distribution q.
Figure 10.7 The expected log predictive density (elpd) (top) as a function of
the estimated posterior predictive density (bottom). The true distribution –
f(y) in expression (10.6) – is shown as the bold curve, and example estimated
posterior predictive distributions – p(ynew | y) in expression (10.6) – are
shown as dashed lines.



We can further explain the meaning of the KL divergence using a simple
example. Suppose there are 10 objects in an urn we call p, and we can reach
in and randomly draw out one of these objects. In the urn, there is one red
ball and nine grey cubes. Imagine that there is another urn, which we call q,
which also has 10 objects but with a hitherto unknown frequency of red balls
and grey cubes. We then play a game with a friend – we agree to pay a friend
£1 if they reach into urn q and draw out a grey cube and they will pay us £9 if
they draw out a red ball. We decided the rules of the game on the basis of the
object frequencies in urn p, because these rules ensure that the game is fair

since  of the time they will draw out a grey cube, and we will pay them £1,



but  of the time they will pick a red ball and we will win £9. This means
that if we play the game long enough, each of our average winnings will be
zero. Hence, if the distribution of objects in urn q is the same as p then we
expect to make no money on any given play of the game; in this case, the KL
divergence of q from p is zero (see Figure 10.8). However, if there are more
red balls in q than there are in p, then we expect to make a profit in the long
run. Therefore, on a given play of the game, we expect to make a profit. Our
confidence in whether we will make a profit, however, depends on the
number of balls in the urn. The KL divergence provides a gauge of our
confidence, and hence increases with the numbers of balls in the urn (see
graph in Figure 10.8). When all of the objects are balls, we are certain that we
will win on any given play of the game. In this case, the KL divergence of p
from q is infinite.
Figure 10.8 The KL divergence for urn p (left) as a function of the number of
balls (circles) in urn q (shown above the line) which also contains 10 objects.

Figure 10.9 Top: a distribution p(x) (full curve) against two distributions:
q(x) and q′(x) (both dashed). Bottom: the products, p(x) log (q(x) / p(x)) and
p(x) log (q’(x) / p(x)), which are then integrated (see expression (10.7)) to
yield the KL divergence from p(x) to the other distributions, which are shown
in each case. The light and dark grey areas show regions that contribute
positively and negatively to the integral’s value.



We can use expression (10.7) to calculate the KL divergence between our
posterior predictive distribution, p(ynew | y), and the true distribution of new
(and old) data, f(y):

where the first term in the final line of (10.9) is fixed because we have no
choice over the true data distribution f(y). However, we do have a choice over
p in the second term, since we are choosing between models with different
posterior predictive distributions. Thus, to minimise the KL divergence
between the true distribution and the posterior predictive distribution, we
should pick the model with the posterior predictive distribution that
maximises the second term (maximises, because of the minus sign in front of
it).
Explaining Kullback-Liebler divergence through secret codes

A quick comparison between the second term of expressions (10.9) and
(10.6) for elpd reveals that they are the same. If we choose a model to
maximise elpd, we also minimise the KL divergence between our posterior
predictive distribution and the true data distribution.
If we then consider the elpd for our n new data points, taken one at a time, we
have what Gelman et al. [14] call the expected log pointwise predictive



density (elppd):

The pointwise measure defined in (10.10) is preferable to using the full joint
predictive distribution Ef(log[p(ynew | y)]) because it enables a range of
expressions representing out of sample error to be calculated from it [14].
10.5.4 Estimating out-of-sample predictive accuracy
from in-sample data
As we discussed previously, attempts to estimate out-of-sample predictive
accuracy using data that was used to fit the model are, at best,
approximations. They can also be misleading if attempts are not made to
correct for the selection bias caused by fitting a model to the same data used
to test its predictive capability. For overfit models (see Figure 10.10), if these
sources of bias are not corrected for, there will be a large gap between the
actual out-of-sample predictive capability of a model versus the amount we
estimate from within the sample.
Ultimately, we would like a measure of predictive accuracy that
approximates the elppd defined in expression (10.10), given that we do not
have new data, ynew, nor the true density of a single data point f(ynew). All
the methods (with the exception of LOO-CV) use the same data that was used
to estimate a model as a proxy for the future data and f, resulting in an
overstatement of its predictive capability. To correct for this over-optimistic
gauge of a model’s predictive capability, a bias correction is made in each
method. There are a number of different approaches to do this, although, as
we suggest in the following sections, we recommend using only WAIC or
LOO-CV, as these are the most Bayesian of methods currently in wide use.
Figure 10.10 Top: the fit of a linear model (left) and non-linear model (right)
to data. Bottom: the performance of each model when applied to a new data
set – the non-linear model does not generalise to new data as well as the
linear one.



10.5.5 AIC
The most common method for evaluating a model’s predictive accuracy and
for choosing between non-nested models is the Akaike Information Criterion
(AIC). This method comes from Frequentist statistics and, hence, does not
use the posterior distribution to evaluate the average log-likelihood, but
instead uses the maximum likelihood point estimate, meaning that 

. Since this method uses only point
estimates, it is inherently non-Bayesian.
The next step is to correct for the upward bias in estimation of predictive
accuracy due to fitting the model to the same data that is used to evaluate its
fit. To do this an assumption is made, based on the asymptotic normal
approximation for a posterior distribution [14], where subtracting the number
of parameters k from the log predictive density corrects for the increase in
accuracy due to heightened model complexity:
Evaluating model fit through AIC, DIC, WAIC and LOO-CV



This results in an estimate of elpd denoted . AIC – like all the other
measures that we consider – attempts to correct for the problem of
overfitting, in this case by penalising additional model complexity through k.
AIC is actually given by –2 times expression (10.11), meaning that we seek
to minimise this criterion.
This attempt at bias reduction is akin to using a kitchen knife to do surgery.
In all but the simplest of operations, this is not a great idea. In particular, for
more complex models (particularly hierarchical ones), the effective number
of parameters is not necessarily given by k. A more nuanced (and Bayesian)
approach is needed.
10.5.6 DIC
The Deviance Information Criterion (DIC) [33] is a more Bayesian

alternative to AIC. It uses the posterior mean point estimate, , rather
than the maximum likelihood estimate, as the point at which to evaluate the
log-likelihood. It then subtracts a data-dependent term which captures the
overfitting bias more effectively than the k term in AIC [14]:

where the bias correction term is given by:

where varposterior is the variance with respect to the posterior distribution.
More complex models have more parameters, with higher posterior
uncertainty for each of its parameter values. This increased uncertainty in the
parameter values means there is more variability in the log-likelihood –our
measure of model fit – meaning that we penalise these models more heavily.

DIC, like AIC, is again defined as –2 times , meaning that we aim to
minimise this quantity. We usually use computational sampling to
approximate the integrals required to exactly calculate the posterior mean and
variance in log probability (see Chapter 12), since, for all but the most simple
examples, these are analytically intractable.
10.5.7 WAIC
Both the aforementioned methods use point estimates to estimate the
predictive accuracy of the model, followed by a post-hoc correction to
account for overfitting. The correction for AIC is rigid and data-independent,
where we simply subtract the number of fitted parameters, and is based on



asymptotic normality conditions unlikely to be achieved in most
circumstances. The correction for DIC is more nuanced and uses both the
posterior distribution and the data to derive the bias term.
However, both of these measures ignore the uncertainty in the parameter
estimates when estimating the predictive accuracy. In this sense, these
estimates are still Frequentist in nature. The Watanabe–Akaike Information
Criterion or Widely Applicable Information Criterion (there is no consensus
over the meaning of this acronym) improves on this by incorporating
posterior uncertainty in the estimation of predictive accuracy. In
correspondence with expression (10.10), we consider each of the n data
points separately. Considering a single data point yi, we can take the log of
the average value of the likelihood across the posterior distribution:

where Eposterior is the expectation with respect to the posterior distribution. If
we sum corresponding terms for each of the n points, and include a bias
correction term, we obtain an estimate of the expected log pointwise
predictive density (elppd):

where:

Expression (10.16) makes the dependence of the bias correction on the
parameter uncertainty in the posterior more explicit and is recommended by
Gelman et al. [14] due to its similarity with the cross-validation ideal. Again,
to be on the same scale as AIC and DIC, we multiply expression (10.15) by –
2 to yield the WAIC, which we aim to minimise.
Note that in practice we typically use sampling rather than integration to
evaluate the various integrals involved in expressions (10.15) and (10.16)
(see Chapter 16).
10.5.8 LOO-CV
As we discussed previously, the ideal measure of a model’s predictive
accuracy would be to split a data set into a training set and a cross-validation
set. The model is then fitted (trained) on the training set, and its predictive
performance gauged on the independent cross-validation set. The use of this
independent cross-validation set circumvents the issue of selection bias, and
allows us to be more confident in our estimates of the model’s out-of-sample
predictive capability.



While the use of training and cross-validation sets provides a better measure
of predictive accuracy in principle, there are practical concerns which limit its
use. Here, we consider a method known as leave-one-out cross-validation
(LOO-CV), where we use a single data point to test the model’s predictive
power, ycv, and use the rest of the sample, ytrain, to train the model. Ideally,
this process is iterated n times (where n is the size of the data sample) so that
each data point in the sample is used once, and once only, as the single cross-
validation datum in one of the iterations. This can be extremely expensive
computationally speaking, particularly if the data set is large. Also, if the data
are structured, for example in the case of a time series, it may be difficult to
estimate the model with gaps in the data series.
In each iterate of LOO-CV we evaluate the log posterior predictive density
(across all samples from our posterior distribution):

where y−i denotes the training data vector with all data points included apart
from yi. If this process is iterated n times, we can estimate the overall
expected log pointwise predictive density by summing the individual lpd
[14]:

Estimates of elppd by this method may understate the predictive accuracy of
the full model because the training sample consists of only n – 1 data points
rather than the full sample [14]. So a corrective term can be added for
completeness; however, in practice this term is small (particularly for large
data sets), so it can usually be ignored.
In using LOO-CV to choose between models, we also run the risk of
overfitting. This is because, if we use LOO-CV to select a model, we will
likely pick one that fits both the signal and noise in the cross-validation set.
This is well documented in the machine-learning literature and merits the use
of a third data set called the test set, which is used only once to evaluate a
model.
10.5.9 A practical summary of measures of predictive
accuracy in simple terms
We have now introduced the theoretical ideal measure of a model’s
predictive accuracy and the various methods used to approximate this.
Ultimately, we would like a measure that is Bayesian as well as a reasonable
approximation for the out-of-sample predictive accuracy of a given model.



While AIC and DIC are commonly used, they are not fully Bayesian in
nature. WAIC is fully Bayesian as well as being closer to the ideal measure
of a model’s out-of-sample predictive accuracy. However, this method, like
AIC and DIC, estimates out-of-sample predictive accuracy from within the
same sample that was used to originally fit the model, meaning that post-hoc
bias corrections are required to correct for overfitting. LOO-CV partitions the
sample into a training set, which is used to fit the model, and a single cross-
validation data point, which is used to estimate out-of-sample predictive
accuracy. Since this method uses an independent data set to assess the
predictive accuracy, it avoids the need to correct for the overfitting bias
inherent in the other methods. In this respect, this method is the closest, and
cleanest, approximation to the ideal measure of out-of-sample predictive
accuracy.
However, there is a penalty to LOO-CV, in that it requires repeated
estimation on each of the n training and cross-validation set pairs, which may
be computationally infeasible for complex models. Also, both LOO-CV and
WAIC require a partitioning of the data sample into subsamples, which may
not be straightforward for situations where the data are structured (for
example, in time series, panel or network data). AIC and DIC do not require
such a partitioning and hence are more amenable in these circumstances.
Figure 10.11 shows the general hierarchy of all the measures. For a reader
unsure about which of the measures to use, we argue that WAIC and LOO-
CV, being fully Bayesian, would be the best choices. Better still, there is a
great R package called loo by Vehtari, Gelman and Gabry, which allows
estimation of LOO-CV and WAIC using existing simulation draws from the
posterior by a method known as Pareto Smoothed Importance Sampling
(PSIS) [40]. This actually makes it a lot easier to estimate LOO-CV, negating
the computational difficulty or time issues inherent in exactly calculating it.
Another great thing about the loo package is that it also outputs estimates of
the standard errors of the measures, which are helpful when trying to
decipher whether a model is actually better than another or is just due to
noisy measurements.
While WAIC and LOO-CV require the separation of the sample into n
partitions, it should be said that these individual subsamples do not
necessarily have to be individual data points. If a structured data set can be
broken up into these bigger blocks more easily than at the individual data
point level, then we suggest using these in the expressions that we presented



for WAIC and LOO-CV.
In Chapter 16, where we introduce Stan, we describe how to computationally
estimate the various measures of predictive accuracy that we discuss here.
The use of sampling makes things considerably easier for us, and we need not
remember the various formulae that we introduced here. However, this does
not mean that the aforementioned is not worthwhile – it is important to
understand the provenance of the various measures of model predictive
accuracy.
Finally, this section would not be complete without a nod to the masters. For
a more thorough perspective on measures of model predictive accuracy, see
[14] and [15], which served as invaluable references for this section.
Figure 10.11 Assessing the different measures used to evaluate the out-of-
sample predictive accuracy of a model as a function of computational time
and complexity (horizontal axis) and approximation quality (vertical axis).
The more red the colour, the more Bayesian the method. The idea for this
diagram came from a discussion on the Stan User Group forum, in particular,
due to suggestions from Michael Betancourt.

10.6 Marginal likelihoods and Bayes factors
An alternative approach to choosing between models is to use Bayes’ rule,
except allowing the choice of model to correspond to a parameter in itself. In
particular, we can compare:

where the left-hand side expression is the ratio of the posterior probabilities
for each of the models. To compute this ratio, we must calculate a term



known as a Bayes factor (first term on the right) and the ratio of prior
preferences for each of the models (second term on the right).
On first glance, this application of Bayes’ rule seems to allow us to
automatically choose between models. However, there are a number of issues
with this approach.
Introducing Bayes factors and marginal likelihoods

First, it requires us to specify a prior belief in each of the models. While this
might seem like an unfair criticism, given that we use priors in other parts of
a Bayesian analysis, in our experience it can be difficult to choose sensible
probabilities here. We usually want to choose models that are more
parsimonious, and so want our prior preferences over the model choice to
reflect this, but just how much should we penalise model complexity? We
believe there is no obvious answer to this question without appealing to the
various measures mentioned earlier in this chapter and we prefer their
approach.
Second, to calculate the Bayes factor we are required to calculate the
marginal likelihood or denominator for each model (see Chapter 6),p(data |
modeli) , where i∈{1,2}. However, we already know this is a difficult task
for all but the most simple of models because it involves calculating a high-
dimensional integral. In fact, it is this difficulty that partly motivates our
decision to avoid exact calculation and do sampling instead (see Part IV).
That said, some methods do exist to calculate marginal likelihoods, such as
Annealed Importance Sampling (see [28]). However, these methods are not
straightforward to implement and their convergence to the correct calculation
value can be painfully slow.
Another concern is the sensitivity of Bayes factors to the particular choice of
prior distribution, even if the posterior is relatively insensitive. This is
particularly true if we choose between models that use vaguely informative
priors. This sensitivity can be justified by examining the calculation of the
marginal likelihood itself:

We calculate expression (10.20) by finding the area under the graph of the
likelihood multiplied by the prior. The likelihood is generally (for a large
enough sample) very small across most areas of parameter space, meaning
that there is a narrow region of overlap between the high-density regions of



the likelihood and the prior. This means that the bulk of the marginal
likelihood’s value – determined by integrating the product of the likelihood
and prior – comes from a narrow region of parameter space. In this context,
changes to the prior that have relatively little effect on the posterior can have
a large impact on the product of the prior and likelihood in this narrow
region, causing significant fluctuations in the marginal likelihood.
Figure 10.12 The prior (red), likelihood (black) and posterior (grey) for a
data sample with the value of the marginal likelihood shown above each
diagram. The likelihood was a binomial distribution with a sample size of 10;
the prior was a beta(a,a) distribution; the data sample was {3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7}. In all cases, we indicate the region where both the
likelihood and prior have high values (as red shading) which represent the
bulk of the contribution to the marginal likelihood integral. Note that the
likelihood function has been scaled up to allow comparison with the prior.

As an example, imagine that we model a data sample as being generated from
a binomial distribution of sample size 10, and use a beta(a,a) prior to
represent our pre-experimental beliefs for the probability parameter. In Figure
10.12 we show how changes in the prior parameter a cause little change to
the shape of the posterior distribution, yet significantly affect the value of the
marginal likelihood.

10.7 Choosing one model or a number of
them?
Gelman et al. [14] imagine that there are basically two different
circumstances when models are compared. The first is when a model is
expanded and made more complex, meaning that the original model is nested
within the second. In this circumstance, it seems logical to use criteria –
perhaps both PPCs and the aforementioned measures of predictive accuracy –
to ask whether the additional complexity is sufficiently compensated for by
the better fit of the model to the data. For either answer to this question, it
probably makes sense to go ahead with a single model.



The second example is where we compare models that are not necessarily
nested within one another. This is frequently the case when building
regression models, where we choose which of the predictor variables to
include and which to omit. We strongly disagree with the Frequentist
perspective that there exists one true model; all models are really just
interpretations, and it does not make sense to suppose that one interpretation
is correct over all others. In light of this, it makes sense not to choose one
particular model, but to construct a larger model that encompasses all of the
smaller models within it. Machine learning algorithms frequently use this
type of methodology, and often it is the method with the best predictive
accuracy.
In the scientific process, we often encapsulate differing hypotheses about the
world in separate models. In this context, it is often the explicit aim of the
analysis to select the best-fitting model and, in doing so, choose the
hypothesis that best represents the data-generating process. We believe that in
these settings, it usually makes most sense to determine a single, best-
performing, model. However, a hierarchy of performance across a number of
models is also valuable as it can suggest which flavours of hypotheses are
performing worse than others.

10.8 Sensitivity analysis
Models are interpretations of reality. Posteriors are derived by assuming that
those interpretations are true. The uncertainty described by a posterior
distribution, and posterior predictive distributions, is likely downwardly
biased because it ignores the variability in the choice of model. Usually, a
number of models can describe a given situation equally well. If we ignore
this source of uncertainty, then we do ourselves an injustice because of our
intellectual overconfidence. In situations where there exists considerable
uncertainty over the choice of model, it can be sensible to model this
epistemic uncertainty explicitly, rather than merely discuss it. When we
conduct a statistical analysis, we usually have a few questions that we will
use our models to address. It is our duty to check that the answers to those
questions do not vary as we use one from the list of feasible models.
Imagine that we want to develop a model for rainfall in an area that will be
used to help architects plan the construction of a dam. Unfortunately, we
have only the past 100 days of rainfall available to use to build a model (see
the left-hand panel of Figure 10.13). Here, we are interested in building a



model that generates realistic patterns of wet and dry days. We will then use
this to investigate the maximum number of rainy days that we are likely to
encounter in reality since this information is crucial to decide the height and
thickness of the dam.
We consult the literature and find two models that might be appropriate in
this circumstance. One is a two-state Markov model, consisting of dry days
and wet days, with probabilities of transitioning between these states. The
other model is slightly more complex, having three states: dry, wet and
persistently wet. In both models, dry days occur when there is no recorded
rainfall. In the first model, a wet day occurs when there is non-zero rainfall,
and, in the latter, it is defined as a wet day following a dry one. The
persistently wet state occurs when there are two consecutive wet days.
Suppose that we fit both of these models to the data and find that both
perform similarly across a raft of tests, even when accounting for the extra
complexity of the three-state model. However, when we simulate rainfall
series from each, we find that the three-state model assigns a greater
probability to longer spells of wet days (see the right-hand panel of Figure
10.13). In this circumstance, we should probably err on the side of caution,
and tell the architects about the results of the three-state model, since the two
models differ considerably in their answers to the important question.
Figure 10.13 Left: the past 100 days of rainfall. Right: the maximum number
of consecutive rainy days using simulations from the simple rainfall model
(dark shading) and the more complex one (light shading).

A sensitivity analysis is more important the fewer data we have, or the more
uncertainty there is surrounding the choice of model. It is also imperative to
conduct such an analysis when there is an inherent sensitivity of decisions to
the conclusions of the models at hand.
There are a number of ways in which changes in a model’s conclusions can
be tested for sensitivity to modelling assumptions. We list here some of the
most common methods, although recognise that this list is not exhaustive:



Use robust prior and likelihood distributions as opposed to narrower
ones.
Consider different classes of likelihoods.
Consider the effects of different priors.
Within a particular model class, compare simple models with more
complex ones.

Rather than choosing a particular model, a nice way to incorporate this
uncertainty in the modelling process is to create a hierarchical model, of
which the individual models are particular cases (see Chapter 17). This
naturally allows the data to dictate the amount of weight to lend to each
model, rather than the extreme case of using only one of them.



10.9 Chapter summary
The reader should now understand how to critically assess a Bayesian model
and choose between different models. Posterior predictive checks (PPCs) are
used to compare the fit of a given model to some aspect of the sample data,
and statistical measures like WAIC and LOO-CV are used to compare
models in terms of their out-of-sample predictive accuracy.
You may be wondering why we need both of these approaches. This is
because the purpose of these two frameworks is different, although
complementary. PPCs assess the fit of your model to the data at hand,
whereas WAIC and LOO-CV assess the fit of your model to out-of-sample
data. The trouble with blindly using PPCs to construct a model is that this can
result in an overly complex model, which is overfit to the sample of data on
which it was estimated. We guard against this overfitting by using WAIC and
LOO-CV. In reality, these two different frameworks should be used in
tandem throughout the modelling process; we would not want to choose a
model with a good predictive accuracy but failed to represent some key
aspect of variation seen in the data. It can also be useful to combine aspects
of PPCs with measures of predictive accuracy. For example, we could
partition our data set into a training and cross-validation set, and see how a
model fitted to the former performs on PPCs on the latter.
We are now ready to describe in Part IV how to do modern Bayesian
inference using computers. However, before we do, we turn our attention to a
backwater of Bayesian statistics, concerning attempts to make it more
objective. While we do think that there is an issue with any method that
suggests that one analysis is more objective than another, it is important to
understand them since these methods are sometimes used in applied Bayesian
statistics today.



10.10 Chapter outcomes
The reader should now be familiar with the following concepts:

how to evaluate a model’s fit to data using PPCs
Bayesian p values
the theoretical ideal measure of a model’s predictive accuracy through
log posterior predictive probabilities and the problems with achieving
this ideal in practice
WAIC and LOO-CV as the most Bayesian and preferred methods to
estimate a model’s out-of-sample predictive performance
the Bayes factor way of choosing between competing models and the
problems inherent with this method
the importance of conducting a sensitivity analysis

10.11 Problem sets
Problem 10.1 WHO’s reported novel disease outbreaks
Suppose that you are interested in modelling the number of outbreaks of
novel diseases that the WHO reports each year. Since these outbreaks are of
new diseases, you assume that you can model the outbreaks as independent
events, and hence decide to use a Poisson likelihood, Xt ~ Poisson(λ), where
Xt is the number of outbreaks in year t, and λ is the mean number of
outbreaks.
Problem 10.1.1 You decide to use a Г(3,0.5) prior for the mean parameter (λ)
of your Poisson likelihood (where Г(α,β) is defined to have a mean of α/β).
Graph this prior.
Problem 10.1.2 Suppose that the number of new outbreaks over the past 5
years is X = (3,7,4,10,11). Using the conjugate prior rules for a Poisson
distribution with a gamma prior, find the posterior and graph it. (Hint: look at
Table 9.1.)
Problem 10.1.3 Generate 10,000 samples from the posterior predictive
distribution, and graph the distribution. To do this we first independently
sample a value λi from the posterior distribution, then sample a value of X
from a Poisson(λi) distribution. We carry out this process 10,000 times. (Hint:
use R’s rgamma and rpois functions to draw (pseudo-)independent samples
from the gamma and Poisson distributions, respectively.)
Problem 10.1.4 Compare the actual data with your 10,000 posterior
predictive samples. Does your model fit the data?



Problem 10.1.5 (Optional) Can you think of a better posterior predictive
check to carry out on the data?
Problem 10.1.6 The WHO issues a press release stating that the number of
novel disease outbreaks for this year was 20. Use your posterior predictive
samples to test whether your model is a good fit to the data.
Problem 10.1.7 By using your previously determined posterior as a prior,
update your posterior to reflect the new datum. Graph the PDF for this new
distribution.
Problem 10.1.8 Generate posterior predictive samples from your new
posterior and use it to test the validity of your model.
Problem 10.1.9 Would you feel comfortable using this model to predict the
number of disease outbreaks next year?
Problem 10.2 Sleep-deprived reactions
These data are from a study described in Belenky et al. [2] that measured the
effect of sleep deprivation on cognitive performance. Eighteen subjects were
chosen from a population of interest (lorry drivers) who were restricted to 3
hours of sleep during the trial. On each day of the experiment their reaction
time to a visual stimulus was measured. The data for this example is
contained in evaluation_sleepstudy.csv and consists of three variables,
Reaction, Days and Subject ID, which measure the reaction time of a given
subject on a particular day.
A simple model that explains the variation in reaction times is a linear
regression model of the form:

where R(t) is the reaction time on day t of the experiment across all
observations.
Problem 10.2.1 By graphing all the data, critically assess the validity of the
model for the data.
Problem 10.2.2 Graph the data at the individual subject level using R’s
lattice package, or otherwise. What does this suggest about assuming a
common β across all participants?
Problem 10.2.3 The above model has been fitted to the data using MCMC,
with 2000 samples from the posterior distribution for (α,β,σ) contained in the
file evaluation_sleepPosteriors.csv. Generate samples from the posterior
predictive distribution, and visualise them in an appropriate way.
Problem 10.2.4 How does the posterior predictive data compare with the
actual data?



Problem 10.2.5 How (if at all) do the posterior predictive checks suggest we
need to change our model?
Problem 10.3 Discoveries data
Problem 10.3.1 The file evaluation_discoveries.csv contains data on the
numbers of ‘great’ inventions and scientific discoveries in each year from
1860 to 1959 [1]. The aim of this problem is for you to build a statistical
model that provides a reasonable approximation to this series. As such, you
will need to choose a likelihood, specify a prior on any parameters, and go
through and calculate a posterior. Once you have a posterior, you will want to
carry out posterior predictive checks to see that your model behaves as
desired.
Problem 10.4 Marginal likelihood of voting
Suppose that we collect survey data where respondents are asked to indicate
for whom they will vote in an upcoming election. Each poll consists of a
sample size of 10 and we collect the following data on the number voting for
a particular candidate for 20 such polls: {2, 7, 4, 5, 4, 5, 6, 4, 4, 4, 5, 6, 5, 7,
6, 2, 4, 6, 6, 6}. We model each outcome as having been obtained from a Xi ~
B(10,θ) distribution.
Problem 10.4.1 Find the posterior distribution where we specify θ ~
beta(a,1) as a prior. Graph how the posterior changes for a∈[1,10].
Problem 10.4.2 Graph the marginal likelihood as a is increased between 1
and 10 (just use integer values).
Problem 10.4.3 Calculate the Bayes factor where we compare the model
when a = 1 to that when a = 10. Hence comment on the use of Bayes factors
as a method for choosing between competing models.
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11.1 Chapter mission statement
At the end of this chapter, the reader should understand the principles behind
popular attempts to make Bayesian inference less dependent on priors, giving
most weight to the likelihood.



11.2 Chapter goals
As we discussed in Chapter 2, there really is no such thing as an objective
analysis. For most real-world applications of statistical inference, there will
be aspects of the chosen modelling framework for which there is less
consensus, and hence can be deemed subjective. Critics of the Bayesian
method ignore this aspect of data analysis and object to the fact that it uses
subjective priors. The (misdirected) criticism for priors has motivated
attempts that aim to reduce the influence of this aspect of the Bayesian
formula. These methods aim to maximise the effect of the current data
(through the likelihood) on the posterior density. This type of approach is
sometimes warranted if there is a premium placed on the objectivity of the
analysis, for example in clinical drug trials. However, we argue that in most
circumstances, the use of weakly informative priors is a more sensible
approach, avoiding the mathematical and computational difficulties of the
methodologies that we describe in this chapter.
Unlike many of the other chapters, this one is not necessarily essential for
those wanting to do applied Bayesian analysis and can be skipped with little
impact on what follows. It is included mainly because methods to make
Bayesian statistics objective had interest historically, but also because some
researchers still persist with these approaches.

11.3 The illusion of the uninformative
uniform prior
Suppose that we want to build a statistical model to describe the prevalence
of obesity in a given population. We start by considering a sample of size 2,
where each individual is randomly sampled from the population. We assume
that the probability a given individual has the condition is given byθ.
Wanting to limit the effect of previous results or experimenter prejudices, we
choose to assign a uniform prior for θ over the range [0,1].
This prior assigns the same weight to all allowed values of this parameter and
hence appears uninformative. However, imagine that, instead, we consider a
hypothesis based on whether, or not, both individuals in our sample have the
disorder. We denote φ = θ2 as the probability that this event occurs. We can
now ask: If we assume a flat prior onθ, what does this imply about our belief
in the new event?
To answer this, we need to know a little about how a change of variable



impacts a probability density. Suppose that we are changing from a variable
x, with a probability density function given by fX(x), to a new variable y =
g(x), and we want to find the density fY(y). It turns out that we can apply the
following rule (using what is known as a Jacobian transform):

where g−1(y) is the inverse transform of g and g’–1 is its derivative. Applying
this to our example, we have that φ = g(θ) = θ2, meaning that 

 Now, using expression (11.1),
we obtain the following probability density for the new event:

 

We obtain the second line of (11.2) from the first by using the uniform prior
that we specified (hence independent of the function argument). Figure 11.1
below illustrates that, while this prior is uniform for the probability that one
individual is obese, it is considerably different for the event that both people
have the condition. It is downward-sloping, implying that before we collect
the data, we believe that this event is relatively unlikely, with more than 70%

of the prior weight assigned to values of 
In one frame of reference we may specify a prior whose nature in another
frame is completely different. Thus, it not usually the case that an
uninformative prior for one event is also uninformative for another.
This would seem to put a spanner in the works of finding a prior that is
objectively uninformative since we have found that the nature of a prior
depends on the viewpoint. However, we shall see in the next section that if
we redefine our notion of uninformative, we can construct such priors in
special circumstances.
The illusion of uninformative priors



11.4 Jeffreys priors
11.4.1 Another definition of uninformative
An alternative view of what is meant by an uninformative prior was
presented by an Englishman called Harold Jeffreys in the mid twentieth
century. Jeffreys was a man of many talents. At Cambridge University he
taught mathematics and then moved on to geophysics, before becoming a
professor of astronomy! Along with his contribution to probability theory, he
made major contributions to quantum physics, as well as being the first to
propose the idea that the earth’s core is liquid. The one blemish on an
otherwise stellar career was that Jeffreys did not believe in plate tectonics up
until his death (which seems unfortunate given the literal mountains of
evidence for this).
We now introduce the concept of a Jeffreys prior. We know from expression
(11.1) that if we define a prior in terms of one parameter θ, we can derive the
implied prior density for a transformed parameter φ = g(θ) using:

An introduction to Jeffreys priors (3 videos)

Jeffreys said that a prior is uninformative if we can calculate it using the
above rule, or directly through the function p(.), and get the same result
irrespective of the choice of parameter.
For a uniform distribution p(θ) =1, if we use expression (11.1), we obtain 

 However, if we approach the problem from
the other side, and substitute directly in for φ, we get 

 Clearly, this distribution does not satisfy the
requirements set out by Jeffreys.
Jeffreys managed to find the general form of a prior that satisfied his
condition:

where I(θ) is the information matrix, which indicates the curvature of the



likelihood surface at a given point, and is used in maximum likelihood
inference (see Section 4.8.4).
We can see that a prior that has the form of expression (11.4) satisfies his
parameter invariance condition. Considering a parameter transformation θ
→φ:

 

This is of the same form as that in the probability transformation rule given in
(11.1). To obtain the second line of (11.5) from the first we used the chain
rule of differentiation twice (since we differentiate the expression twice) here,
∂ / ∂φ = (dθ / dφ)(∂/∂θ).
Now that we have shown that Jeffreys prior works, let’s apply it to the
obesity example that we introduced in Section 11.3. We did not introduce a
likelihood before since our discussion concerned only priors, but now this is
necessary because Jeffreys prior requires that we use it to calculate the
information matrix. A sensible likelihood to describe whether an individual is
obese,Y∈{0,1} , is the Bernoulli, since we believe that the data are
independent. To derive the information matrix (which is actually a scalar
quantity here because there is only a single parameter) for this particular case,
we first write down the probability mass function:

which we then log to obtain the log-likelihood:

We then differentiate this expression to obtain the first derivative:

which we differentiate again to yield the second derivative of the log-
likelihood:

We then take the expectation of expression (11.9) to yield the information



matrix:

  

where we used ṛ(y) = θ for a Bernoulli density, to arrive at the final answer.
It is now straightforward to find Jeffreys prior using expression (11.4):

 

where we obtained the last line by noticing that the θ dependence is of the

same form as a  density, meaning that the prior must be such a
distribution.
The Jeffreys prior in this case is shown in Figure 11.1 alongside a uniform
density. We notice that this Jeffreys prior is inversely proportional to the

standard deviation of the Bernoulli, which is given by  (see the
left-hand panel of Figure 11.2). This makes intuitive sense since the

posteriors are least affected by data where  (the posterior is not very
peaked), compared to the more extreme values of θ where the likelihood
exerts a strong effect (the posterior is more peaked). The likelihood exerts a
strong effect at more extreme values of θ because the standard deviation is
much lower near these points. The Jeffreys prior gives more weight to
posteriors in this circumstance because it is less likely that these data sets
would have arisen by chance (see the right-hand panel of Figure 11.2). The
Jeffreys prior here simply tries to align with the likelihood as much as
possible.
Figure 11.1 Left: a uniform prior (red) and Jeffreys prior (black) for a



Bernoulli probability parameter, which represents the probability that an
individual is obese. Right: the implied priors for the probability of the event
that both people are obese in corresponding colours. Note that the left and
right black priors are not the same shapes.

Figure 11.2 Left: the Jeffreys prior (a  density; grey) versus
Bernoulli standard deviation (black). Right: posteriors assuming a Jeffreys
prior for X = 10 (red) and X = 50 (black) in a sample size of 100.

Importantly, Jeffreys prior does not mean that a prior in one frame of
reference ‘looks’ the same in any other frame of reference. The analysis of
Section 11.3 hopefully showed that this sort of prior is not possible. What it
means is more subtle than this. It means that if two individuals use different
parameterisations for a given distribution, but both use Jeffreys priors, then
we can get from the posterior of one individual to the other’s, by applying the
Jacobian transformation. So the invariance property of Jeffreys priors is
really about Jeffreys’ posterior distribution. We actually find the word
invariance misleading here. The posteriors do change under a change of
parameters, and so are not invariant in this sense. Jeffreys priors just ensure
that the posterior transforms in a way that is nice as determined by the
Jacobian transformation.
11.4.2 Being critical of Jeffreys priors
While Jeffreys’ idea is interesting theoretically, it has two issues that limit its



practical use:
1. It is not simple to extend Jeffreys prior to multi-parameter models.
2. Jeffreys priors are improper for many models.

Various workarounds have been proposed for the first of these issues, but the
second is more problematic since we have to be careful when using improper
priors to ensure that the resultant ’posterior’ density is itself valid.
We believe that it is important not to obsess about the use of uninformative
priors. As we shall see, weakly informative priors and hierarchical models
can help guard against some of the issues raised by critics of Bayesian
inference. Furthermore, often the difference in posteriors resulting from
Jeffreys priors versus vaguely informative priors is minimal. Indeed, Figure
11.3 shows that there is little difference in the posteriors for our Bernoulli
example, whether we use a Jeffreys prior or uniform prior.
Figure 11.3 The posteriors resulting from using a uniform prior (red) versus
a Jeffreys prior (grey) for different sample sizes, where in each case the
proportion of obese cases is 10%.

11.5 Reference priors
A more recent approach to defining uninformative distributions was given by
Bernardo in 1979 [2]. His idea was to choose a prior distribution that
maximised some measure of discrepancy (for example, the KL divergence)
between the prior distribution and the posterior. By choosing a prior to
maximise the discrepancy, this should allow the data to exert the maximal
effect on the posterior.
Does this involve getting the data and then working backwards to find the
prior from a given posterior? No, since this would invalidate the whole
Bayesian inference process by using the data to obtain the prior. However,
before we obtain the data, we can take expectations of the KL divergence
over the data distribution, giving us a prior without recourse to using our
data.
So suppose that we have some data x and a sufficient statistic t(x). A



sufficient statistic is a quantity that, if calculated from the sample, provides
exactly the same information about parameter values as the entire sample.
This means that the posterior distribution is the same whether we condition
on the sample or the summary statistic p(θ|x) = p(θ|t(x)). To derive reference
priors we want to maximise the KL divergence from the prior to the
posterior:

over choice of p(θ). However, we do not know t(x) before we collect the data,
and so we maximise the expected KL divergence over the distribution of t(x):

An introduction to reference priors

where the bottom line of expression (11.13) is actually the mutual
information between t andθ, which is a measure of their dependence.
The mutual information between variables is a measure of how much extra
information is conveyed by their joint density versus considering only their
marginal densities. For example, for independent variables x and y, their
mutual information is 0 because log(p(x,y) / p(x)p(y)) = log(p(x)p(y) /
p(x)p(y)) = log(1) = 0. This is because no additional information is obtained
by considering both variables together – by definition, knowing the value of
one of the variables is uninformative for the other one.
An introduction to the concept of a sufficient statistic

We can further explain the meaning of mutual independence using a simple
example. Imagine that there are 16 objects in an urn, and that we can reach in
and randomly draw an object out. The objects can either be cubes or balls,
and they can either be coloured red or grey (see Figure 11.4). If there are
equal numbers of red balls, red cubes, grey balls and grey cubes then the
shape and colour of an object are independent, meaning that the mutual
information between the shape and colour of an object is zero (see the middle
case in Figure 11.4). This is because knowing the colour of an object does not
help us to predict its shape. For example, before we draw out an object we



know that  of them are cubes. Suppose that (with our backs turned) a friend
draws out an object and tells us that it is red. For the independent case, we

know that  of red objects are cubes and the other  are balls. In other words,

the probability of drawing a cube is unchanged, and remains at . In contrast,
if the urn contains only red balls and grey cubes then the mutual information
is maximised (see the top-right-hand case in Figure 11.4). This is because,
now, if we know the colour of the object we can perfectly predict its shape.
What is meant by entropy in statistics?

To construct reference priors it makes sense to maximise the mutual
information between the summary statistic and the parameter because this
maximises their dependence. In turn, this ensures that we have the maximal
transfer of information from the sample to our posterior distribution. To
choose p(θ) to maximise expression (11.13) we need to use a mathematical
approach known as the calculus of variations. For some fairly simple
situations this can be done, but for most circumstances, the difficult
calculations involved are sufficient to thwart even the most ardent
objectivists.
Figure 11.4 The mutual information between the shape and colour of objects
in an urn as a function of their joint distribution, while we hold their marginal

distributions constant (that is, the probability of drawing a cube is always ,

the probability of drawing a red object is always ).



An introduction to mutual information

Again, we reason that, although interesting theoretically, the practical
importance of this area of statistics is insufficient to merit its use, particularly
when there is a reasonable amount of data available. Indeed, in Figure 11.5
we show that for a sample modelled as being exponentially distributed, if we
have a sample size of 100, then the posterior distributions resultant from
using either the reference prior or a weakly informative prior are virtually
indistinguishable. We also argue that, in many circumstances, seeking an
objective answer is suboptimal, since using an informative prior distribution
helps to reduce the variance in estimates. We have encountered many
problems that would not be soluble using Frequentist statistics, but the
injection of prior information (often from other analyses) allowed us to
estimate quantities that interest us.
Figure 11.5 Left: The reference prior for the exponential distribution (black)
and a Г(4,2) prior (red). The effects of each prior on posterior distributions
with sample sizes (middle) n = 10 and (right) n = 100. The data samples were

randomly drawn from . Note here that the reference prior



distribution  is improper.

11.6 Empirical Bayes
Another attempt to make Bayesian analysis less dependent on the subjective
whims of the investigator is called empirical Bayes, a type of analysis which
explicitly uses data to estimate priors. We regard this approach as an
approximation to full hierarchical modelling (which we cover in Part V) and
also an invalidation of the Bayesian methodology, since we use the data to
determine our priors. However, since occasionally this approach is used in
applied research we use an example to illustrate the mechanism behind this
method.
Here we adapt an example originally given by George Casella [9]. Suppose
that we have the results of a drug trial, which are represented by a continuous
variable Xi, where i indexes a patient who has taken the drug. Furthermore,
suppose that the results for a particular patient are subject to variance around
a patient-specific mean θi:

There is variance around θi because there is a multitude of factors that
influence the drug’s effect on a patient: diet, physical stress, time of day, and
so on. Next, we assume that there is a population distribution that dictates the
between-patient variability:

Expression (11.15) indicates that we expect there to be variability in the
effect of the drug across patients. This variability could, for example, be due
to genetics. However, while we believe that there will be between-patient
variability, we still think that the effects of the drug will be similar across
patients. This similarity is implicitly included in the previous expression
because we assume that there is a mean µ effect of the drug that is common
to all patients.
The model that we have discussed thus far is exactly the sort of hierarchical
model that we will explore more thoroughly in Part V (so don’t worry if you
find it a little hard going now). In hierarchical Bayesian modelling, the



parameters (µ, σ1) are assigned priors, and we obtain posteriors for them. The
empirical Bayesian approach, by contrast, uses the data to estimate point
values of these parameters and then uses these to estimate the values of θi.
If we assume that the parameters (µ, σ1) are fixed, given as prior parameters,
then we can calculate the posterior distribution for θi:

where p(θi) = N (µ,σ1) and p(Xi | θi) = ᷒(θi,σ0) in a small abuse of notation.
We can actually calculate the posterior mean of θi, and obtain:

where, as the sampling variance  increases, we give more weight to
our prior µ. Expression (11.17) is the non-hierarchical Bayes point estimator
of θi, the drug efficacy in a particular patient. In the hierarchical Bayesian
approach we specify priors for (μ,σ1), which are used to estimate their
respective posteriors. The empirical Bayes estimators do not go quite this far
and, instead, estimate point values for these parameters. As such, we can
think of the empirical Bayes estimator as lying somewhere along the
spectrum between non-hierarchical and hierarchical models. In calculating
the denominator of the expression in the first line of (11.16), we would have

calculated the marginal data distribution: .
Empirical Bayesians use this distribution to calculate point estimates of the
population-level parameters using a Frequentist technique called the method
of moments [9]:

where we matched the first and second moments (the mean and variance of

the marginal data distribution, respectively), and have assumed that  is
fixed. The empirical Bayesian estimator of θi is then calculated by



substituting the above estimates into expression (11.17) yielding the
empirical Bayes estimator:

So, while we have not assigned priors to the population-level parameters
(μ,σ1

2), we have nonetheless estimated them, albeit through a Frequentist
method. We find this half-Bayesian/half-Frequentist methodology
convoluted, and instead prefer to employ the full hierarchical Bayesian
models that we will describe in Part V, which allow us to obtain posteriors
for all parameters in a model. Nonetheless, a number of popular methods use
empirical Bayes estimators, and so it pays to be aware of these methods.

11.7 A move towards weakly informative
priors
We have argued that all analyses are inherently subjective, and so any
attempts to make Bayesian inference, or any other analysis, objective are
inherently flawed. We have also reasoned that if we have at least a
moderately sized data sample, the use of uninformative priors typically
results in little difference in the estimated posterior distributions anyway.
There are also times – particularly when we move to computational methods
– when the use of ‘uninformative’ priors can cause issues for an analysis.
First, the posterior densities that we estimate may have non-zero support in
unrealistic areas of parameter space; second, the computational methods may
take considerably longer to converge than if we used more reasonable priors.
Gelman terms priors that sit between those that are maximally uninformative
and those that are strongly informative, weakly informative. These typically
incorporate more uncertainty than priors constructed using all of our pre-
analysis knowledge, but less variability than entirely ignorant priors. Most
people automatically use a variety of weakly informative priors, so this news
is not necessarily controversial. However, we believe that by explicitly
discussing these priors it will encourage their continued use.
How should we set weakly informative priors in practice? The following
provides some guidance:

Allow considerable uncertainty in priors, such that the range of feasible
parameter values is wider than we would expect, but not unreasonable.
For example, for parameters in a regression with standardised variables,
use β ~ N(0,10) rather than β ~ N(0,1000).



Use smooth distributions for parameters, rather than discontinuous ones.
For example, use a long-tailed Cauchy distribution rather than a uniform
distribution over some finite scale.
Avoid using those distributions that give too much weight to areas of
unrealistic parameter values. For example, instead of using an inv-
gamma use a half-Cauchy for a prior on a variance parameter.

Some of these lessons are hard to learn before applying Bayesian analysis,
which is where we head to next.
What is meant by a ‘weakly informative’ prior and why are they useful?



11.8 Chapter summary
This chapter has given the reader some insight into a few of the methods used
to try and make Bayesian inference less dependent on subjective priors. We
believe that the fear of subjectivity is inherently misplaced because all
statistical analyses require us to choose models from a range of reasonable
modelling options. We also argued that the effects of using non-informative
prior distributions are slight versus weakly informative priors, particularly
when there are moderate amounts of data.
Before we take the plunge into a discussion of the modern methodologies that
are used to do Bayesian inference, we provide a carrot to entice the sceptical
reader to proceed. Most critics of Bayesian analysis object to the use of prior
distributions due to their inherent subjectivity. However, some of these issues
can be relegated, if not dismissed, if we choose a more abstract model which
assigns priors on the prior parameters themselves. These hierarchical models
provide much more freedom than is available through non-hierarchical
equivalents. They allow the data much more freedom to determine the
structure of the model, and typically place less emphasis on an analyst’s
beliefs. The use of hierarchical models also helps to avoid a whole range of
estimation pathologies, for example overfitting.
However, these hierarchical models are typically not amenable to exact
estimation using pen and paper. Nor, for that matter, are the majority of
interesting non-hierarchical models, since they require greater flexibility than
is provided by using conjugate prior–likelihood pairs. It transpires that, while
we may not be able to exactly calculate posteriors, we can still obtain samples
from them through computational methods. The use of these computational
methods, in contrast to what is often believed, actually makes it easier and
less mathematically onerous to do Bayesian analysis in practice. Even better,
masters of Bayes have made things a lot easier for us by coding up these
methods into simple-to-implement statistical languages. While it may be
fairly straightforward to implement a particular model in one of these
languages, pitfalls still await those who do not fully understand the
underlying algorithms. Fortunately, however, these methods are full of
intuition, which we hope to confer on the reader in Part V.



11.9 Chapter outcomes
The reader should now be familiar with the following concepts:

Jeffreys’ definition of non-informative priors and his solution
the limitations of Jeffreys priors
the framework behind reference priors and reasons for their practical
limitations
empirical Bayes estimates as half-Bayesian/half-Frequentist beasts lying
somewhere in the spectrum between non-hierarchical and hierarchical
Bayesian models

11.10 Problem sets
Problem 11.1 Jeffreys prior for a normal likelihood
Suppose that we are modelling the result of a medical test, which to a suitable
approximation can be regarded as being continuous and unbounded. We
suppose that a normal probability model is a reasonable sampling model to
use here,Xi ~ ᷒(μ,σ) , where μ is unknown but σ is known (perhaps based on
the results of many previous tests).
Problem 11.1.1 Write down the likelihood for a single observation.
Problem 11.1.2 Find the information matrix (here a scalar).
Problem 11.1.3 Hence calculate the information matrix for a sample of N
observations.
Problem 11.1.4 State Jeffreys prior for μ.
Problem 11.1.5 Is Jeffreys prior proper here?
Problem 11.2 The illusion of uninformative priors
revisited
Suppose that θ represents the probability that one randomly chosen individual
has a particular disease.
Problem 11.2.1 Suppose that we start by assigning a uniform prior onθ. Use
sampling to estimate the prior distribution that in a sample of two, one person
has the disease and the other does not. Hence comment on the assumption
that a uniform prior is uninformative.
Problem 11.2.2 Assume instead that we ascribe a uniform prior to the
probability that two out of two individuals have the disease. What is the
implicit prior distribution for the probability that one individual has the
disease?



Part IV A practical guide to doing real-life
Bayesian analysis: computational Bayes



Part IV mission statement
This part aims to introduce the reader to Bayesian inference in practice. We
start by introducing the most popular algorithms that underlie computational
attempts to sample from posterior distributions. Fortunately for us, for many
purposes, we need not code up these algorithms ourselves, since others have
already produced software which implements efficient versions of these
algorithms. In Chapter 16 we provide a thorough introduction to the most
advanced of these languages, Stan, providing a base which should allow the
reader to start to code up their own models.



Part IV goals
We are now familiar with the range of distributions which we have at our
disposal for both the likelihood and prior. In Chapter 9 we illustrated how, in
certain special circumstances, we can compute posteriors exactly, by
choosing priors that are conjugate to the likelihood in question. While this
can be a useful starting point, our ultimate method of analysis should not be
dictated solely by the ease of calculation. In most real-world circumstances,
using conjugate priors is too restrictive. However, we shall see in Chapter 12
that choosing a non-conjugate prior causes difficulties in calculating the
posterior, meaning that, in most cases, it is impossible to calculate an exact
posterior.
Fortunately for us, all is not lost if we abandon the goal of exact calculation
of the posterior and choose, instead, to sample from it. Sampling from a
distribution provides a window onto its properties, which allows us to
understand its nature. It allows us to estimate those characteristics – the
mean, variance and quantiles – that we usually want as outputs from a
Bayesian analysis. But what is sampling and why is it helpful? It is easiest to
describe sampling through an example than it is to define it formally. Imagine
throwing a die. If we knew the exact physical properties of the die, the way
people tend to throw it and the surface on which it lands, we could in
principle determine the probability distribution underlying the result of
throwing a die. However, an alternative approach is to estimate the
probability distribution simply by throwing it a large number of times and
enumerating the number of times it lands on each of the six numbers.
Although approximate, this throwing (an example of sampling) should yield
accurate estimates of the underlying probability distribution if we use enough
samples.
The type of sampling described in the die example is what is termed
independent sampling. Here the value obtained on one throw of the die does
not depend on what was obtained on previous throws. In Bayesian statistics,
we are unfortunately unable (for most interesting cases) to independently
sample from the posterior, and instead have to resort to something known as
dependent sampling. In dependent sampling, the value that we sample next
depends on the current value. Rather than throwing the die, imagine tilting a
surface on which it sits in some random orientation. Now, the value that we
obtain on the next ‘tilt’ of the die will depend on which number is currently



face up. Because of this dependence, using this tilting method means that it
takes more samples to accurately estimate the die’s probability distribution.
That is, many more samples than would be required by the (independent)
throwing. This relative inefficiency is reflected in the vast majority of
dependent sampling routines. Independent sampling is always the gold
standard.
The type of dependent sampling that is most frequently used in computational
Bayesian inference is Markov chain Monte Carlo (MCMC), first invented for
use in physics in the mid twentieth century. In MCMC, we undertake a
random walk through posterior space, where each step represents a sample
from the posterior. In Chapter 12 we shall see that this technique provides a
framework capable of handling the majority of Bayesian models that we
encounter in reality. However, MCMC is not without its pitfalls. In particular,
the question of how many samples are needed to adequately represent our
posterior distribution is fraught with danger and rife with opportunities for
misuse. This makes understanding the algorithms behind MCMC, and the
methods used to judge Markov chains’ convergence (to the desired posterior),
pivotal, and we shall devote significant time to this issue.
Three of the most frequently-used algorithms in Bayesian inference are
Random Walk Metropolis, Gibbs sampling, and Hamiltonian Monte Carlo.
We start by introducing Random Walk Metropolis in Chapter 13 since this is
the simplest of the three to understand. In fact, Random Walk Metropolis is a
special case of Gibbs sampling (and vice versa, as it turns out), which we
introduce in Chapter 14. Gibbs sampling is the algorithm implemented in the
BUGS and JAGS languages, which have been popular for applied Bayesian
analyses in the past. Gibbs sampling is a powerful technique which is
sufficiently general to be applied in a large range of circumstances. However,
there are still cases where it is limiting. For example, Gibbs sampling can be
slow to converge in larger hierarchical models, where there often exists
strong correlation in the posterior.
A more recently invented way of sampling from the posterior is Hamiltonian
Monte Carlo (HMC), which represents less of a random walk through
parameter space and more of a directed one. This direction allows for
efficient sampling from the posterior distribution, meaning that we are able to
tackle bigger, more complex problems. Stan [34], a programming language
created by Andrew Gelman and his colleagues at Columbia, implements a
faster cousin of HMC, called the ‘No-U-Turn Sampler’ (NUTS), in a fast and



extremely sensible manner. Stan is more similar to conventional
programming languages than JAGS (and BUGS), making its learning curve
less steep and extending its potential use. We introduce HMC and NUTS in
Chapter 15 before we introduce Stan in Chapter 16.



12 Leaving conjugates behind: Markov
chain Monte Carlo
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12.1 Chapter mission statement
By the end of this chapter, the reader should understand the problems with
attempting to calculate posterior distributions (and any posterior summaries)
by exact calculation, and how sampling can help us sidestep the problem.



12.2 Chapter goals
Bayes’ rule dictates that we sum (for discrete parameters) or integrate (for
continuous parameters) the product of the likelihood and prior, across all
parameter ranges, in order to estimate its denominator. This denominator
term is essential since it normalises the posterior distribution, ensuring that it
is a valid probability density. For problems involving continuous parameters,
this multidimensional integral is practically intractable. In Section 12.3 we
see that, even if we could calculate the exact posterior density, we typically
want to calculate its moments. To calculate these we must calculate
additional integrals, which are as difficult to compute as the denominator
itself.
This means that in order to conduct Bayesian analysis in practice, we need to
change tactics somewhat, and abandon the relative comfort of exact
calculation in favour of an alternative approach. While in many
circumstances we are unable to exactly calculate the posterior distribution, it
turns out we are nonetheless able to sample from it.
In life, we use sampling unwittingly to gain an understanding of various
entities: we do not know whether we like a particular food before we try a bit
of it; when voters are quizzed in exit polls, these represent a sample from the
overall population; a dice manufacturer rolls its produce a large number of
times to check that they sufficiently mimic the behaviour of (theoretical)
unbiased dice. In all cases, we use sampling to understand an object that is
hitherto uncertain to us. Sampling from a distribution is no different
conceptually.
While we are able to sample from a posterior, the sampling is somewhat
different to that of the dice example. Whereas it is possible to independently
sample dice, we typically cannot generate independent samples from the
posteriors, the experimental ideal. Instead, we must use dependent samples,
where the next sample value depends on the value of the current sample.
Markov chain Monte Carlo (MCMC) is a type of dependent sampling
algorithm, which we introduce in Section 12.9. As one might expect,
dependent sampling results in a correlation between consecutive samples.
This correlation means that the incremental informational value of each new
sample is less than would be obtained from an independent sampler, where
each sampled value does not depend on the previous value. This means that
we need more dependent samples to characterise our posterior than would be



necessary from an independent sampler. We quantify the difference in
sampling efficiency between the independent sampler ideal and the
dependent sampler we use in practice, through the concept of effective sample
size. The effective sample size is the number of samples of an independent
sampler that would provide the same amount of information about the
posterior as our actual MCMC sample size.
Whenever we use sampling we need to take sufficient samples to yield a
faithful representation of the posterior. In most cases, it is difficult to
determine what constituents an adequate sample since, for the vast majority
of cases, we do not know the posterior we are trying to sample – this is the
reason for doing sampling in the first place! In Section 13.9, we advocate
using a number of Markov chains, since this provides better insight into
convergence to the posterior than is possible when using a single chain.
Specifically, this method works by monitoring the convergence of the
sampling distribution of each chain to all the others. Although this method is
not foolproof, it is currently the best available approach for judging whether
our sampling distribution has converged to the posterior.

12.3 The difficulty with real-life Bayesian
inference
Bayes’ rule gives us the recipe for calculating a posterior probability density:

As an example, imagine that we count the number of secondary bovine
spongiform encephalopathy (BSE) cases (also known as ‘mad cow disease’)
originating from a particular infected cow. Further suppose that we use a
Poisson distribution for our likelihood in this case (see Section 8.4.3), with a
mean parameter λ. We expect that the mean could take a large range of
possible values, and hence specify a log-N(1,1) prior for λ, which allows
significant pre-data uncertainty.
To calculate the posterior, Bayes’ rule tells us that we need to calculate the
denominator, p(data), which we obtain by multiplying the likelihood and
prior, and then integrating over θ (for continuous parameter problems):

In our mad cow disease example this involves calculating the following
integral:



where N is the number of data points, and x is the sample of data we
obtained. While our model is not conceptually challenging, we have
nevertheless arrived at an expression that is, at least, difficult to work out.
Furthermore, suppose that we manage to calculate expression (12.3), and
hence obtain an analytic expression for p(λ|x). At this point, we might want to
summarise the posterior, by its mean. From Chapter 3 we know that
calculating the mean of a continuous distribution involves an integral which,
in this case, is of the form:

The above integral is similar to expression (12.3), except with an additional λ
out in front. Since the original integral was tricky to calculate, we expect that
calculating the above integral is going to be similarly difficult.
So even though we are dealing with a situation of quite modest complexity –
we can explain the situation and model in a couple of lines – we nevertheless
found that the calculations involved in calculating the posterior and its mean
are difficult to undertake. This difficulty only becomes exacerbated as the
complexity of the model increases. As an example, consider replacing the
Poisson distribution in the mad cow model with a negative binomial
(parameterised by a mean λi and a dispersion parameter κ; see Section 8.4.4).
To determine the posterior mean, we must now compute a double integral:

As you might expect, a double integral is considerably harder to calculate
than a single one, so the above is going to be tricky. In general, as the
dimensionality of a model increases (the number of free parameters), we see
an exponential-like increase in the difficulty of calculating the requisite
integrals. Clearly, exact calculation of the posterior is going to be difficult for
all but the most simple of examples.
There are a number of methods proposed to derive approximate versions of
the posterior. In the next section, we survey a few of these methods as a
stepping stone to MCMC sampling later on in the chapter.
The difficulty with real life Bayesian inference: high multidimensional
integrals (and sums)



12.4 Discrete approximation to continuous
posteriors
The denominator for continuous parameter problems is typically (for
univariate models) harder to calculate than for discrete parameter models,
where we can usually calculate:

Expression (12.6) is relatively easy to calculate because modern computers
can evaluate each of the p terms (each one corresponding to one of the finite
number of possible θ values) in the sum, and then add them together, in the
blink of an eye. This ease carries over into formulae for the moments1 of
these distributions, where, for example, we can calculate the posterior mean
value of θ through:
1 Moments are summaries of probability distributions, such as the mean (the
first moment) and variance (second moment).

So if we had a way of converting our continuous parameter problems into
discrete versions, we could then calculate an approximate posterior. This
discretisation process is an approximation, where we suppose that our prior
and likelihood exist only at a finite set of points on a grid, resulting in a
posterior that is also discrete. This is exactly what we did when we used
Bayes’ box to calculate the posterior for a discretised version of the disease
prevalence example described in Section 5.5.2.
Suppose that we continue with our mad cow disease problem, using again a
Poisson likelihood and a log-N prior. We can then use the value of our prior
and likelihood at only even integer values of λ, to produce a discretised
posterior by Bayes’ rule (see Figure 12.1). The quality of the posterior
approximation improves as we use a finer grid (compare the middle and right
panels of Figure 12.1). Furthermore, we can use our discretised posterior to
calculate the posterior mean, once again using Bayes’ box (see Table 12.1).
We can also estimate discrete versions of posteriors for models with more
than a single parameter by discretising the prior and likelihood along the
range of each parameter. Again, consider we use a negative binomial



likelihood for the mad cow case count, where we assign log-normal priors on
both the mean and dispersion parameters. In this case, calculating the integral
that corresponds to the denominator is more difficult than for the Poisson
case, but we can still gain insight into the posterior by discretising the
problem (see Figure 12.2).
Figure 12.1 Left: the exact prior, likelihood and posterior for the mad cow
example using the Poisson model. Middle and Right: discrete prior,
likelihood and posterior (= likelihood × prior divided by their sum) for the
same problem, at intervals of 2 units (middle) and 0.5 units (right). In all
cases, the likelihood and posterior are calculated assuming that we have data
consisting of a single sample, where we found that seven secondary cases of
BSE originated from an infected cow.

Table 12.1 



While this discretisation procedure works well for relatively simple problems,
it quickly becomes unwieldy as the number of parameters involved increases.
Comparing Figure 12.1 with Figure 12.2, we see that, even though we only
have one more parameter, there has been a dramatic increase in the number of
grid points that we require to estimate the posterior. In fact, for linear
increases in the number of model parameters, there are exponential increases
in the number of grid points we need. Suppose that we discretise each
parameter in our model using 10 grid points. For a model with a single
parameter, this means we need to do 10 calculations. For a model with two
parameters, we must do 10 × 10 = 100 calculations. For a model with 20
parameters, this requires 1020 = 100,000,000,000,000,000,000 calculations!
This methodology clearly becomes impractical as the complexity of the
model increases. We say that it suffers from the curse of dimensionality, a
term used to explain problems in a method that arise only as the
dimensionality increases (here dimensionality is the number of parameters in
our model).
The problem with discrete approximation to integrals or probability densities



12.5 The posterior through quadrature
Rather than discretising the entire prior, likelihood and posterior space, we
could attempt to determine approximate values for the integrals involved in
Bayesian inference, for example those involved in calculating the
denominator or the posterior mean. In numerical quadrature, integrals are
approximated by discretising the function being integrated into a finite set of
function values, summing these together and then multiplying by a type of
weighting function.
Figure 12.2 Left: the exact prior, likelihood and posterior for the mad cow
example using the negative binomial model. Right: discrete prior, likelihood
and posterior (= likelihood × prior divided by their sum) for the same
problem. In all cases, the likelihood and posterior are calculated assuming
that we have data consisting of a single sample, where we found that seven
secondary cases of BSE originated from an infected cow.



A crude quadrature method is to discretise a function over a range and
assume that its value between consecutive grid points is constant. A
univariate integral is then approximated by summing the areas of individual
rectangles. In Figure 12.3, we see that this rule allows accurate evaluation of
the denominator of our univariate mad cow example for even sizeable
interval widths.
However, once again this method suffers from the curse of dimensionality.
As the number of parameters increases, we are required to discretise our
function across an exponentially increasing number of points, as part of any
quadrature method to evaluate an integral. Numerical quadrature is also not
the answer it seems.
Figure 12.3 Rectangular quadrature in action: as the interval width decreases
(left to right panels), there is a corresponding reduction in the percentage
error in estimating the denominator (errors shown above each plot).



12.6 Integrating using independent samples:
an introduction to Monte Carlo
Often in applied Bayesian analyses, we want to estimate models with
hundreds or thousands of parameters. Neither discretisation nor quadrature is
feasible in these circumstances. Evidently, to handle models of arbitrary
complexity, indexed by the number of parameters, we need a new approach.
Fortunately, such an approach exists, but it requires a change of perspective,
where we abandon the use of brute force to directly calculate posterior
densities and posterior summaries, such as the mean. We instead estimate
these quantities, indirectly, through sampling.
Suppose that we have a black box containing a die with an unknown number
of sides, which may, or may not, be fair. However, fortunately for us, there is
a tiny window in the top of the box. Each time we shake the box, we can look
through this window and see the number that results from the throw. Suppose
that we play a game where we pay $X for the chance to win the amount of
money that shows on the top of the box. For example, if we pay $5 and throw
a 7, we win $2. If instead we throw a 1, we lose $4. If we were left in a room
with the box for long enough, could we work out a fair amount to pay for
such a bet?
In this example, a fair amount to pay would correspond to the mean of the die
since in this circumstance our expected winnings are zero. How can we
estimate the mean of the die? Suppose that we shake the box and record the
number which shows through the window after each shake. We then repeat
this process – shaking and recording – a large number of times. Clearly, we
can estimate the mean of the die if we just average the numbers we obtain
across all of our throws. There is, of course, the question: Just how many
throws do we need to be confident in our estimate? But let’s leave answering
this question until later.
So, to recap, if we sample from our black box die a large number of times,



and then take the sample mean of the resultant throws, this allows us to
estimate the true mean of the die. While this might not appear revolutionary,
remember that the mean of a discrete distribution is given by:

where, here, X represents the value on each side of the die, and k is the
number of sides. The amazing thing is that, by throwing the die, we have
estimated the result of the calculation in expression (12.8), even though we
have no idea of the number of sides, nor the individual face probabilities!
Furthermore, let’s suppose that we increase the number of sides of our die so
it now has an infinite number of faces. Further, suppose that each face
corresponds to a single real value between 0 and 1, with all of the real values
between these limits covered. (We realise that this is a strange die, and not
strictly possible due to Cantor’s arguments, but bear with us.) Now after we
shake our box, one of these real numbers appears at the top. To estimate the
mean of the die, we again iterate shaking the box and recording the die’s
value.2 Since we are considering a continuous random variable, we have now
essentially estimated the integral:
2 Technically, for this to work we require that there is a valid probability
distribution over the sides, which has a finite first moment, but let’s not get
caught up in this issue here.

Again, this is without any knowledge of the underlying probability
distribution p(x), representing the uncertainty inherent in throwing this
bizarre die. This is the sort of maths that we would always like to do if we
could.
In general, if we can repeatedly generate independent samples from a
continuous probability distribution, Xi ~ p(x), we can estimate its mean by the
following formula:

where n is the number of samples. The above is really just a grandiose way of
saying that we take the mean of all our samples. While this method might
seem limited in scope, in that we can only calculate the mean of a given
distribution, it turns out that the above is a specific example of a more general



rule. If we can generate samples from a given probability distribution, Xi ~
p(x), we can estimate the expectation of any function, g(X), by:

So we just take the mean of our function g( ) applied to each of the points in
our sample. The above might appear a bit purposeless until we realise that we
can manipulate it to allow us to estimate the variance of a distribution by:

The class of method that relies on computational random sampling is known
as Monte Carlo methods. Monte Carlo methods were first used in the 1930s
by the Italian nuclear physicist Enrico Fermi who was studying neutron
diffusion. Fermi would go on to work on the Manhattan Project to build the
world’s first nuclear bomb, and has been called the ‘architect of the nuclear
age’. It was not until 1949, however, that the Polish–American
mathematician Stan Ulam (who also worked on the Manhattan Project, and
after whom the Stan MCMC software is named) together with the Greek–
American physicist Nicholas Metropolis (whose MCMC method we shall
encounter in Chapter 13) in 1949 published the first public document on
Monte Carlo simulation (see “The Monte Carlo method”, Journal of
American Statistical Association). Metropolis was also the man who coined
the phrase ‘Monte Carlo simulation’ for these methods, and refers to the
Monte Carlo Casino in Monaco, where Ulam’s uncle would gamble away
money borrowed from his relatives. Nuclear bombs and casinos – who says
that beauty can’t have ugly origins?
Although you can start to see that this method may have some promise, the
best is yet to come. So long as we can generate independent samples from a
multidimensional probability distribution, , where Xi = (X1i,X2i,
…,Xki), then we can approximate multidimensional integrals as simply as we
did for the univariate case:



Importantly, we have found a methodology whose complexity appears
insensitive to the dimensionality of the probability distribution we use; we
could have chosen k above to be 10, 1000 or 1,000,000, and the method
would still work the same.
Can we use sampling to approximate the integrals involved in Bayesian
inference? The answer is yes, but it turns out that, for all but the easiest of
problems, we need to modify our method a bit since, in general, we are not
able to generate independent samples from a posterior distribution. Before we
discuss this modification, we first show how to use independent sampling to
estimate the denominator of our mad cow example.
How to do integration by sampling

12.6.1 Mad cows revisited
Since today most software packages come equipped with pseudo-random-
number generators capable of generating independent samples from a wide
range of univariate distributions, we can use independent sampling to
estimate the denominator in our mad cow example. Remember that here we
had trouble calculating:

However, Section 12.6 suggested that we can estimate the above integral, so
long as we can generate independent samples, λi ~ p(λ) (where p(λ) is a log-N
prior distribution), using the following:

where in expression (12.15) we calculate the mean value of the likelihood
across the n samples of λi from our prior. Figure 12.4 shows that as we
increase the sample size, the above estimator rapidly converges to the true



value of the denominator integral. Although we do not show it, we could use
the same framework to estimate the mean of the posterior, again exploiting
the fact that in this example we can generate independent samples from the
prior.
In Bayesian analysis we do not typically use samples from the prior to
explicitly estimate the denominator term, as we have done here. There is a
good reason for this. In particular, this approach can be extremely slow to
converge on the correct value. We shall see in Section 12.9 that we instead
choose another route to the posterior, which avoids explicit calculation of the
denominator, yet still allows us to generate samples from it. These samples
are then used to summarise the posterior distribution.
Figure 12.4 Using independent sampling to estimate the denominator in the
mad cow example: as the number of independent samples increases (left to
right), there is an improvement in the accuracy of estimating the true
denominator value (dashed lines). In this case, we assume a Poisson
likelihood and priors as described in the text and assume that we have data
consisting of a single sample, where we found that seven secondary cases of
BSE originated from an infected cow. The histograms show counts of
estimates of the denominator obtained at each sample size across 10,000
repetitions.

12.7 Why is independent sampling easier
said than done?
Let’s take a step away from Bayes’ rule for a minute to discuss how
computers actually generate seemingly random samples from a particular
distribution. Many users of statistical software take for granted the fact that
computers are able to, almost instantaneously, produce an arbitrarily long list
of independent samples from a range of distributions. Since computers are
deterministic machines they cannot yet generate truly random numbers,3 and
instead rely on seed values that completely determine the sequence of
numbers that pseudo-random-number generators (PRNGs) output. Typically,
statistical software uses these PRNGs to produce sequences of numbers that



behave, in some ways, as if they are random samples from a given
distribution. If the software user does not specify the seeds explicitly, the
seed is often determined by a rapidly changing input, such as the internal
clock of a computer, meaning that consecutive samples from a given
distribution are different and have a veneer of randomness. The appearance of
randomness is attained because of the chaotic nature of the algorithms that
produce the outputs. By ‘chaotic’ here we mean that small changes in the
input seed can have a large effect on the outputted value.
3 A possible caveat to this is quantum-based random-number generators; see
http://arxiv.org/pdf/1004.1521v2.pdf.
Rather than going into depth about how PRNGs work (see the problem set at
the end of the chapter for this), let’s suppose we have at our disposal a
random-number generator that is capable of producing independent random
samples from a continuous uniform distribution between 0 and 1 (see Section
8.5.1). How can we use such a generator to produce independent samples
from another distribution, for example an exponential?
Before proceeding, a quick note of warning. Just because we can write down
the probability density function (PDF) for a random variable does not mean
that we can, by default, independently sample from this distribution.
Remember that the PDF tells us the frequency with which to sample our
random variable, but it does not tell us how to generate random samples with
this frequency.
Doing independent sampling by rejection sampling

There are a number of ways to approach this problem. In one method, known
as rejection sampling, we use our uniform random generator twice for each
sample: once to generate an x∈[0,8] value (to be correct here we should use
an infinite range of x, but this is computationally impossible) and again to
generate a paired y∈[0,1] value. For the set of (x,y) pairs we compare the y
value of the individual coordinates with the PDF of an exponential
distribution at that x value, accepting the x value as a sample if the y is lower
than the corresponding value of the PDF and rejecting otherwise (see the left-
hand panel of Figure 12.5). For clarity we now explicitly write the steps of
this algorithm. In each iteration we do the following:

1. Generate pairs of samples x~U(lower,upper) and y~U(0,1), where
(lower,upper) are chosen to correspond (to a good approximation) to the

http://arxiv.org/pdf/1004.1521v2.pdf


range of the distribution of interest (in the above example, the
exponential distribution).

2. For each data point (x,y), if y < PDF(x) then accept the x value as a
sample from the distribution, otherwise reject it. Here, PDF corresponds
to the PDF of the distribution of interest.

It is evident from the right-hand plot of Figure 12.5 that rejection sampling is
pretty wasteful since only a small proportion of the initial samples are
accepted. Furthermore, this inefficiency increases exponentially with the
number of parameters in our distribution, meaning that for most Bayesian
models we should not use rejection sampling. Can we design a better way of
generating exponential samples from a uniform generator? Yes we can, with
a bit of thought.
If we could draw samples from an exponential distribution, and then work out
the exponential cumulative density function (CDF)4 value for each of those
points, what would the sample of CDF values look like? We know it would
be bounded between 0 and 1 since all CDFs bounded by these values, but
what about the distribution? Those samples that are most extreme will be
squashed the most – towards 0 or 1 dependent on the nature of the extremity.
In fact, samples will be moved an amount that depends on the distance that
they lie from the middle of the sample, with those around the median not
moving much at all. The CDF transform changes the nature of variation until
the distribution looks homogeneous overall, resulting in a uniform
distribution. So why does this help us? Well, if we run the whole process in
reverse, creating uniform samples, and then taking the exponential inverse-
CDF transform of these, we should get samples that are exponentially
distributed. Figure 12.6 shows how this method works for our exponential
example. This method is known as inverse transform sampling. For clarity
we now define the algorithm for inverse transform sampling explicitly. In
each iteration we do the following:
4 A CDF is a function that indicates the probability that a random variable is
less than, or equal to, a given value For example, for a uniform distribution
between 0 and 1, CDF(0) = 0, and CDF(1) = 1.

1. Sample x ~ U(0,1).
2. Generate y = CDF-1(x).

Figure 12.5 Using rejection sampling to generate samples from an
exponential distribution with rate parameter equal to 1. Left: independent
(x,y) ~ (U(0,8),U(0,1)) samples and the exponential PDF (red line). The



points are coloured red if they are accepted (if the PDF at that x value
exceeds the y value) and grey otherwise. Right: a stacked histogram for
accepted (red) and rejected (grey) points.

Figure 12.6 Using inverse transform sampling to sample from an exponential
distribution with rate parameter equal to 1. Top-left: 1000 samples generated
from a U(0,1) distribution, arranged in the order that they were generated.
Bottom-left: the samples that result from transforming the samples in the top-
left panel using the exponential inverse-CDF, with red lines showing the
amount they were moved by the transform. Right: histograms show the
sampling distribution for both sets: original (top-right) and transformed
(bottom-right).

The resultant samples for y form samples from our distribution of interest (in
the above example, the exponential distribution).
This new method is clearly better than rejection sampling since it has an



efficiency of 100%. For each sample we obtain from the uniform distribution,
we can produce a sample from the exponential distribution. However, it is not
without a catch. To do this type of sampling, we must be able to calculate the
inverse-CDF, which is typically not possible for complex distributions. This
issue only becomes worse the more parameters that are in a model.
Furthermore, in Bayesian statistics, we are generally unable to compute the
posterior, meaning that we cannot implement inverse transform sampling.
Doing independent sampling by inverse transform sampling

It is hoped that this section has conveyed the non-triviality of drawing
computational independent samples from a particular distribution. This
difficulty motivates the sidestep that we take in Bayesian inference by
moving from independent to dependent sampling (see Section 12.9).

12.8 Ideal sampling from a posterior using
only the numerator of Bayes’ rule
Before we discuss how we sample from the posterior in practice, let’s pause a
second to think about what these samples should look like. Consider two
points in posterior space, θA and θB, each representing different parameter
values (bear in mind that the parameter here usually represents a vector). If
the ratio of the posterior at the two points is given by:

then, intuitively, we want our sampler to generate random samples three
times as often from the point θA as for the point θB. This is because this is
what a PDF actually represents – the frequency that we will sample a
particular value in an infinite sample of observations (this was the underlying
premise behind rejection sampling; see Figure 12.5). Hence, we can use the
histogram of many samples from a distribution to proxy for its PDF (see
Figure 12.7). We have done this frequently throughout this book, but it is
worth now making this point explicitly. We also see from Figure 12.7 that
this histogram representation works for both positive and zero values of the
PDF. If the value of a PDF is zero at any point, then we want our sampler to
generate zero samples at that point. Note, however, that we did not need the
absolute height of the posterior to dictate that we generate zero samples at
this point – we could have used its relative height versus all other points



(which would have also been zero in this case) to calibrate our sampler. The
same goes for any other location we pick – we can use the relative density of
a given point versus all others to determine its sampling frequency.
Figure 12.7 A PDF (full line) and its histogram representation obtained from
sampling from the distribution.

Therefore, we want a sampling methodology that produces samples across
parameter space in accordance with the relative heights of the posterior. This
is an important point underlying all of the MCMC methods that we discuss in
this book, so it is worth repeating: to determine the frequency of samples at a
given point in parameter space, we do not need the absolute values of the
PDF at that point, so long as we know its value relative to other parameter
values. How does this help us in Bayesian statistics? Well, it turns out that,
while we cannot generally calculate the absolute posterior PDF value at a
given point (since this requires knowledge of the denominator), we can
nonetheless determine its value relative to other points. To explain this,
consider our points θA and θB again, and calculate the ratio of the posterior
density at the two parameter values:

where we have used Bayes’ rule to obtain the right-hand side of the first line
of expression (12.17). Thus we see that here the problem denominator term
has cancelled. Now everything in the bottom line of expression (12.17) is
known; we just have the likelihoods and priors at each of the two points.



Thus knowledge of the un-normalised posterior (the numerator of Bayes’
rule) suffices to tell us the relative sampling frequency at each point in
parameter space versus all others. In theory, we could then calculate the
sampling frequency at all points in parameter space since, for each point, we
could calculate the ratio of the PDF value compared to all other points.
However, how can we do this in practice? Does this require us to do an
infinite number of calculations for each parameter value to determine the
ratio of its posterior density versus all other points? One way forward might
be to partition parameter space into a finite number of points, and then
calculate the ratio for only those points within a given partition. However, we
have already seen in Section 12.4 that as the number of parameters grows, we
soon have too many calculations to carry out. Clearly, we need a different
way of using the relative posterior density to sample from the posterior,
which we discuss in the next section.
12.8.1 The un-normalised posterior: a window onto the
real deal
Let’s consider why the un-normalised posterior tells us everything that we
need to know about the posterior. Revisiting Bayes’ rule we can write it as:

Thus, all the shape of the posterior is determined by the numerator, since the
denominator does not contain any θ dependence. It turns out that, if we can
generate samples with a distribution of the same shape as the posterior, then
we can still calculate all the properties that we want. The mean and variance
can both be estimated, including any other posterior summary.
To explain why knowledge of just the numerator of Bayes’ rule suffices for
our purposes, imagine a family of landscapes, each of similar shape, but of
scales different to the previous (see Figure 12.8). Each surface represents the
posterior shape for different values of the normalising denominator term.
Only one of these surfaces will actually be at the correct height, when the
surface encloses a volume equal to 1. However, if all we need is the relative
heights of the posterior at one point versus another, the un-normalised density
gives us all the geographical features of the actual posterior landscape;
nothing is lost!
Figure 12.8 A family of distributions corresponding to possible posterior
geometries, each for different values of the denominator. Note that the correct



distribution corresponds to the case when the volume enclosed by the surface
is 1.

12.9 Moving from independent to
dependent sampling
Let’s recap. We would ideally like to draw independent samples from our
posterior distribution in order to understand it. Also, if we could do this, it
would mean we can avoid calculating the difficult multidimensional integrals
necessary to calculate its properties exactly. But why is independent sampling
difficult?
The problem is twofold here. First, calculating the denominator of Bayes’
rule is typically very difficult, particularly for high-dimensional problems.
Second, even if we did know the value of the denominator, and hence had an
expression for the posterior density, it is usually impossible to generate
independent samples from it. Neither of the strategies we discussed in
Section 12.7 – rejection sampling and inverse transform sampling – can be
used to generate samples from the posterior distributions we encounter in
Bayesian inference: rejection sampling is too inefficient, especially for multi-
parameter settings; inverse transform sampling is unusable since we are
generally unable to calculate the posterior CDF and are definitely unable to
invert it. Once more in our winding path towards practical applications of
Bayesian inference, we are required to change direction. (Don’t worry,
however, this is the final time. We’re nearly there – just bear with us.)
We learned in Section 12.8 that we do not actually need the denominator to
calculate the relative height of the posterior at one point versus all others.
However, does this mean that to reproduce an accurate global posterior
density we need to compute an unfeasibly large number of ratios?



It turns out that using dependent sampling is a way out of these problems –
the impossibility of generating independent samples and the practical
intractability of computing the ratio of the PDF value at a single point versus
all others. What does dependent sampling mean? It means that the next
sample value depends on the current sample value.
Why we typically use dependent sampling to sample from the posterior

In the simplest form of dependent sampling (Random Walk Metropolis), we
essentially do a type of random walk through posterior space. At each point
in parameter space, we randomly determine a proposed stepping location and
then, based on the height of the PDF at the proposed location, we either
accept or reject the proposal. If the proposed location is higher than our
current position, we accept the proposal and move there. If the height is
lower, however, we only accept the proposal probabilistically, with a
probability that depends on how much lower the proposed location is than
our current position. If we do not accept the proposal we remain at our
current location for the next sample. If we repeat this process a large number
of times, we hope to have surveyed much of posterior space, with areas
sampled in direct proportion to their height. Thus, ideally, our simple
dependent sampler will have replicated the behaviour of the optimal sampler
that we discussed in Section 12.8 – at least at a conceptual level, we are done!
The key to the success of this new sampling technique is that it forgets about
the global structure of the posterior density, which is typically far too
complex to contemplate, and instead focuses on local steps. These local steps
are easy enough for us to handle since they only require us to evaluate the un-
normalised posterior twice: once at our current location and once at the
proposed step location. While we have not yet described how to generate a
proposed step location (see Chapter 13), it suffices, for now, to say that we do
it in a randomised fashion, meriting the use of Monte Carlo – an ode to the
randomness of dice in casino games – in our sampler name.
The random walk through parameter space that we have described thus far
represents the most simple type of dependent sampler, where the decision of
where and whether to step is determined solely by the current state of the
sampler (the current value and proposed value). However, we can imagine
more complex samplers, where this decision depends on the history of all
places that we have stepped thus far. To capture the memoryless of the



algorithm, we term these samplers Markov chains, where the run of
consecutive samples we generate forms the chain. Specifically, the Markov
part of their name describes the amnesia of the stepping routine and refers to
the Russian statistician Andrey Markov, born in the mid nineteenth century,
who first described these objects (as part of wider work done on stochastic
processes). Markov was alive during a time of great political upheaval and
was not afraid to give his opinion on matters that he deemed important. In
1913 the Romanov dynasty celebrated 300 years of rule (which, in hindsight,
probably was not a particularly sensible thing to celebrate at the time).
Markov showed his disapproval by organising a celebration of his own – a
celebration of 200 years since the Law of Large Numbers was proved!
Although it was likely not such a debauched affair, we nonetheless appreciate
its sentiment.
Strictly, our Markov chains should be called 1st order, since their behaviour
depends only on the current parameter value. It is possible, however, to have
chains that remember the previous m states, but otherwise are memoryless,
though these are usually less useful for Bayesian inference. Overall, this
means that our sampling method is categorised as a type of MCMC.
There is a slight catch with using dependent samplers, which we discuss in
Section 12.10, but before we rein in your elation we want to use an analogy
to help with the intuition behind MCMC.
12.9.1 An analogy to MCMC: mapping mountains
Suppose that you are an explorer tasked with creating a contour map of a
hitherto unknown mountainous area. The catch is that the area is perpetually
covered in fog, and you can see only as far as your feet. You are, however,
equipped with GPS that tells you your location and height above sea level.
This may seem like a daunting task. The danger of trekking through misty
undiscovered mountains notwithstanding, it seems difficult to imagine how
you can accomplish your task. However, you realise that there is still hope! If
you take a (careful) step in a random direction, each time marking in your
notebook the latitude, longitude and altitude, then you will eventually build a
reasonable map of the area. It might seem like an inefficient way of attacking
the problem, but there really is not much else available to you.
Of course, it would be better if you could use satellites to more fully scan or
sample the heights of the area, but unfortunately, the cost of this type of
mapping is prohibitive. You are on your own, it seems. You realise it is going
to be quite a lot of hard work, and you get to it.



After some years in the wilderness, you emerge with your notebook, which
contains sufficient measurements to (computationally) draw contour maps for
the region. Although you had no access to satellites offering you a more
macro view of the terrain, by taking local steps through space, you have
managed to reconstruct such a global representation.
This locality of stepping and evaluation is much like an MCMC which takes
local steps through parameter space, not physical space, and on the basis of
many such steps estimates the overall shape of the global posterior. Of
course, posterior space is usually much more complex than any physical
terrain on earth. For a start, it usually has many more dimensions than
physical space, but it would also be a much harder landscape to explore for
other reasons. Romantically, we imagine such a terrain as encompassing huge
shapeless deserts, punctuated by massive jagged peaks that dwarf their
Himalayan equivalents. Edmund Hillary would truly have no chance!

12.10 What is the catch with dependent
samplers?
In Section 12.6 we used the analogy of a die in a black box to represent our
posterior and the shaking of the box to represent the act of sampling. This, in
turn, was used to motivate the use of sampling in general as a way of
understanding a distribution – both its overall aesthetics and its properties.
However, the analogy is no longer perfect for our MCMC sampling
algorithm, since each time we shake the box, the result we obtain depends on
the current value of the die; it is not an independent realisation. We should
expect that the inherent dependence of our sampling algorithm will
detrimentally affect its ability to approximate the posterior. Intuitively, this is
because the informational value of each incremental sample is less than it
would be for a purely independent sampler.
Effective sample size: representing the cost of dependent sampling

The manifestation of dependence for MCMC is autocorrelation in the chain
of samples. In other words, the current sample value is correlated with its
value in the previous sample. This correlation means that an MCMC
algorithm takes many more samples to reach a reasonable approximation of
the posterior than would be necessary for an independent sampler.
As an example, consider a method of throwing a die that we call tilting. We



suppose that tilting causes a directional weighting in the next value of the die,
such that following a 3, the numbers 2 and 4 are most likely. If we obtain a 4,
the numbers 3 and 5 are most likely, and so on. The tilting methodology is
illustrated for a six-faced die in the network graph of Figure 12.9, where the
edges represent possible transitions and the edge width represents the
probability of such a transition. We allow the transition probabilities to be
determined by a parameter 0≤ ε≤1, where a value of 0 indicates independent
sampling (where all transitions are equally likely) and a value of 1 indicates
the circumstance where only consecutive transitions are allowed, meaning
that there is significant dependence in the Markov chains.
We next estimate the mean of two dies: one with six faces and another with
eight. The left and middle panels of Figure 12.10 show the errors in
estimating the mean for each of these dies, when using independent sampling
(ε = 0, red) or a heavily dependent sampling algorithm (ε = 1, black and
grey). For all sample sizes, more dependence leads to a higher average
predictive error. Further, the difference in predictive performance between
dependent and independent sampling algorithms is greater for the die with
more faces.
Figure 12.9 Possible transitions of for a six-faced die that is thrown by
‘tilting’ for three different values of transition bias, ε. The edges represent
possible transitions, with thicker edges representing more probable
transitions.

The right-hand panel of Figure 12.10 illustrates the concept of effective
sample size. This is calculated by finding the independent sample size that
results in the same error rate as the dependent algorithm. We find that a
sample size of 40 for a dependently sampled (ε = 1) six-faced die produces an
average error that is roughly equivalent to an independent sampler with a
sample size of 20 – an effective sample size of roughly 50% of the size of the
actual. For the die with eight faces, the situation is even worse: for the same
number of throws as the six-faced die, the effective sample size is only 10.



Dependence in samples is typically more important for complex models. So a
model with more parameters (like our eight-faced die) usually requires larger
sample sizes to achieve an equivalent approximation to a posterior. For these
sorts of model, it is not unusual to encounter an effective sample size that is
less than 10% of the actual sample size, although this sort of slow
convergence can be symptomatic of problems with a given model. This rule
is not absolute, but something to bear in mind when considering different
models. We will not explain how to estimate effective sample size for a given
model just yet, as this is better tackled after a little more theory (see Section
13.10).
Figure 12.10 Left and middle: the average errors in estimating the mean of a
fair die, with six and eight faces, respectively, across a range of sample sizes
for dependent sampling (black and grey lines; ε = 1) and independent
sampling (red lines). Right: dependent sample size versus effective sample
size for six-faced (black) and eight-faced (grey) fair dice, and an independent
sampler (red). The horizontal and vertical dashed lines across all plots
indicate the calculation of effective sample size corresponding to an actual
sample size of 40 for the dice. These estimates were produced using 10,000
iterates from the Markovian dice for each parameter set.

As a final analogy to explain the concept of effective sample sizes, imagine
attempting to estimate the mean temperature in a particular tropical locale
(that has no seasons). You have two options available to you: either you can
use the temperature measured on consecutive days, meaning you have a run
of temperature samples from day 1 to day n; or you have a list of
temperatures of the same length measured at monthly intervals. The question
here is: Just how many measurements of temperature do you need to
accurately infer the mean temperature by each method?
In the monthly case, there may be some correlation between the temperature



measured today versus a month ago – for example, a region of low pressure
may sit above an area for months at a time. However, we suppose that after
two months there is no longer much correlation with the temperature today.
By contrast, there is considerable dependence in the daily measurements. If
the temperature today is above the mean, then it is likely that the temperature
tomorrow will also be high. The same goes for the next day and, to a lesser
extent, the weather next week. The point is that we could easily – if we had
only 30 daily measurements, corresponding to a month – infer that the mean
temperature is much higher than it is in reality. If instead, we had 30
measurements that were taken at monthly intervals, this scenario is much less
likely. Therefore we obtain a much better estimate of the mean temperature
from the monthly measurements than we would if we used the daily ones.
The monthly measurements are closer to the ideal of independent
measurements than the daily measurements are. Thus, a sample size of 30
monthly observations would correspond to a higher effective sample size
than for the same sample size for daily observations.



12.11 Chapter summary
The reader should, by now, realise the difficulty of practical Bayesian
inference. The trouble is that, for most continuous parameter examples, the
Bayesian denominator term requires us to calculate an intractable high-
dimensional integral. Even if we could calculate this beast, our work would
only just be beginning, since we usually want to calculate the distribution’s
summary moments, such as its mean and variance, requiring further complex
integrals to be computed.
While there are a number of ways to address these difficulties, including
discretising posteriors and numerical quadrature, the only method whose
complexity does not scale exponentially with the dimensionality of parameter
space is Monte Carlo sampling.
By drawing samples from our posterior we hope to gain an understanding of
its properties. Ideally, these samples would be independent. That is, the value
of the next sample does not depend on the current value. For most posteriors,
however, obtaining independent samples is not possible, due to their inherent
complexity, and because we cannot calculate the denominator term. A
solution to both of these issues is to use dependent sampling, in the form of
MCMC.
These chains do a kind of random walk through parameter space, where the
path is determined by a series of decisions made using information about the
posterior that is obtained by localised stepping. This locality means that we
do not need to calculate any global properties of the posterior, and ensures
that each of its steps is sufficiently easy to compute. This low computational
burden means that MCMC methods can be used for posteriors of an arbitrary
number of dimensions.
Thus far, we have been vague in our description of the way in which these
Markov chains step through parameter space. Over the next three chapters,
we discuss the three predominant algorithms that are used to dictate the
stepping process. Burdening ourselves with the level of the algorithms may
appear unnecessary, particularly if you choose not to implement the
algorithms, and instead rely on probabilistic programming languages that
come pre-loaded with this information. However, this knowledge is essential
to understand the output of this software, and to avoid the (many) pitfalls of
computational Bayesian inference. As is the case for most things in life, the
devil is in the detail.



12.12 Chapter outcomes
The reader should now be familiar with the following concepts:

the issue with attempts to calculate the posterior, as well as its summary
measures, in practice
how discretising the density, as well as discretising the integral, through
quadrature can be used to approximate the calculations involved in
Bayes’ rule
how the complexity of methods based on discretisation scales too
abruptly with the difficulty of the problem at hand to make these
methods a practical solution
the use of Monte Carlo sampling to estimate integrals whose complexity
is relatively unaffected by model complexity
how dependent Monte Carlo sampling can be used to sample from a
posterior density by computing only the numerator of Bayes’ rule: the
likelihood multiplied by the prior
the difference between the effective sample size and the actual sample
size for dependent samplers

12.13 Problem sets
Problem 12.1 A fairground game
At a fairground a man advertises a gambling game that allows participants the
chance to win a money prize if they pay an entrance fee. The game sequence
goes like this:

You pay £X.
The man flips a fair coin (with an equal chance of the coin landing heads
or tails up).
If the coin lands tails up, the game ends and you walk away with
nothing.
If the coin lands heads up, he flips the coin a further two times and you
receive the total number of heads across these latter two flips, H. So if
the coin lands heads up twice, you receive £2; if once, you receive £1; if
zero, you receive £0.
Your winnings are given by £(H ™ X).

Problem 12.1.1 Calculate the expected value of your winnings W if you
participate, and hence determine the fair price of the game.
Problem 12.1.2 Create an R function that simulates a single run of the game,



and use this to estimate the expected value of your winnings. (Hint: use R’s
rbinom and ifelse functions.)
Problem 12.1.3 Suppose that you pay £1 for each game, and start with £10 in
your pocket. By using your previously created function, or otherwise,
determine the expected number of games you can play before going broke.
Problem 12.1.4 Suppose you start with £10, and play the game 100 times
(stopping only if your wealth is below the price of entry), each time paying
£0.49. You want to insure against the risk of losing all your wealth. What is
the fair price to pay for such an insurance scheme?
Problem 12.2 Independent sampling
An analysis results in a posterior with the following probability density
function:

Problem 12.2.1 Verify that this is a valid PDF. (Hint: see R’s numerical
integration function.)
Problem 12.2.2 Using independent sampling, estimate the mean and variance
of this distribution.
Problem 12.2.3 Construct uncertainty intervals around your estimates of the
mean.
Problem 12.2.4 Verify your previous answer by calculating the mean and
variance of this distribution.
Problem 12.2.5 On the basis of the equation:

provide another way to estimate the mean.
Problem 12.2.6 Using the above method, where g is the continuous uniform
distribution between 0 and 5, find an estimate of the mean.
Problem 12.2.7 How should we choose g(x) to yield estimators with the
lowest variance? (Difficult.)
Problem 12.3 Integration by sampling
Calculate the following integrals by sampling.
Problem 12.3.1



Problem 12.3.2

Problem 12.3.3

Problem 12.3.4

Problem 12.3.5 What is the approximate sampling distribution in using
independent sampling to evaluate integrals?
Problem 12.4 Markovian coin
Consider a type of coin for which the result of the next throw (heads or tails)
can depend on the result of the current throw. In particular, if a heads is

thrown then the probability of obtaining a heads on the next throw is ;
if instead a tails is thrown then the probability of obtaining a tails on the next

throw is . To start, we assume 0 ≤ ∈ ≤ . The random variable X takes
the value 0 if the coin lands tails up or 1 if it lands heads up on a given throw.
Problem 12.4.1 Find the mean of the coin, supposing it starts with

probability  on each side.
Problem 12.4.2 Computationally estimate the mean of the coin by simulating
10, 20 and 100 throws for ∈ = 0.
Problem 12.4.3 As ∈ increases, how does the error in estimating the mean
change, and why?

Problem 12.4.4 When  calculate the effective sample size of an actual
sample size of 100. How does the effective sample size depend on ∈?

Problem 12.4.5 Now assume that . What is the effective sample
size of an actual sample size of 100? Explain your result.
Problem 12.5 Markovian die
Consider a type of die whose next value thrown can depend on the current
value. The degree of dependence is specified by a parameter 0 ≤ ∈ ≤ 1 (see
Figure 12.9). If ∈ = 0 then each separate throw of the die can be considered
independent of the previous value. Another way of saying this is that each
number has an equal probability of being thrown irrespective of the current



value. If ∈ = 1 then there is strong dependence from one throw to the next,
where from a given number on a throw only neighbouring numbers are
possible on the next. So 1 → (6,2), 2 → (1,3), and so on. If 0 < ∈ < 1 we
suppose that there is preference towards consecutive numbers, with the
preference increasing in ∈.
For all values of ∈ we assume that both the forward and backward steps are
equally likely, so 1 → 2 and 1 → 6 are of the same probability. If 0 < ∈ <1,
we suppose that those transitions that are not neighbours are all of the same
probability (which is less than the probability of consecutive numbers).
Specifically, we define ∈ in the following way:

where  is an indicator function which is equal to 1 if the next
value of the die, Xn+1, is in the neighbour set C(Xn) of the current value, Xn.
(The above is just a fancy way of saying that we increase the probability of
neighbours by an amount ∈ / 2 relative to the non-neighbours.)
Problem 12.5.1 Find the mean of the die across all values of ∈, assuming it
starts on a randomly selected side.
Problem 12.5.2 By simulating throws of the die, find an estimator of its
mean.
Problem 12.5.3 Compute the error in estimating the mean as ∈ is varied at a
sample size of 5, 10 and 100.
Problem 12.5.4 Find the effective sample size of 100 throws (when
estimating the mean) for a die where ∈ = 1. Comment on the effect of
dependence on sampling.
Problem 12.5.5 Now suppose that the die starts always on side 2. Find the
expectation of the die (not the running total, just the current value) at each
time step. (Difficult.)
Problem 12.5.6 Following on from the last question, find how long we need
to leave the die before we are confident we are sampling from its
unconditional distribution. (By ‘unconditional’ here, we mean its probability
distribution, disregarding its start point.) (Difficult.)
Problem 12.5.7 Carry out the above investigations but for a die with n sides.
How does n affect the results?
Problem 12.6 Turning a coin into a random-number
generator



Suppose you have one coin that has equal probability of landing heads up or
tails up.
Problem 12.6.1 How can you use this coin to create a random variable X that

has  and ? (Hint: use rejection
sampling.)
Problem 12.6.2 In R use a computational fair coin (namely, a Bernoulli
distribution with θ = 0.5) to create a random variable that is approximately
distributed as a standard normal.
Problem 12.6.3 Using the answer to the previous question, create a variable
that is approximately uniformly distributed between 0 and 1.
Problem 12.7 Pseudo-random-number generators
Problem 12.7.1 A particular pseudo-random-number generator is known as
the linear congruential generator which generates a sequence of pseudo-
randomised numbers using the relation:

where a, b and M are suitably chosen positive integers. What is the maximum
period that such a sequence can have?
Problem 12.7.2 Write a function that implements the above recurrence
relation and hence show that when a = 2, b = 3 and M = 10, where we begin
with s0 = 5 (the seed), the series has a period of 4.
Problem 12.7.3 Create a new function that has a maximum of 1 and a
minimum of 0.
Problem 12.7.4 Use your newly created function with a = 1229, b = 1 and M
= 2048, beginning with s0 = 1, to generate 10,000 numbers between 0 and 1.
Draw a histogram of the resulting sample. What sort of distribution does this
look like?
Problem 12.7.5 Draw a scatter plot of pairs of consecutive samples for the
previously generated series. Does this series look random?
Problem 12.7.6 Now generate a series with a = 1597, b = 51,749 and M =
244,944, beginning with s0 = 1, to generate 10,000 numbers between 0 and 1.
Draw a histogram of the resulting sample. What sort of distribution does this
look like? Does a scatter plot of consecutive pairs look random?
Problem 12.7.7 Prove that inverse transform sampling works.
Problem 12.7.8 Use your most recent sequence of numbers from the linear
congruential generator along with inverse transform sampling to generate
pseudo-independent samples from the density .



Problem 12.7.9 Using the inverse transform method or otherwise, use your
sequence linear congruential generator to generate samples from a standard
normal distribution.
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13.1 Chapter Mission Statement
This chapter introduces the reader to one of the most popular MCMC
sampling algorithms: Random Walk Metropolis. This chapter also introduces
the methods used to judge convergence of MCMC algorithms.



13.2 Chapter Goals
In Chapter 12 we explained that although independent sampling from a
posterior is generally impossible, it may be feasible to generate dependent
samples from this distribution. While we are unable to exactly determine the
global structure of the posterior, we can nevertheless build up a picture of it
by local exploration using dependent sampling, where the next sample value
depends on the current value. Although not as efficient as independent
sampling, dependent sampling is easier to implement, and only requires
calculation of the un-normalised posterior, avoiding the troublesome
denominator term.
We also know that MCMC is typically used to do dependent sampling. It is
called Monte Carlo because the decision of where to step next involves a
random component. However, thus far, we have been vague about how this
decision is made in practice. In this chapter we see that there are two
components to this decision: in the first, we choose where to propose a next
step from the current position; in the second, we choose whether we accept
this step or stay where we are.
We aim to generate samples at points in parameter space whose frequency
varies in proportion to the corresponding values of the posterior density. On
first glance, it might appear that, whatever we select for these two
components, we will eventually achieve this goal. This is not correct. If we
always chose to step upwards, we would keep climbing until we reach the
mode of the distribution, where we would stay forevermore. If, instead, we
accepted all proposals, irrespective of their posterior height, then we would
generate a uniform density of samples across all areas of parameter space.
Clearly, we need to design our stepping routine so that it is just right,
sampling more from the peaks of the distribution and less from the low
valleys. One of the most commonly used routines that satisfies these
conditions is known as the Random Walk Metropolis algorithm and is the
focus of this chapter. We will spend the majority of time developing an
intuition of why this algorithm works and a relatively short time describing
its mathematical underpinnings.
The basic Metropolis method is a general algorithm, but has limits – it can
only be used (straightforwardly) to sample from an unconstrained parameter.
By unconstrained here we mean one whose value can be any real number.
This is a problem since many distributions have parameters that are



constrained, either to be non-negative or to lie between particular bounds. For
example, the standard deviation parameter of a normal distribution must be
positive. In these circumstances the standard Metropolis algorithm does not
work, so we are left with two choices: either we can transform our parameter
so that its transformed value is unconstrained, and run Metropolis on the
transformed parameter space; or we can switch to the Metropolis–Hastings
algorithm. This algorithm allows constrained stepping which ensures that our
Markov chains never stray outside of the correct bounds for a parameter.
Fortunately, once we understand basic Metropolis, it is not much harder to
grasp Metropolis–Hastings, and we shall discuss this other algorithm at this
point in our learning.
An important consideration for practical MCMC is how to know when the
sampling distribution has converged to the posterior distribution. You may
ask: Why do we need to wait any time at all? Isn’t the point of the MCMC
that it will generate samples from the posterior? Well, under a wide range of
conditions, it will – eventually. But how long is long enough? This depends
on a number of factors: for example, where we decide to start our chains.
Ideally, we would use an independent sample from the posterior as our initial
chain location. However, we generally do not know the posterior, nor know
how to generate an independent sample from it. This is why we started doing
MCMC sampling in the first place! So, because we cannot achieve this
optimality, we instead usually choose a random (and hence arbitrary) starting
point, unlikely to be representative of an independent sample. This means
that early samples from our Markov chains will be more representative of the
random initialisation distribution than they are of the posterior. However, the
good news is that, if we run our chains for long enough, they will eventually
get there. But just how long do we need to wait to reach this goal? This is a
difficult question, which we address in Section 13.9.

13.3 Sustainable Fishing
Suppose that David Robinson (a more fortunate cousin of Robinson Crusoe),
marooned on his island, has access to four freshwater lakes of different sizes,
each of which has a supply of fish. Furthermore, suppose that the amount of
fish in each lake is proportional to its size. Robinson knows this and, being a
sensible person, would like to ensure that he does not overfish each resource,
by fishing each lake in proportion to the amount of fish it contains.
Unfortunately though, Robinson drinks too much coconut toddy (an alcoholic



beverage made from the sap of a coconut tree) and cannot remember the size
of lakes he previously visited. We also assume that Robinson’s activities do
not affect the fish populations, so long as he does not massively overfish any
of the lakes.
We suppose that on a given day, Robinson fishes and then camps next to a
particular lake, which is connected by a series of pathways to the other lakes
in a ring-like way, as shown in the left-hand panel of Figure 13.1. This means
that he can travel from lake A to B, from B to C, from C to D, from D to A,
as well as in the anticlockwise direction. The total number of fish in each of
the lakes is shown in the right-hand panel of Figure 13.1.
Figure 13.1 Left: the connectivity of the four lakes for the Robinson fishing
example. Note that Robinson cannot actually see the fish, only the size of the
lakes. Right: the total number of fish in each lake.

How can Robinson achieve his goal of fishing each lake in proportion to its
fish stocks? One way is for him to flip a coin at the end of each day: if it is
heads, he proposes a move in the clockwise direction (from A to B, for
example); if it is tails, he proposes a move in the anticlockwise direction
(from A to D, for example). He then calculates the following ratio using the
proposed lake size, Sproposed, and the current lake size, Scurrent:

Luckily for Robinson, he also has a solar-powered watch, which can generate
a single (pseudo-)random uniform number at the end of each day, p ~ U(0,1).
He compares the calculated value of r with p, and moves to a new location, if
p < r; or fishes the same lake tomorrow, if p <r.
Using this method, we computationally simulate Robinson’s journey (left-
hand panels of Figure 13.2) and, assuming he catches one fish per day (he
retires to eat his catch after his first success), we can graph the total number
of fishes caught (right-hand panels of Figure 13.2). After 50 days, the spread



of fish he has caught across all lakes appears similar to the actual distribution
of fish. After 500 days (bottom-right panel of Figure 13.2), the difference
between sampled and actual distributions of fish is even smaller.
Figure 13.2 Left: the sequence of lakes (A, B, C, D) which Robinson fishes
according to a Metropolis sampling routine over 50 (top) and 500 (bottom)
days marooned on the island. Right: the actual number of fish he catches
(red) for both time periods versus the true distribution of fish across the lakes
(pink). Note the fish dimensions are not comparable between the top and
bottom plots (in other words, over 500 days Robinson caught many more fish
– see axes).

Our algorithm appears to have worked! Robinson has fished each pond in
rough proportion to the fish stocks in each. Without knowing it, we have
actually used the Random Walk Metropolis algorithm to produce a Markov
chain that samples from the desired distribution. Before we more rigorously
define this algorithm, let’s consider another example, this time in continuous
space.

13.4 Prospecting for Iron
We are employed as a contractor for a mining company to map the amount of
subterranean iron across a vast, lifeless desert. The desert is flat and
uninformative of the treasures that lie underneath (see Figure 13.3). However,



fortunately, we have a machine that measures the magnetic field directly
underneath, which varies in direct proportion to the total amount of iron
below. Suppose that the mining company has already determined that the
area is rich with iron deposits and is interested only in mapping the relative
abundance of deposits over the desert.
How should we approach mapping the underground iron? The simplest way
would be to survey the magnetic field at, say, 1km intervals. However, even
at this modest resolution, we would need to sample 1000 × 1000 = 1million
points. If instead we increased the precision to 100 metres, we would then
need to take 100 million samples. We’d die of thirst! There must be a quicker
way to build an accurate map.
Suppose that we start in a random location in the desert and measure the
magnetic field beneath. We then use a random sample from a bivariate
normal distribution centred on our current location, to pick a new location to
sample. We then measure the magnetic field there, and if it exceeds the value
at the old site, we move to the new location and add the new (north, east)
location to our list. By contrast, if the value of the magnetic field is lower
than the current value, then we only move there probabilistically, with a
probability given by the ratio of the new value to the old. To do this we
compare the ratio with a random sample from a uniform distribution, p ~
U(0,1). If our ratio exceeds p, then we move there and add the new (north,
east) to our current list. If it does not, then we move back to where we were,
and add our previous location to our list again.
Figure 13.3 The desert above, with the iron deposits underneath. The red
path shows a possible sampling path that our intrepid worker (Lawrence of
Abayesia) might follow.



Figure 13.4 Searching for iron using the Metropolis algorithm. The left-hand
column results exactly reflect the actual iron deposits, and all other panels
represent the estimated deposits using samples generated by the Random
Walk Metropolis algorithm with an increasing sample size (left to right). Top
row: the path taken through the desert (red lines). The histogram of samples
obtained using the Metropolis algorithm and the reconstructed posterior
density correspond to the middle and bottom rows respectively.



If we follow this routine a large number of times, and look at the
concentration of sample points across the desert, we can obtain a map of the
underground iron deposits (see Figure 13.4). While sample size obviously
affects the accuracy of the map, after only 1000 samples, we have built up a
rough, yet usable, map of the iron deposits below. Time to go and relax in an
oasis! Note the indirect way that we built this map, using the measurements
of magnetic field only to determine where next to step. The spatial density of
above-ground (north, east) samples then determined the amount of iron
below. This is different to the survey method where we used the
measurements of the magnetic field below a given location to directly
quantify the amount of deposits that lay beneath it.

13.5 Defining the Random Walk Metropolis
Algorithm
We illustrated how the Metropolis algorithm works using two (silly)
examples, but now we need to spend a little time to define it properly. (It
shouldn’t take too long, so bear with us; you’ll be better for understanding its
details.)
Imagine that we have a posterior whose density is known up to a proportion:

We would like to sample from this posterior to build an understanding of its
shape and properties. For this example, imagine that θ is a one-dimensional
continuous parameter, but note that the method outlined below is also
applicable for models with more parameters.
We imagine that we do a random walk in posterior space, and at each point in
time decide where next to step based on our current position and the shape of
the posterior. We want the list of locations where we step to constitute
samples from the posterior. If we have designed our stepping routine
correctly, and take enough steps, we hope to build up an approximate global
picture of the posterior from the local density of samples across parameter
space.
If we always move to our next proposed location, irrespective of its height,
we call this a drunkard’s random walk. The result of this approach is uniform
sampling across parameter space (see top panels of Figure 13.5). The
drunkard, in a stupor, pays no attention to the posterior shape, and hence
returns samples that are not indicative of the posterior terrain.
Clearly, to generate samples for locations in proportion to their posterior



density, where we next decide to step should account for the height of the
posterior. So, instead, we imagine a less random stepping routine where we
step to a proposed location only if its height exceeds the current one. In
memory of the mountaineer Edmund Hillary, we call this method a Hillary
climb. In the bottom panel of Figure 13.5, we see that a Hillary algorithm has
the opposite problem to the drunkard: they quickly ascend the posterior
landscape, until they reach its peak. They then stay there for ever, resulting in
a reconstructed posterior that is increasingly biased towards this mode.
An introduction to the random walk Metropolis algorithm

Taking stock of the situation, we realise that we need an algorithm that pays
just the right amount of attention to the posterior shape: too little attention,
like the drunkard, and we get uniform sampling; too much, like Hillary, and
we just get stuck on a mode forevermore. It turns out that, if we use the
following decision-making rule, we then get the perfect balance:

where r is the probability that we accept the proposed point θt+1 as our next
sample value. This type of schema allows us to move both upwards and
downwards in posterior space (see Figure 13.6 for a cartoon depiction of this
algorithm) and ensures that we sample from a parameter location in relation
to its relative height. As we discussed in Chapter 12, this rule requires only
the relative height of the posterior at each step (because the denominator
cancels in the ratio), meaning that we can substitute the un-normalised
posterior densities for θt and θt+1 for the corresponding full posterior densities
in expression (13.3) (see Section 12.8.1 for a more thorough explanation).
This means that we can avoid the complication of calculating the
denominator and instead approximate all quantities of interest from our
samples.
Figure 13.5 Comparing different accept–reject mechanisms for MCMC
stepping. Top row: a drunkard’s random walk. Middle row: a walk generated
by the Metropolis algorithm. Bottom row: an example Hillary climb. The red
lines (left) show the path taken by each stepping algorithm over time, the
histograms (middle left) show the binned samples, and the dashed red lines
(middle right) show the reconstructed posterior for each set of samples. The



solid grey lines (right) show the actual posterior, assumed to be the same in
each case.

In the middle panel of Figure 13.5, we see that this sampling routine produces
paths that are someway between the extremes of the drunkard and Hillary,
resulting in a reconstructed posterior that is much closer to the real thing.
We have now described the basic Metropolis recipe, but have omitted an
important element: we have not yet described how we should generate the
proposed location. (Don’t worry, however, as this element will be fully
explained in Section 13.6.)
Figure 13.6 Exploring a landscape using the Random Walk Metropolis
algorithm. Time here is computational runtime. Note that for two times (t = 2,
t = 4), two plots are shown apiece: once for proposal, the other for accept-
reject. Red figures represent accepted steps, grey figures represent proposed
steps and black figures represent rejected steps.



13.6 When does Metropolis Work?
We now describe the conditions when the Random Walk Metropolis
algorithm produces samples that are representative of the posterior. A key
issue is that we would, ideally, like to initialise our Markov chain by
independently sampling a start point from the posterior density. This would
ensure that we immediately start to generate samples representative of the
posterior. However, we cannot generate independent samples from the
posterior; if we could, then we would not need to do MCMC in the first
place! (See Section 12.7 for a refresher of this theory, if you need it.)
This means that in MCMC we start our Markov chains at some random
points in parameter space, which will not be indicative of the posterior
density. Often we may start our chains in areas of higher density so that they
do not meander around in flat stretches of posterior space for too long. We
then hope, by repeatedly doing Metropolis steps, that our distribution of
sample values converges to the posterior distribution (see Figure 13.7)1.
1 This figure was inspired by the excellent lectures of Michael Betancourt:
https://www.youtube.com/watch? v=pHsuIaPbNbY.
Figure 13.7 Convergence to a posterior distribution in MCMC. Here we start
with a uniform distribution over possible starting values of each Markov
chain (top-left), and as we repeatedly apply the transition operator, we
eventually converge to a stationary distribution that is the posterior
distribution (red line in bottom-right panel).

https://www.youtube.com/watch?


Mathematically we can firm up exactly what we mean by convergence to the
posterior. If you want, you can skip Section 13.6.1 since it will be quite
mathematical and not essential to what follows.
13.6.1 Mathematical underpinnings of MCMC
Suppose that we start with an arbitrary distribution for possible starting
values of the chains, π(θ), and in each step apply a transition operator, 

, representing the two steps – proposal then accept–reject – of the
Metropolis algorithm, but can also represent whatever type of algorithm
governs our Markov chain’s transitions [10].  is a conditional
probability distribution, often called the transition kernel, which specifies the
probability of a chain transitioning from a parameter value θ to another value
θ′. To apply this operator across all possible starting values of our parameter,
we must calculate an integral:

where π(θ′) is the distribution of the Markov chain values after one step. The
differential dθ is put first to make the integrals easier to read. We aim to
design this transition operator so that repeated application of it results in the
posterior density:

where θ′n represents the parameter space for the nth step of the MCMC
algorithm, where n is assumed to be a large integer. The consequences of this
repeated application of the transition operator are illustrated graphically in
Figure 13.7, where the sampling distribution of our chain shifts over time,



converging towards the desired posterior distribution. We call this limiting
distribution the stationary or invariant distribution.
13.6.2 Desirable qualities of a Markov chain
It turns out that, so long as we design our Markov chains so that they satisfy
certain properties, we can be assured that (at least in the limit of infinitely
long chains) our Markov chain sampling distribution will converge to the
posterior. But what are those properties?
Mathematically proving that a Markov chain converges to the posterior is
typically done in two steps [14]: the first step proves that the chain converges
to a unique stationary distribution; the second proves that this stationary
distribution is the posterior distribution. The first of these conditions is
usually trivial, and requires that we design our Markov chain with the
following properties:

Irreducible or ergodic – this means that all parts of posterior parameter
space can eventually be reached from all others by the chain (see the
left-hand panel of Figure 13.8 for a counter-example).
Aperiodic – this just means that the chain does not perfectly cycle (see
the right-hand panel of Figure 13.8 for a counter-example).

These two conditions tend to be trivially satisfied by the Markov chains that
we consider in Bayesian statistics, meaning that we do not need to consider
them when we design our sampler. However, to ensure that the stationary
distribution of a Markov chain corresponds to the posterior, we need to take
care, since it would be easy to fall foul here. This design decision is the
subject of Section 13.6.3.
Figure 13.8 Examples of reducible (left) and periodic chains (right). Left:
once the fish enters the net, it cannot escape and visit other parts of the ocean
[12]. Right: a rollercoaster is constrained to (hopefully!) cycle forevermore
on its track.



13.6.3 Detailed balance
Imagine that we determine where next to consider stepping using a

conditional probability distribution, , which we call the
jumping or proposal distribution [14]. Here θt corresponds to the sampled
value of our parameter at a time t, in other words the current value of our
Markov chain. (The jumping distribution is similar to the transition kernel we
introduced in Section 13.6.1 but does not account for the accept–reject step.)
We want to design our Markov chain proposal distribution such that, if it
reaches a distribution corresponding to the posterior, it stays there. In other
words, the stationary distribution (the limiting distribution of the Markov
chain) is the posterior distribution.
The Metropolis algorithm is characterised by a symmetric proposal
distribution, meaning that we are as likely to propose θb from θa as we are to
go in the reverse direction, to θa from θb. Mathematically, this means that 

. In what follows, we show that this assumption is
sufficient to prove that the Metropolis algorithm converges (for infinite
sample sizes) to the posterior distribution.
To do this, we follow the derivation in [14] by supposing we can generate
two samples from our posterior,  and ,
where we assume (without loss of generality) that 

. We can then determine the probability density
of a transition in either direction, from θa→θb:

By assumption the posterior density is higher at θb than θa, and hence, using
the Metropolis rule, we deterministically (that is, with probability 1) move to



θb. Now consider a move in the opposite direction, from θb→θa:

where we obtained the right-hand side of the first line of (13.7) using the
Metropolis acceptance rule. The bottom line of (13.7) is obtained by
assuming the symmetry of the proposal distribution, in line with the
Metropolis algorithm. Thus we have proved that the joint density of a
transition from θa→θb is the same as that for θb→θa. This means that our
Markov chain satisfies a principle called detailed balance, meaning that at
equilibrium each transition should have a probability equal to its reverse
process.
But how does this help us? Well, since we know that (repeating what we have
above but in longhand notation:

we can determine the marginal distribution of the next value of our algorithm 

 by integrating out  in the above:

where we obtained the final line of (13.9) by remembering that the jumping
distribution is a valid probability distribution, and hence must integrate to 1.
The above expression dictates that the probability density for the next step of
the Markov chain is the same as the current density, which, by assumption,
equals the posterior. Thus, if we reach the posterior density (which we will do
asymptotically since our change is ergodic and aperiodic), then our Markov
chain will stay there. This amounts to requiring that our Markov chain at
equilibrium is reversible. This means that if we run our chain backwards we
would have the same probability densities.
13.6.4 The intuition behind the accept–reject rule of
Metropolis and detailed balance



Only one accept–reject rule works with the symmetric proposal distribution
of the Metropolis algorithm. This dictates that we always move to a new
parameter value if its posterior density is higher there, and that we only move
probabilistically if its value is lower, with a probability given by the ratio of
the proposed density at the new location compared to its current value. No
other rule will work.
We can think of all (reasonable) rules as existing on a spectrum. At one
extreme is the case where we always accept, corresponding to the drunkard’s
random walk we discussed in Section 13.5. At the other extreme, we have the
Hillary climb, which only accepts a new parameter value if its posterior
density is higher. While these are the extremes, all rules on the spectrum can
be related back to the following ratio:

where ∈ > 0. Considering the + case, this means that we move towards the
drunkard’s walk end of the spectrum, and our sampler will give too much
weight to lower posterior values. By contrast, the – case does the opposite
and gives too much weight to the peaks of the posterior, as per Hillary. As
Figure 13.9 illustrates, we can view the just-right Metropolis rule as being the
knife-edge case on the spectrum of rules, where the ‘distance’ between our
sampling approximation and the actual posterior goes to zero (at least for
infinitely long Markov chains).
When we tune this rule just right, our Markov chain satisfies the principle of
detailed balance when it reaches equilibrium. This means that for any two
points in the stationary distribution, the probability of transition from one
location to the other is the same both ways.
What is the intuition behind this seemingly innocuous result? Imagine that
you work as a conservationist for a national park, where unfortunately a
chemical spill has just released toxic waste into a lake (see Figure 13.10). To
begin with, the chemical is relatively localised to the site where the spill
occurred, which happens to be in the part of the lake not used for swimming.
At this point in time, there is a net flux of the chemical from this side towards
the swimming side (left-hand panel). This diffusion process continues until
equilibrium, when the chemical is evenly distributed throughout the whole
body of water. At this point, the flux of chemical from the non-swimming
zone into the swimming zone is the same, meaning that the net flux is zero
(right-hand panel). This maintains roughly the same number of chemical



particles on either side of the barrier.
Figure 13.9 How the probability of accepting a proposal affects whether the
MCMC sampling distribution converges to the posterior. Note that this is a
conceptual representation and should be not interpreted quantitatively.

We can think of the chemical as representing probability mass. In the
beginning, there is a considerable flow of probability from place to place, as
our Markov chains traverse posterior space, uncovering new peaks and
crossing undiscovered valleys. To reach equilibrium, where we have a
stationary distribution, we require that the flux of probability from one place
to another – like the flux of chemical particles from the swimming to the non-
swimming area – is exactly balanced. Luckily enough for us as statisticians
(not swimmers), this is what the principle of detailed balance exactly
stipulates, ensuring that our stationary distribution stays that way.
Figure 13.10 The principle of detailed balance explained through swimming.
Immediately after a chemical spill (left), the chemical particles are relatively
localised in the no-swimming zone, and there is a net flux of particles from
this area into the swimming area. After some time, the chemical particles
reach equilibrium, with roughly equal numbers of them in each zone and a
net flux of zero from one zone into the other. We can think of the chemical
particles as representing probability mass.

13.7 Efficiency of Convergence: The
Importance of Choosing the Right Proposal



Scale
For detailed balance to be satisfied for our Metropolis algorithm, we required
that the proposal distribution be symmetric. But what sorts of distribution
might we actually use here? A common choice is a normal distribution
centred on the current location of our Markov chain in parameter space. Since
this distribution is symmetric about its mean, the probability of choosing a
point θa from θb is the same as the other way round (see Figure 13.11).
Another benefit of this distribution is that it generalises well to
multidimensional settings, becoming the multivariate normal.
Figure 13.11 The symmetry of a normal distribution as a proposal makes it
an attractive choice. Here the probability of proposing θa from θb is the same
as in the opposite direction.

Whatever choice of normal distribution for our proposal, so long as it is
centred on the current value of the sampler, we will obtain convergence to the
posterior for an infinitely long chain (see Section 13.6). However, we usually
do not have an infinite amount of time to run our Markov chains, and would
like them to converge as fast as possible. The only choice available to us is
the standard deviation of the normal distribution, σ, so we might wonder:
Does changing this parameter have any effect on the rate of convergence?
Our answer would be a resounding yes!
Figure 13.12 illustrates that the rate at which Metropolis converges to the
posterior distribution is highly sensitive to the Metropolis step size
(characterised by the standard deviation of the normal proposal density).
Using a step size that is too small (top panels of Figure 13.12) means it takes
the sampler a long time to find areas of high density. Using these samples to
reconstruct the posterior, we obtain a density that is highly dependent on the
start location of the chain, with a bulk of probability mass away from the
heart of posterior probability mass. If instead we use a step size that is too



high (bottom panels of Figure 13.12), we reject the majority of proposals,
since most of parameter space is low and flat, meaning that we get a highly
autocorrelated chain with low numbers of effective samples (see Section
12.10 for a refresher of this concept). Only when our step size is just right
(middle panels) do we obtain a Markov chain that mixes well and looks
roughly like white noise (the type of noise we get when we turn on a radio
that is not tuned to a station).
We can quantify how much better the just-right step size is by estimating the
effective sample size of each Markov chain (see Figure 13.13). The samplers
with step lengths that are either too long or too short have a large degree of
autocorrelation compared with the just-right case (see the left-hand panel of
Figure 13.13). The just-right case has an effective sample size of
approximately 160 out of 1000 total samples (see the middle panel of Figure
13.13), much better than the too-small case (neff ≈ 4) and the too-large one
(neff ≈ 25). However, while the autocorrelation is relatively low for the just-
right Metropolis sampler, it still falls far short of the performance of the
independent sampler, which would achieve an effective sample size of 1000.
The importance of step size for RWM (2D example)

The Kolmogorov–Smirnov test statistic comparing the posterior density to
the sampling density is displayed in the right-hand panel of Figure 13.13.
This statistic provides a simple quantification (compared to the Kullback–
Leibler divergence) between the empirical and actual CDFs. The closer it is
to zero, the nearer the sampling distribution is to the actual. It should not
strictly be used for data where repeated samples occur, but we could not
resist using it here since it is easy to interpret. This shows that the just-right
sampler converges to the true posterior at a faster rate than either of the
extreme step sizes. However, in the same graph, we illustrate the results for
an independent sampler, and find that its convergence is considerably faster
than even the best Metropolis case.
Figure 13.12 The effect of proposal step length on sampling: small steps (top
row), large steps (bottom row) and medium-sized steps (middle row). Left
column: the path of the sampler over time. Left-middle column: the
distribution of binned samples. Right-middle column: the reconstructed
posterior. Right column: the actual posterior. The samplers were all started at
the same point, away from the bulk of probability mass.



Figure 13.13 Comparing the performance of different step sizes in terms of
chain autocorrelation (left), effective sample size (middle) and the distance
between the sampling and posterior distribution (right) for the Metropolis
sampler with various step sizes (see legend) against independent samples
from the posterior (red circles). In the left and middle panels the ideal
performance of a sampler is shown as a dashed grey line.

13.7.1 MCMC as finding and exploring the typical set
A nice intuition for understanding an MCMC algorithm comes from
information theory.2 It is common in Bayesian inference for the majority of
the posterior probability to be confined to a small area of parameter space,
particularly for more complex models. The rest of the posterior terrain is low
and flat, meaning that if we drew independent samples from our posterior it
would be very unlikely to end up here. We call the set of most likely
outcomes rather loosely the typical set.



2 The idea to think of MCMC this way came from an excellent lecture by
Michael Betancourt: https://www.youtube.com/watch?v=pHsuIaPbNbY.
We can consider an ideal MCMC algorithm as being composed of two steps:
finding the typical set and exploring it. We want to find the typical set since
this is where the majority of the posterior probability mass sits. We do not
want to concern ourselves with sampling outside this region since these
parameter values would be highly unlikely. We need to explore the typical set
because we want to build up an accurate map of the actual posterior density
in those areas with the highest probability mass.
We can use these principles to explain further the behaviour of the
Metropolis samplers with either too-small or too-large step sizes. The one
that does not step far enough spends a long time finding the typical set; too
long. The sampler that steps too far can find the typical set easily enough but
is not very good at exploring it, since most of its proposed steps are rejected.
This high rejection rate results in a rather coarse fit of the sample-
reconstructed distribution to the actual posterior (see the bottom-right panels
of Figure 13.12). The just-right step size sampler does reasonably well in
both finding and then exploring the typical set. (However, we shall see in
Chapter 15 how we can do better.)
13.7.2 Speeding up convergence: tuning the proposal
distribution
What is the optimal rate of acceptance for our MCMC sampler to converge
on the posterior at the fastest rate? It turns out that this depends on the type of
algorithm we are implementing, but for the Metropolis algorithm an
acceptance rate of 0.44 for one-dimensional models and 0.23 for models with
more dimensions leads to optimal convergence as measured by a number of
criteria, across a range of target densities [30, 31]. Can we use this
knowledge to help tune our Metropolis sampler dynamically as it runs? It
turns out the answer to this is yes, but care is needed to ensure that we still
converge to the posterior distribution.
In reality, it is often easier to split the algorithm into two stages:

1. Run a training algorithm to find the optimal proposal distribution
parameters.

2. Initialise new chains and run them using a proposal distribution with
tuned parameters.

An example training stage is illustrated in Figure 13.14, where we start a

https://www.youtube.com/watch?v=pHsuIaPbNbY


Metropolis Markov chain and update its proposal step size at regular
intervals, in order to bring the acceptance rate closer to the ideal of 0.44 (our
example is the one-dimensional example considered in Figure 13.12). We
start two chains – one with a step size that is too low, the other taking steps
that are too long – and then subtract a small amount (εt) from the step size if
the acceptance rate is too low, or, conversely, we increase the step size if it is
too high (εt decreases with MCMC iteration number t). Here both chains
converge to approximately the same optimal step size. We actually used this
optimal step size in a second stage of MCMC to produce the just-right panels
in Figures 13.12 and 13.13.
Note that this adaptive MCMC algorithm we used here is simplistic, and
many more nuanced variants are possible where, for example, we account for
our distance from the ideal acceptance rate.
Figure 13.14 Illustrating an adaptive Metropolis Markov chain in action. Top
row: the acceptance rate over time for Markov chains with different initial
step lengths (left = small steps, right = large steps). Bottom row: the average
step length, which is adjusted at regular intervals. If the acceptance rate is
below the optimum (0.44) we decrease the step length; if it is above the
optimum we increase it. The amount εt by which the step sizes are adjusted
decays at a rate εt = 0.99 εt-1.

13.8 Metropolis–Hastings



Suppose that we believe that the returns of a single stock Xt can be modelled
by a normal sampling distribution (see Section 8.4.6):

where µ is the stock’s mean return and σ is its standard deviation. While μ
can, in theory, be negative, it is not meaningful for σ < 0, since a standard
deviation must always be positive. Unfortunately, this causes problems for
our Metropolis algorithm, since a symmetric proposal distribution can
propose a negative value for σ. Further, when σ < 0 the normal PDF is
undefined, and hence we cannot use our Metropolis update rule to determine
whether to accept the step.
Naively we might think that we can simply reject all steps that propose σ < 0,
and still sample from the posterior density. However, this is not the case. If
we reject all steps where σ < 0, we will generate relatively few samples from
areas of parameter space where σ is close to zero (see Figure 13.15).
Intuitively, the areas near zero have only one side from which they can be
reached – positive values of σ. This contrasts with higher parameter values
which can be reached from either side. This asymmetry in neighbours means
that we eventually generate too few proposals near zero.
Constrained parameters? Use Metropolis-Hastings

Figure 13.15 The sampling distribution that results from using simple
rejection sampling to sample values for a non-negative parameter. Here we
use a normal distribution as a proposal distribution, and reject any negative
samples of the parameter. We assume that the posterior density is locally flat
over the region we sample from.

The Metropolis algorithm does not work when we have boundaries in
parameter values. So how can we fix things? One way is to transform
parameters so that they are then unconstrained, and then sample using this
transformed parameter space. In our stock example, one way to transform σ



would be to take its log. Since log(σ) can be positive or negative, we can use
the Metropolis algorithm to sample from it and then re-transform back to σ
space. However, because we have used a non-linear transform of variables,
we need to use something called a Jacobian to ensure that we account for the
squashing and stretching of probability mass. Although not difficult for this
example, in more complex settings it can become cumbersome to use
Jacobians, and instead we prefer to use the Metropolis–Hastings algorithm.
The Metropolis–Hastings algorithm is a modification that we make to the
basic Metropolis algorithm to allow for an asymmetric proposal distribution.
What does this mean? For a Metropolis sampler, we used a normal
distribution whose mean equalled the current parameter value. However,
even if the mean of the proposal distribution satisfies the parameter
constraints, it is possible that the proposed value will be on the wrong side of
the boundary. What we need is a proposal distribution that always produces
parameter values in the allowed region of parameter space. This means we
need an asymmetric proposal distribution. In our σ example, we could use a
log-normal distribution that naturally has support only for positive parameter
values. Accordingly, we might use the following distribution as a proposal:

where σt is the current value of the parameter, and d characterises the step
length (see Figure 13.16). The reason that we choose this parameterisation of
the distribution is because it has a mean of σt. However, unlike the normal
case, this distribution is not symmetric and allows only positive parameter
values.
Figure 13.16 Three densities corresponding to different input values for an
asymmetric proposal distribution. The distribution here is a log-N 

.

We have fixed the proposal distribution so that it will not propose negative
parameter values. However, now we must correct the accept–reject rule to



ensure it still produces samples from the posterior. Fortunately, this
modification to the basic Metropolis accept–reject rule is simple, with the
ratio r changed to:

where the first part of the expression is the same as basic Metropolis, and the
second is the correction due to asymmetric jumping. Here  is the
proposal probability density at θt if the current position of the sampler is θt+1.

Note that, when , the proposal distribution is
symmetric, and r collapses down to the Metropolis ratio. If we use this new
ratio, r, instead of the basic Metropolis one in our stepping algorithm, we are
assured of asymptotic convergence to the posterior density.

13.9 Judging Convergence
We have discussed what it means for a Markov chain to converge to the
posterior distribution. In Figure 13.13 we even measured it. If we knew the
posterior distribution, then we could measure the degree of correspondence
between the sampling distribution and the actual using a number of criteria.
We previously used the Kolmogorov–Smirnov test statistic as an approximate
measure; a better attempt might use the Kullback–Leibler (KL) measure (see
Section 10.5.3 for an explanation), although there are many choices here
dependent on the goals of an analysis.
In pretty much all applied examples of Bayesian inference, we do not know
the posterior distribution, and hence measuring convergence is difficult. It is
a bit of a Catch-22 situation. In order to decide whether our sampling
algorithm converges to the posterior, we need the posterior. However, to get
the posterior we need to do sampling.
We could actually use the KL divergence, but with an un-normalised
posterior, recognising that a distribution that minimises this will also
minimise the KL from the actual posterior. However, this calculation is
difficult as it involves a nasty high-dimensional integral, although this forms
the basis of some approximate methods, such as variational Bayes. So how
can we proceed? One of the nicest ways to monitor convergence of a
sampling distribution is with the methods first suggested by Andrew Gelman
and Donald Rubin [16]. Like much of this book, we will explain this
methodology using an analogy, and afterwards describe the approach more
formally.



13.9.1 Bob’s bees in a house
Imagine that there is a dark house of unknown size and shape, whose
blueprints we would like to determine. Luckily, we have at our disposal a
number of Bumble Bees3 that are each fitted with a tracker that charts their
location as they move. We hope that by releasing these bees and tracking
their location at discrete time intervals (these locations represent samples),
we can eventually reconstruct an accurate three-dimensional image of the
house. Imagine that, at first, we release only a single bee. A question that
occurs to us is: How long do we have to wait before we can be confident that
our bee has moved throughout the whole house? We think for a second, then
realise that we can use its tracker to look at its path over time. If we have
been monitoring the path over some period and its distribution of locations
does not appear to be changing, then does this mean that we are done?
3 We first heard this example in a lecture by Bob Carpenter
(https://www.youtube.com/watch?v=qQFF4tPgeWI) and thought it nicely
analogises the approach that Gelman and Rubin suggested for measuring
convergence, so we describe a version of it here.
No, it does not. Imagine that some of the doors in the house are very small,
making it less likely that the bee – which we assume moves randomly
throughout the building – will pass through. It is possible that our bee is
temporarily stuck in a single room of the house (see the top row of Figure
13.17). When we look at the bee’s path, we have the illusion that it has
converged on the floor plan of the whole house because the distribution of
locations does not appear to change over time. However, this is a statistical
mirage; if we waited a bit longer, our bee would eventually go through the
door and move around the rest of the house.
So if we wait a bit longer we may, now, in hindsight think that the bee’s path
represents the layout of the entire house. However, just as we are about to
call our bee in for nectar, our tracker shows that the bee has moved into a
completely new area, with a size that dwarfs our original estimates of the
house floor space. Damn! It seems that, however long we wait, we are always
destined to face this type of issue, particularly because we assume that we
have no idea of the actual house size and shape.
Fortunately, we have read Gelman and Rubin’s article, and this gives us an
idea. Suppose that we can release a number of bees in random, at diverse
locations throughout the house. (For this analogy to work we assume that the
bees do not interact with one another; they are loner bees.) We then monitor

https://www.youtube.com/watch?v=qQFF4tPgeWI


the paths of all the bees over time. Now looking at our bees, we can see that
some of them have remained in parts of the house; they have not yet passed
through the small doors in order to mix with the other bees. This is now
obvious to us because we can actually see that some bees’ paths never cross
one another (see the bottom row of Figure 13.17).
Gelman and Rubin’s idea is that, if we release a sufficiently large number of
such bees and monitor their paths over time, we can determine if the bees
have explored the entire house. To do this we attempt to differentiate between
the paths produced by the separate bees. If we cannot tell which bee has
produced which path, then this is a reasonable indication that the bees have
searched the whole house.
Of course, this method relies on a few things. First, how do we determine the
number of bees to release to give us peace of mind that we have converged
on the house’s floor plan? Second, we need to ensure that we release the bees
in sufficiently diverse locations throughout the house, to be relatively
confident that they will eventually move through the doors to each of the
rooms. But how do we determine what is ‘sufficiently diverse here’,
particularly as we do not know the layout of the house?
These are good questions, and there are no simple rules here. In practice,
maybe releasing a few dozen bees might suffice. However, this number
clearly depends on the size and shape of the house. For a typical apartment,
we imagine that this would be fine. For a country mansion with lots of
narrow passages, then perhaps a few dozen are not enough; we need to
release a few hundred! Similarly for the release strategy. We want to make
sure we randomise our releases over the space of the house to give our bees a
wide variety of starting locations. But it is difficult in practice to determine
just how to do this. If we had rough blueprints of the house, then we could
probably use this to randomly place our bees at dispersed locations in the
building. In some cases, we may have such a rough approximation, but in
many others, we will not. For these latter applications, we will just have to
choose a suitably wide distribution from which to start our bees. We then
hope that if their paths converge over time, we have arrived at an accurate
representation of the house.
However, we can never be sure. There is always the chance that a room is of
a sufficiently weird shape – being, for example, both long and narrow –
meaning we will have to wait a long time for our bees to reach its corners.
Similarly, if some of the doors are a tight squeeze for the bees, then it may



take years for any of them to pass through them. (Anyone who has tried to
get a trapped bee to go out through a window knows this difficulty.) This is
where it helps to have an idea of the house’s shape before we actually release
the bees. If we have a rough idea of its architecture (for example, through
maximum likelihood estimates), then we should not get so many nasty
surprises when eventually we come to do the experiment. As ever, the more
we educate ourselves about a problem, the more we can be confident in our
results.
Bob’s bees: the importance of using multiple bees (chains) to judge MCMC
convergence

13.9.2 Using multiple chains to monitor convergence
From the previous analogy, we hope that it is not too much of a stretch to see
that running multiple Markov chains, initialised at highly dispersed parts of
parameter space, is crucial. Its importance cannot be overstated, and we have
seen many an unhappy student go through the following process:

1. Write model (boring).
2. Code model (even more boring).
3. Run MCMC and get results (excitement!).
4. The chain looks to have converged. (More excitement – go to the pub!)
5. Tomorrow professor asks, ‘How many chains did you run? Only one?!

Run more!’ (Trepidation, and annoyance at the professor.)
6. Rerun with multiple chains. Convergence vanishes. (Hangover reaching

a breaking point.)
7. Night(s) spent in the library. (Lonely desperation.)

Figure 13.17 Using Bob’s bees to reproduce blueprints of a house. The three
left columns show the effect of using a single bee (top) and multiple bees
(bottom) to randomly traverse the house. Right: blueprints reconstructed from
the paths of the bees.



OK, maybe not all students of Bayes go through all of the above, but we have
all at least experienced some of them. In particular, the issue of running a
single chain and mistakenly believing that your chains have converged on the
posterior distribution. Unfortunately, current software makes it all too easy to
fall into this trap. It is also tempting at first because running more chains can
take more time (although with modern hardware, which allows parallel
processing, this is less of an issue). However, we reiterate the point once
more: running a single chain is never a good idea. In fact, we would advocate
running as many chains in parallel as is feasible. For relatively simple
models, running only four to eight chains may be fine but, as the complexity
of the model increases, it is often a good idea to run a few tens of chains. As
we tried to make clear in the bee analogy, we can never be sure that we have
reached convergence, but the more chains we run, the less likely this is to
occur.
So after we have decided on the number of chains to run, how do we monitor
their convergence? As we tried to explain in the bee analogy, we can be fairly
confident that the chains have converged on the posterior distribution when it
is impossible to – by just looking at the samples of one chain – differentiate
one chain from all others. But what do we mean by ‘differentiate one chain
from all others’?
Imagine that we start with the path taken by each bee and look at the range of
locations surveyed in a particular direction (see Figure 13.18). If the ranges
of motion do not overlap across the different paths, then we clearly can still
differentiate one path from the others (top panels of Figure 13.18). In this
case imagine that we take the paths, and colour some random parts of them so
that they correspond to the wrong bee. If the paths were originally separate,
then it should be visually obvious that we have done some fiddling. This is
because there is now mixing between the resultant paths, and we can no
longer resolve between the histograms. By contrast, if the paths were



originally well mixed, then it is much harder to notice that we have been a-
colourin’ (bottom panels of Figure 13.18). Moving now back to Markov
chains, this latter case, where the chains cross over one another’s paths time
and time again, is a much better candidate for convergence than the case
where there is no mixing.
Figure 13.18 Non-mixing (top) and better mixing (bottom) of bee paths,
before (left) and after (right) they are randomly recoloured. In both cases, the
histogram corresponds to the number of samples at that particular distance
along the axis.

Now that we understand qualitatively how to tell whether our chains have
converged, we discuss how to do it quantitatively, through a bit of simple
maths.
13.9.3 Using within- and between-chain variation to
estimate convergence
Going back to our bee example, how can we create a mathematical rule that
allows us to differentiate between the top and bottom panels of Figure 13.18?
The most common method, due to Rubin and Gelman, is to calculate the
variance of samples within each chain and compare it to the between-chain
variance. Intuitively, if these are about the same, then it indicates that we
would find it difficult, on the basis of the sampling distribution alone, to
differentiate between samples from one chain versus those from any of the
others (see Figure 13.19).
So how do we calculate the within- and between-chain variances? If we
imagine that our parameter space is one-dimensional – in other words, our
model has only a single free parameter θ – then we could calculate the within



variance, W, by [14]:

where  is the estimator for the sample
variance of chain j (see the left-hand panel of Figure 13.20 for a
diagrammatic explanation of this calculation). Note here that we index θ by

both i and j. So θij corresponds to the ith sample from the jth chain,  is the
mean sample of the jth chain, and m indicates the number of chains. In
expression (13.14) we are hence just averaging the sample variances across
all chains.
To calculate the between-chain variability, we want to compare the mean of
each chain with that of the overall mean (see the right-hand panel of Figure
13.20). Averaging this over all the chains we obtain:

Figure 13.19 The within-path variation (W) versus the between-path
variation (B) for the case of non-mixing (left) and mixing (right) paths.

Figure 13.20 Illustrating the calculation of within- (left) and between-chain
(right) variance.

where  and  are the jth and overall chain’s sample means, respectively.
The factor of n at the front of expression (13.15) is because our estimator is
based on the jth chain’s sample mean, which is calculated using n samples.
The m – 1 in the denominator is analogous to the n – 1 in the sample variance
formula, and is to ensure this estimator is unbiased.
This process is the same method that is used in ANOVA modelling, where



variation in data is apportioned to that originating from within groups and
that due to between-group sources. Gelman and Rubin’s idea was to use
estimators of the posterior variance – one accounting for total variance
(namely, the variance from both within- and between-chain sources) and
another due solely to the within-chain variation – and then take the ratio of
these quantities. If our chains have converged, this ratio should be close to 1.
Explicitly, they first calculate an estimator of the posterior variance by a
weighted average of W and B [16]:

When written this way, it is apparent that if , or , then the

above estimator . However, when we first start the
chains, it will be the case that , since we start the chains in an
overdispersed position. Gelman and Rubin suggest that we calculate the ratio:

where initially . Their idea was that, if this ratio exceeds a threshold

(in practice, a rule of thumb is to use  as a cut-off), then our chains
have not mixed well and we cannot assume our posterior has converged.
However, as , then , and we are more confident in using
our sampling distribution for inference.

In practice, we estimate  across all of our parameters, and we continue to
run our chains until all of our parameters satisfy .
13.9.4 Two types of non-convergence
We have said that a chain converges if its sampling distribution is stationary.
However, it is easy for a chain to become stuck in a region of parameter
space, and hence its distribution appears stationary. To detect this type of
non-convergence, we have discussed using multiple non-interacting chains,
each of which is started in some disparate part of parameter space. If one of
the chains becomes stuck in a part of parameter space, we can resolve
between the paths of each of the chains, and we conclude that we have not
converged on the posterior distribution. We call this type of non-convergence



poor inter-chain mixing (see the left-hand panel of Figure 13.21).
There is, however, a second scenario, where our individual chains mix with
others but do not mix well with themselves, which we call poor intra-chain
mixing (see the right-hand panel of Figure 13.21).
What do we mean by ‘mix with itself’, and why do we care? This type of
non-convergence means that we cannot be confident that our chains have
converged on the posterior because their individual sampling distributions are
non-stationary. This is characterised by a chain that – if you split it in half
and considered each of the halves as a separate chain – would fail to show

mixing by the  measure we considered before (see Figure 13.22). In fact,
this is exactly the way that Stan calculates  [8]. It splits all chains in two,
then – considering the resultant half-chains as independent – calculates 
using expression (13.17).
Figure 13.21 Non-convergence due to (left) no mixing between chains and
(right) poor within-chain mixing.

Figure 13.22 Diagnosing intra-chain non-convergence by splitting the chains
on the left into two (shown on the right).

13.9.5 Warm-up
The previous sections of this chapter illustrate that our chains have not
converged if , for any of our parameters. If this is true, we need to run



the chains for longer, change our algorithm, or (more often) change our
model to speed up the rate of convergence. Once our chain exhibits good
convergence characteristics, then, and only then, can we think of its samples
as representing the posterior.
However, even after convergence diagnostics indicate convergence, the first
part of the chain is nonetheless likely to reflect its starting position – which is
selected in a fairly haphazard fashion – and hence is unlikely to be
representative of the posterior. So we probably should not include our first
few samples in our final posterior sample, but where do we draw the line?
Sometimes a point where the chains reach the stationary distribution is
obvious from visually inspecting the path of the chains over time (see Figure
13.23), but usually, things are less clear-cut. Following Gelman et al. [14],
we recommend discarding the first half of chains that appear to have
converged as a default method. The authors call this first part of the chains
warm-up, where they have yet to converse on the posterior distribution (see
the shaded area of the bottom panel in Figure 13.23).
Figure 13.23 Bottom: the paths of initially dispersed chains converge over
time. Top: computed as the chains run. In this case, we would discard the first
300–400 samples (the shaded region) as warm-up.



This protocol is only a rule of thumb. There are circumstances where we can
almost immediately assume our samples are representative of the posterior,
and hence discarding the first half of the chains is quite conservative. There
are also times when discarding the first half of chains may not be
conservative enough (for example, sometimes when sampling from
multimodal distributions).

13.10 Effective Sample Size Revisited
In Section 12.10 we introduced the concept of an effective sample size for a
dependent sampling algorithm. This concept arose from considering the
action of an ideal sampling algorithm, which would independently sample
from the posterior. In most cases, this level of efficiency is not realisable, and
instead we have to use dependent samples – where the next sample value
depends on the current value. For dependent samplers, the incremental
benefit of one extra sample is less than for an individual sample from an
independent sampling algorithm; intuitively, there is less new information in
each further sample, since each sample is partly determined by the previous



value. This reduced efficiency is crystallised in the concept of effective
sample size, which estimates – fairly crudely – the number of independent
samples which are equivalent to a given dependent sample size. We want to
create a sampling algorithm that generates the maximum number of effective
samples per second.
In our previous discussion of effective sample size, we found that the
effective sample size is negatively impacted by the autocorrelation of Markov
chains. Intuitively, lower autocorrelation means that our Markov chain is
closer to generating independent samples. We previously used a die example
to illustrate how to estimate an effective sample size. We now describe a
more general method for calculating effective sample size, which we can
apply to the samples outputted by MCMC algorithms. The method is more
mathematical than our previous discussion, but we aim to keep the intuition
central to our explanation. (If you don’t feel like wading through all this
maths, then you can skip ahead to the end-of-chapter summaries, since the
concept is not entirely new.) We nonetheless feel it is useful to understand
the mathematical basis of effective sample size estimation, if only to be able
to fully appreciate the results of a Stan run.
First, imagine that we have access to truly independent samples from our
posterior. In this case, we might want to determine the accuracy in estimating
a particular posterior characteristic, for example its mean: 

. Since our samples are independent we can use the
central limit theorem (see Section 3.5 for a refresher) to derive an
approximate sampling distribution of our estimator:

where we have assumed that we are using the sample mean estimator 

 and that T – the sample size – is large. From expression
(13.18), we see that the convergence rate is a function of . This
convergence rate is the best we can hope to attain since it pertains to the
independent sampling case.
One way to define the effective sample size, , for a dependent sampler is

so that its convergence rate is proportional to . So, for a dependent
sampler, the convergence rate is a function of the square root of the effective
sample size, whereas for the independent sampler it depends on the square



root of the actual sample size.
Imagine that we use a single chain with T samples in our MCMC algorithm.

An estimator of the posterior mean is given by . We want to
estimate the variance of our estimator since this determines its rate of
convergence. Taking the variance we obtain:

If our sampler produced independent samples, then the covariance terms in
expression (13.19) would disappear. However, our dependent sampler
produces autocorrelated samples, therefore ,
where  is the autocorrelation at a lag τ. Substituting this into expression
(13.19) we obtain:

where we have cancelled a common T term on each side of the expression. If
we consider the case where we have m chains and take the limit as our
sample size becomes infinite, we obtain:

Comparing this with an equivalent independent sampler where ,
we obtain:

Rearranging the previous two expressions, we obtain the following
expression for the effective sample size [14]:

This expression indicates the theoretical effective sample size of a Markov
chain and illustrates that as the autocorrelation increases, the number of
effective samples decreases. However, how do we actually calculate the
above expression, since in reality we do not have an infinite sample size and
do not know ρτ?
There are a number of methods to do this, but they typically amount to

estimating ρτ using some measure of the sample autocorrelation, . The
sample autocorrelation is then substituted in for ρτ in expression (13.23). We



also replace the infinite sum with a sum over only the first T′ terms, where T′

is the first odd positive integer when  is negative [8]. This is
because, due to sampling error, the higher-order estimates of sampler
autocorrelation are noisy and often become negative. Stan actually uses fast
Fourier transforms to calculate the sample autocorrelation simultaneously for
all lags efficiently (see [1]).
13.10.1 Thinning samples to increase effective sample
size
Once convergence is reached, we could make our samples look ‘more
independent’ if we kept only every tenth, or hundredth, sample. These will
naturally be less correlated than consecutive samples, meaning that they are
more similar to the theoretical independent ideal. This process, where we take
only every nth sample, is known as thinning a dependent sampler.
However, we notice that this really is just a trick – our sampler does not
produce independent samples – and we are discarding information if we
remove these samples from our final sample set. However, thinning can be
worthwhile if we are dealing with a high-dimensional model, and
computational memory is limited [14].



13.11 Chapter Summary
Whoa, that was a lot of information! We began by considering the mechanics
of the Random Walk Metropolis algorithm – one of the most fundamental
and important methods in MCMC. We saw that its accept–reject rule for
deciding whether to accept a proposed parameter value results in just the right
balance of samples across the posterior landscape, sampling each point in
proportion to its posterior height. By contrast, any deviations from this rule
result in a sample of parameter values that does not reflect the posterior
distribution. We learned that the Metropolis acceptance rule satisfies the
principle of detailed balance, which ensures that the sampling algorithm
converges to a unique stationary distribution which equals the posterior
distribution.
We next saw that the decision of where to consider stepping next, through the
proposal distribution, is crucial for the sampling efficiency of a Metropolis
Markov chain. Too small a step size and our samplers will take a long time to
explore the posterior space. If the steps are too large, then we hardly accept
any proposals and our sampler gets stuck in areas of high density. We
described the ideal behaviour of an MCMC algorithm as first finding the
typical set (an area with the majority of probability mass) and then exploring
it. A Markov chain with steps that are too small takes a long time to find the
typical set. With larger step sizes we find the typical set quickly enough but
we do not explore it well, resulting in a coarse approximation to those areas
of parameter space with most probability mass.
We introduced the Metropolis–Hastings algorithm to allow us to sample from
constrained parameter spaces, by using an asymmetric proposal distribution,
whose support matches the posterior distribution. To allow for asymmetric
stepping we were required to modify the ratio of basic Metropolis to take
account of the asymmetry in jumping.
We described how judging the convergence of a given MCMC algorithm is
tricky. There are no methods currently available that allow us to be certain
that our algorithm has converged. However, by using a number of non-
interacting chains, initialised at overdispersed locations in parameter space,
we are much better able to guard against the faux convergence signals that
can result from running a single chain. This method is not foolproof,
however, and we should run as many chains as is feasible to minimise the
risk of faux convergence. With many chains, we can compare the within-



chain variation to that between them, and only have confidence in
convergence when these two measures are of similar magnitude. Gelman and

Rubin’s  embodies this maxim and is the most widely used metric to
determine Markov chain convergence. This quantity should be calculated for
each of the parameters in our model, and we should be confident in

convergence only if  in all cases.
Once convergence has been obtained, we minimise the effect of the arbitrary
initialisation distribution on our estimates of the posterior, by taking samples
only after a so-called warm-up period (where we are confident we are
sampling from the posterior). This period is not predetermined and varies
dependent on the problem at hand. There are competing methods for
determining the warm-up sample size, each with its own merits. However,
here we favour conservatively discarding the first half of a Markov chain
once convergence has been reached.
Finally, we saw that by accounting for the autocorrelation of our dependent
sampler, we derived an expression for the effective sample size, which
represents the equivalent number of independent samples.
It is hard to overstate the importance of understanding this chapter’s content.
Knowledge of the Metropolis algorithm, alongside methods to determine
convergence of Markov chains, is essential to be able to undertake applied
research. Equipped with this knowledge, you should also be able to critique
the research of others. The Random Walk Metropolis algorithm also provides
terra firma from which to attack other, faster, algorithms, particularly the
Gibbs sampler in Chapter 14 and Hamiltonian Monte Carlo in Chapter 15.
We shall see that these algorithms are just modified versions of the basic
Metropolis and that, luckily, much of what we have learned here will also be
applicable there.



13.12 Chapter Outcomes
The reader should now be familiar with the following concepts:

the intuition behind the Random Walk Metropolis algorithm
the importance of the particular accept–reject rule that is used in
Random Walk Metropolis, and how it helps us ensure detailed balance
the fact that a symmetric proposal distribution results in a sampler that
will converge asymptotically (in an infinite sample size) to the posterior
the importance of tuning the proposal distribution characteristic step
distance to ensure optimal exploration of the posterior density
the use of Metropolis–Hastings to sample from posteriors with
constrained parameters
the difficulty judging whether an MCMC algorithm has converged to the
posterior
how monitoring the within- and between-chain variation, across multiple
chains and initialised at wide starting locations, can help to minimise the
risk of non-convergence
the importance of a warm-up phase of MCMC to ensure that we do not
produce posterior samples skewed towards the starting positions
how increased Markov chain autocorrelation leads to smaller effective
sample sizes

13.13 Problem Sets
Problem 13.1 Ticked off
Imagine once again that you are investigating the occurrence of Lyme disease
in the UK. This is a vector-borne disease caused by bacteria of the species
Borrelia which is carried by ticks. (The ticks pick up the infection by blood-
feeding on animals or humans that are infected with Borrelia.) You decide to
estimate the prevalence of these bacteria in ticks you collect from the
grasslands and woodlands around Oxford.
You decide to use sample sizes of 100 ticks, out of which you count the
number of ticks testing positive for Borrelia. You decide to use a binomial
likelihood since you assume that the presence of Borrelia in one tick is
independent of that in other ticks. Also, because you sample a relatively
small area, you assume that the presence of Borrelia is identically distributed
across ticks.
Problem 13.1.1 You specify a beta(1,1) distribution as a prior. Use



independent sampling to estimate the prior predictive distribution (the same
as the posterior predictive, except using sampling from the prior in the first
step rather than the posterior), and show that its mean is approximately 50.
Problem 13.1.2 In a single sample you find that there are 6 ticks that test
positive for Borrelia. Assuming a beta(1,1) prior, graph the posterior
distribution, and find its mean.
Problem 13.1.3 Generate 100 independent samples from this distribution
using your software’s in-built (pseudo-)random-number generator. Graph this
distribution. How does it compare to the PDF of the exact posterior? (Hint: in
R the command is rbeta; in Matlab it is betarnd; in Mathematica it is
RandomVariate[BetaDistribution...]; in Python it is numpy.random.beta.)
Problem 13.1.4 Determine the effect of increasing the sample size on
predictive accuracy using the independent sampler to estimate the posterior
mean. (Hint: for each sample you are essentially comparing the sample mean
with the true mean of the posterior.)
Problem 13.1.5 Estimate the variance of the posterior using independent
sampling for a sample size of 100. How does your sample estimate compare
with the exact solution?
Problem 13.1.6 Create a proposal function for this problem that takes as
input a current value of θ, along with a step size, and outputs a proposed
value. For a proposal distribution here we use a normal distribution centred
on the current θ value with a standard deviation (step size) of 0.1. This means
you will need to generate a random θ from a normal distribution using your
statistical software’s in-built random-number generator. (Hint: the only slight
modification you need to make here, to ensure that you do not get θ < 0 or θ
> 1, is to use periodic boundary conditions. To do this we can use modular
arithmetic. In particular, we set . The command
for this in R is x%%1; in Matlab the command is mod(x,1); in Mathematica it
is Mod(x,1); in Python it is x%1.)
Problem 13.1.7 Create the accept–reject function of Random Walk

Metropolis that accepts as inputs both  and  and outputs the
next value of .
Problem 13.1.8 Create a function that combines the previous two functions,

so it takes as input a current value of , generates a proposed ,

and updates  in accordance with the Metropolis accept–reject rule.



Problem 13.1.9 Create a fully working Random Walk Metropolis sampler.
(Hint: you will need to iterate the last function. Use a uniformly distributed
random number between 0 and 1 as a starting point.)
Problem 13.1.10 For a sample size of 100 from your Metropolis sampler
compare the sampling distribution to the exact posterior. How does the
estimated posterior compare with that obtained via independent sampling
using the same sample size?
Problem 13.1.11 Run 1000 iterations, where in each iteration you run a
single chain for 100 iterations. Store the results in a 1000 × 100 matrix. For
each iterate calculate the sample mean. Graph the resulting distribution of
sample means. Determine the accuracy of the MCMC at estimating the
posterior mean.
Problem 13.1.12 Graph the distribution of the sample means for the second
50 observations of each chain. How does this result compare with that of the
previous question? Why is there a difference?
Problem 13.1.13 Decrease the standard deviation (step size) of the proposal
distribution to 0.01. For a sample size of 200, how does the posterior for a
step size of 0.01 compare to that obtained for 0.1?
Problem 13.1.14 Increase the standard deviation (step size) of the proposal
distribution to 1. For a sample size of 200, how does the posterior for a step
size of 1 compare to that obtained for 0.1?
Problem 13.1.15 Suppose we collect data for a number of such samples
(each of size 100), and find the following numbers of ticks that test positive
for Borrelia: (3,2,8,25). Either calculate the new posterior exactly, or use
sampling to estimate it. (Hint: in both cases make sure you include the
original sample of 6.)
Problem 13.1.16 Generate samples from the posterior predictive distribution,
and use these to test your model. What do these suggest about your model’s
assumptions?
Problem 13.1.17 A colleague suggests as an alternative that you use a beta-
binomial likelihood instead of the binomial likelihood. This distribution has
two uncertain parameters,  and  (the other parameter is the
sample size; n = 100 in this case), where the mean of the distribution is 

. Your colleague and you decide to use weakly informative
priors of the form  and . (Here we use the



parameterisation such that the mean of  is a/b.) Visualise the joint
prior in this case.
Problem 13.1.18 For this situation your colleague tells you that there are
unfortunately no conjugate priors. As such, three possible solutions (of many)
open to you are: (a) to use numerical integration to find the posterior
distribution; (b) to use the Metropolis–Hastings algorithm; (c) to transform
each of (α, β) so that they lie between  then use Random Walk
Metropolis. Why can you not use vanilla Random Walk Metropolis for (α, β)
here?
Problem 13.1.19 By using one of the three methods above, estimate the joint
posterior distribution. Visualise the PDF of the joint posterior. How are α and
β correlated here?
Problem 13.1.20 Construct 80% credible intervals for the parameters of the
beta-binomial distribution.
Problem 13.1.21 Carry out appropriate posterior predictive checks using the
new model. How well does this model fit the data?
Problem 13.2 The fairground revisited
You again find yourself in a fairground, and where there is a stall offering the
chance to win money if you participate in a game. Before participating you
watch a few other plays of the game (by other people in the crowd) to try to
determine whether you want to play.
Problem 13.2.1 In the most boring version of the game, a woman flips a coin
and you bet on its outcome. If the coin lands heads up, you win; if tails, you
lose. Based on your knowledge of similar games (and knowledge that the
game must be rigged for the woman to make a profit!) you assume that the
coin must be biased towards tails. As such you decide to specify a prior on
the probability of the coin falling heads up as . Graph this
function, and, using your knowledge of the beta distribution, determine the
mean parameter value specified by this prior.
Problem 13.2.2 You watch the last 10 plays of the game, and the outcome is
heads 3/10 times. Assuming a binomial likelihood, create a function that
determines the likelihood for a given value of the probability of heads, θ.
Hence or otherwise, determine the maximum likelihood estimate of θ.
Problem 13.2.3 Graph the likelihood × prior. From the graph approximately
determine the MAP θ estimate value.
Problem 13.2.4 By using R’s integrate function, find the denominator, and



hence graph the posterior PDF.
Problem 13.2.5 Use your posterior to determine your break-even/fair price
for participating in the game, assuming that you win £1 if the coin comes up
heads, and nothing otherwise.
Problem 13.2.6 Another variant of the game is as follows.The woman flips a
first coin: if it is tails you lose (Yi = 0), and if it is heads you proceed to the
next step. In this step, the woman flips another coin 10 times, and records the
number of heads, Yi, which equals your winnings. Explain why a reasonable
choice for the likelihood might be:

where θ and φ are the probabilities of the first and second coins falling heads
up, and Yi is the score on the game.
Problem 13.2.7 Using the above formula, write down the overall log-
likelihood for a series of N observations for .
Problem 13.2.8 Using R’s optim function, determine the maximum
likelihood estimate of the parameters for . (Hint
1: Since R’s optim function does minimisation by default, you will need to
put a minus sign in front of the function to maximise it.)
Problem 13.2.9 Determine confidence intervals on your parameter estimates.
(Hint 1: use the second derivative of the log-likelihood to estimate the
Fischer information matrix, and hence determine the Cramér–Rao lower
bound. Hint 2: use Mathematica.)
Problem 13.2.10 Assuming uniform priors for both θ and φ, create a function
in R that calculates the un-normalised posterior (the numerator of Bayes’
rule).
Problem 13.2.11 By implementing the Metropolis algorithm, estimate the
posterior means of each parameter. (Hint 1: use a normal proposal
distribution. Hint 2: use periodic boundary conditions on each parameter, so
that a proposal off one side of the domain maps onto the other side.)
Problem 13.2.12 Find the 95% credible intervals for each parameter.
Problem 13.2.13 Using your posterior samples, determine the fair price of
the game. (Hint: find the mean of the posterior predictive distribution.)
Problem 13.3 Malarial mosquitoes
Suppose that you work for the WHO and it is your job to research the



behaviour of malaria-carrying mosquitoes. In particular, an important part of
your research remit is to estimate the adult mosquito life span. The life span
of an adult mosquito is a critical determinant of the severity of malaria, since
the longer a mosquito lives, the greater the chance it has of (a) becoming
infected by biting an infected human; (b) surviving the period where the
malarial parasite undergoes a metamorphosis in the mosquito gut and
migrates to the salivary glands; and (c) passing on the disease by biting an
uninfected host.
Suppose you estimate the life span of mosquitoes by analysing the results of a
mark–release–recapture field experiment. The experiment begins with the
release of 1000 young adult mosquitoes (assumed to have an adult age of
zero), each of which has been marked with a fluorescent dye. On each day (t)
you attempt to collect mosquitoes using a large number of traps, and count
the number of marked mosquitoes that you capture (Xt). The mosquitoes
caught each day are then re-released unharmed. The experiment goes on for
15 days in total.
Since Xt is a count variable and you assume that the recapture of an
individual marked mosquito is independent and identically distributed, you
choose to use a Poisson model (as an approximation to the binomial since n is
large):

where μ is the mortality hazard rate (assumed to be constant) and ψ is the
daily recapture probability. You use a Γ(2,20) prior for μ (which has a mean
of 0.1), and a beta(2,40) prior for ψ.
The data for the experiment is contained in the file RWM_mosquito.csv.
Problem 13.3.1 Using the data, create a function that returns the likelihood.
(Hint: it is easiest to first write a function that accepts (μ,ψ) as an input, and
outputs the mean on a day t.)
Problem 13.3.2 Find the maximum likelihood estimates of (μ,ψ). (Hint 1:
this may be easier if you create a function that returns the log-likelihood, and
maximise this instead. Hint 2: use R’s optim function.)
Problem 13.3.3 Construct 95% confidence intervals for the parameters.
(Hint: find the information matrix, and use it to find the Cramér–Rao lower
bound. Then find approximate confidence intervals by using the central limit
theorem.)
Problem 13.3.4 Write a function for the prior, and use this to create an
expression for the un-normalised posterior.



Problem 13.3.5 Create a function that proposes a new point in the parameter
space using a log-N proposal with mean at the current μ value, and a 

 proposal for ψ. (Hint: use a log-N 
, where μ is the current value of the parameter.)

Problem 13.3.6 Create a function that returns the ratio of the un-normalised
posterior at the proposed step location, and compares it to the current
position.
Problem 13.3.7 Create a Metropolis–Hastings accept–reject function.
Problem 13.3.8 Create a Metropolis–Hastings sampler by combining your
proposal and accept–reject functions.
Problem 13.3.9 Use your sampler to estimate the posterior mean of μ and ψ
for a sample size of 4000 (discard the first 50 observations.) (Hint: if
possible, do this by running four chains in parallel.)
Problem 13.3.10 By numeric integration compute numerical estimates of the
posterior means of μ and . How do your sampler’s estimates compare with
the actual values? How do these compare to the MLEs?
Problem 13.3.11 Carry out appropriate posterior predictive checks to test the
fit of the model. What do these suggest might be a more appropriate sampling
distribution? (Hint: generate a single sample of recaptures for each value of
(μ,ψ) using the Poisson sampling distribution. You only need to do this for
about 200 sets of parameter values to get a good idea.)
Problem 13.3.12 An alternative model that incorporates age-dependent
mortality is proposed where:

with . Assume that the prior for this parameter is given by 
. Using the same log-N proposal distribution as for μ, create a

Random Walk Metropolis sampler for this new model. Use this sampler to
find 80% credible intervals for the  parameters.
Problem 13.3.13 Look at a scatter plot of μ against β. What does this tell you
about parameter identification in this model?
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14.1 Chapter mission statement
This chapter introduces the reader to a powerful MCMC algorithm known as
the Gibbs sampler, and explains its similarities and differences compared
with the Metropolis algorithm introduced in Chapter 13.



14.2 Chapter goals
The Random Walk Metropolis algorithm introduced in Chapter 13 provides a
powerful tool for doing MCMC. The simplicity of the Random Walk
Metropolis algorithm is one of its greatest assets. It can be applied to a large
swathe of problems. However, there is a cost to its generality – it can be slow
to converge to the posterior distribution for more complex models.
Furthermore, as we saw in Chapter 13, to ensure speedy convergence to the
posterior, we must tune the proposal distribution for the Metropolis sampler
for each new model we estimate.
The Metropolis algorithm is a type of rejection algorithm for generating
dependent samples from the posterior distribution. By its nature, therefore,
we tend to reject a large proportion of potential steps. This high rate of
rejection can limit the algorithm’s ability to explore posterior space. Would it
not be better if, instead, we could have a sampler that always accepted a
proposed step in posterior space? For a reasonably large set models, it turns
out this is possible, if we use the Gibbs sampler.
But how do we step in parameter space to ensure that we do not reject any
samples? Surely this requires us to be able to independently sample from the
posterior density (which we know we can’t)? It turns out that, while we often
cannot calculate the posterior distribution itself, we may be able to calculate
the conditional posterior density for one (or more) parameter(s). Furthermore,
if we can independently sample from this conditional density, then we can
accept all proposed steps. By accepting all steps, this should mean that we
can explore posterior space at a faster rate.
Gibbs sampling works by exploiting coincidences of conditionality in
posterior space. While this is not possible for all models, it nonetheless
motivated the creation of the BUGS and JAGS languages for MCMC. In
many analyses, it may not be possible to find, and independently sample
from, conditional distributions for all parameters in the posterior. However,
we can often do so for a subset of them. We can then use Gibbs sampling for
this set of parameters, and an algorithm like Metropolis for the remaining
ones. These combination samplers are, in fact, similar to what BUGS and
JAGS use to allow them to be implemented in a range of circumstances.
Finally, before we proceed with Gibbs, a note of caution – while it may
appear that this algorithm is always preferable to Random Walk Metropolis,
this is not necessarily so. First, it requires that we can analytically calculate



conditional densities, which is not possible for many problems. Second,
Gibbs sampling may result in a slow exploration of posterior space when
there is a significant correlation between parameter estimates. Furthermore,
when we modify the basic Metropolis in Chapter 15 to create Hamiltonian
Monte Carlo, we find that this type of sampler is typically much faster than
Gibbs.

14.3 Back to prospecting for iron
Cast your mind back to the problem described in Section 13.4, where you are
employed by a mining company that wants to map the amount of iron
underneath a vast desert. As before, you are equipped with a machine which
can measure the magnitude of the magnetic field beneath, where the magnetic
field varies in proportion to the amount of iron. This time, we are surveying a
different desert to before (see Figure 14.1), but the problem is still the same:
your employers want a detailed map of the deposits underneath.
However, this time you are equipped with a computer linked to a satellite,
which can scan the magnetic field under the desert along a given north–south
or east–west direction from where you stand. Unfortunately, the satellite is
faulty and is unable to return a direct map of the magnetic field below.
However, based on its scan, it can return a random point along a north–south
or east–west line, where the probability of sampling a particular spatial
location is proportional to the amount of iron beneath it. The question is:
How can we use this device to help us map the underground iron most
efficiently?
Figure 14.1 A map of the underground iron deposits. The lines show the
directions that the satellite can scan along.

Figure 14.2 A contour map of the actual iron deposits (left), and



reconstructed maps of deposits produced using the Metropolis (middle) and
Gibbs algorithms (right). The black lines show the paths through the desert
for a person using either method.

One way is to ignore the faulty satellite and use the same method as we did in
Chapter 13. There, we started at a random location in the desert and measured
the magnetic field underneath it. We then used a bivariate normal distribution
to pick a new (north, east) spot where we again measure the magnetic field. If
the magnetic field is higher at our new spot, we move there. If the magnetic
field is lower, we move there only probabilistically, where the probability of
moving is given by the ratio of the new to old magnetic fields. If we use a list
of our (north, east) locations over time as samples, then we can build up a
map of the iron underneath, by considering their spatial density. This method
amounts to using the Random Walk Metropolis sampler (see the middle panel
of Figure 14.2).
Figure 14.3 Histograms of samples produced by the Metropolis (left) and
Gibbs (right) samplers across a range of sample sizes (increasing from top to
bottom).



A better way is to use the information from the satellite. If we start in a
random location in the desert, we can use the satellite to determine our next
sampling point in the east–west direction. We then move to the new point and
use our satellite to determine a random point in the north–south direction and



move there. We continue this process, alternating between moving to a
random location in the east–west and then north–south directions. This
method is the approach used by the Gibbs sampler (see the right-hand panel
of Figure 14.2).
We notice two differences between the moves selected by these samplers.
First, when using the Metropolis sampler, we often reject proposed steps and
remain at our previous location in a given iteration. This contrasts with the
Gibbs sampler, where we always move to a new spot in each iteration.
Second, for the Metropolis sampler, we change both our north and east
coordinates simultaneously (see the diagonal movement lines in the middle
panel of Figure 14.2), whereas in the Gibbs case we move along only one
direction at a time (see the horizontal and vertical lines in the right panel of
Figure 14.2).
Which of the two methods – Random Walk Metropolis or Gibbs – is fastest?
Reconstructions of the underground iron deposits for 1000, 10,000 and
100,000 iterations of each method are shown in Figure 14.3. After only 1000
iterations, the map produced by Gibbs sampling (top-right panel) is
considerably closer to reality than Metropolis (top-left panel). After 10,000,
some differences still persist, although Gibbs is less noisy. Finally, after
100,000 iterations, it is difficult to resolve a difference (bottom panels of
Figure 14.3); both methods produce a fairly crisp map of the underground
iron.

14.4 Defining the Gibbs algorithm
Now that we have some intuition for how Gibbs sampling works, we need to
formally define it. In contrast to Metropolis, Gibbs sampling is only really
valid for models with two or more parameters. So we use a model with three
parameters, , (with a data sample y) to describe the Gibbs
algorithm. We assume that we cannot calculate the posterior distribution, but
can determine exact expressions for the three conditional distributions: 

 and . Furthermore, we
assume that these distributions are simple enough that we can generate
independent samples from each of them.
For our example, the Gibbs algorithm consists of the following steps [14]:

first, choose a random starting point  using the same approach
as for Metropolis. Then, in each subsequent iteration, do the following:



1. Choose a random parameter update ordering. In our example, in the first
iteration we might have an order of , then in the second we
have , and so on.

2. In the order determined in step 1, sample from the conditional posterior
for each parameter using the most up-to-date parameters. So, for an
ordering  determined in step 1, we would first

independently sample from , then 
and finally .

An introduction to Gibbs sampling

Notice that, in the second step, we use the most recent parameters (including
those changed in the current iteration) to create the conditionals we then
sample from. This process is repeated until we determine our algorithm has
converged, using the same multiple-chain  methodology we discussed in
Section 13.9. We notice that for Gibbs there is no accept–reject step like that
for the Metropolis algorithm – we accept all steps.
A subtlety of this method is that it can also be used in a slightly different
way. Suppose that we can generate independent samples for the following
alternative conditionals: ,  and 

. We could repeat the exact methodology above, except
replacing the old univariate conditionals with these bivariate ones. Which of
these methods should we prefer? We would like the one that is closest to
independent sampling from the unconditional joint posterior. The first
method samples from univariate conditionals, and thus updates just one
parameter per step. However, the second method uses bivariate conditionals,
and hence updates two parameters per step. The second is typically preferred
since it is closer to the ideal of independently sampling from the three-
dimensional unconditional posterior. Intuitively, there will typically be less
correlation between consecutive samples for the bivariate sampler, since we
change two parameters in each step. This decreased correlation means the
effective sample size is higher for the second method.
Gibbs sampling of parameters in blocks can also be helpful if the parameters
within the blocks are highly correlated with one another. By independently



sampling the blocks, this allows us to mitigate against the risk of slow
convergence of a correlated Gibbs sampler.
So why do we not always use a Gibbs sampler that samples from 2+
dimensional conditionals? Well, for the same reason we typically cannot
sample independently from the posterior –constructing such a sampler may
not be possible. In most applied settings, we are constrained by the maths of
the problem, which can mean that block sampling a number of parameters is
not possible. However, for circumstances that allow it, we typically prefer a
block-updating Gibbs sampler to one that updates only a single parameter at a
time.
14.4.1 Crime and punishment (unemployment)
Imagine that the posterior distribution for the unemployment (u) and crime
levels (c) in a town is estimated to be a bivariate normal distribution of the
form:

where all parameters are estimated from data and . In this example,
we have assumed that we are lucky because we could estimate the posterior
distribution analytically. Because we can sample independently from a
bivariate normal we do not actually need to do MCMC, but nevertheless, we
can use this example to illustrate the workings of Gibbs. Handily, the
bivariate normal has simple conditional densities, which are each themselves
normal (see the left-hand panel of Figure 14.4). We do not want to occupy
ourselves with the mathematical derivation of these (see the chapter problem
set), but they are given by:

Since the right-hand sides of both the expressions in (14.2) are normal
distributions, we can independently sample from them using statistical
software’s in-built random-number generators. By alternating between
sampling from each of these expressions, we can, therefore, sample from the
posterior distribution.
Imagine that we start at some random location in parameter space, say (u0,
c0), and then first update u0 by sampling from:

This gives us u1, which we use to characterise the conditional density given



in expression (14.2). We then sample c1 from this distribution:

We then repeat this process over and over, resulting in samples that
recapitulate the true posterior distribution’s shape after some time (see the
middle and right-hand panels of Figure 14.4).
Figure 14.4 The actual posterior distribution for crime and unemployment
(left), with distributions reconstructed from Gibbs sampling, for a sample size
of 100 (middle) and 1000 (right). In the left-hand plot, the black lines
illustrate the shape of the conditional densities. Above the middle and right-
hand plots we show the paths followed by the Gibbs sampler over time.

How to derive a Gibbs sampling routine in general

14.5 Gibbs’ earth: the intuition behind the
Gibbs algorithm
Imagine that the earth’s surface represents our posterior landscape, which we
want to map. To do this we could do a random walk a la Metropolis, but if
the proposal distribution is too narrow, then we would spend too long in the
Sahara; alternatively, if the step size is too large we would get stuck in the
Himalayas. This means it can take a long time for the Random Walk
Metropolis sampler to explore the whole earth and converge on an accurate
depiction of the landscape.
The Gibbs algorithm works by walking on the earth’s surface, along lines of
constant latitude or longitude. If we know what each of these transects looks
like, then we can imagine reconstructing a picture of the earth using only
these one-dimensional slices. Essentially this is what Gibbs sampling does.
By taking samples from many different north–south or east–west slices,
eventually, the algorithm can reconstruct an accurate picture of the whole.
Note that Gibbs sampling requires that we know what these slices along the
earth’s surface look like beforehand. This extra information that we impart to
our sampler allows us to more speedily explore posterior space, but it is not



without a cost – for many problems we do not know what these slices look
like, and hence cannot implement Gibbs.

14.6 The benefits and problems with Gibbs
and Random Walk Metropolis
Gibbs sampling can be great. If we can derive the conditional densities, and if
these are relatively well behaved, then the rate of convergence to the
posterior density is often faster than Random Walk Metropolis. Consider the
crime and unemployment example, described in Section 14.4.1. If we use
both the Gibbs sampler and Metropolis algorithms to explore the posterior
surface, we find that the rate of convergence to the posterior is faster for
Gibbs (see the top row of Figure 14.5). This is because Gibbs sampling – by
accounting for the mathematical description of the entities involved – can
generate more effective samples per iteration than Random Walk Metropolis.
Nonetheless, after only a few hundred iterations, both sampling methods
produce a sampling distribution that well approximates the posterior
distribution.
Figure 14.5 The actual distributions of crime and unemployment for two
different towns (left panels), along with densities that have been estimated
using Metropolis (middle) and Gibbs (right) sampling, each with a sample
size of 1000. In the sampling plots the lines indicate the paths taken by the
sampler over time.



Suppose that for a different town the correlation between our crime and
unemployment variables is higher than the previous town so that our
posterior is composed of a sharper diagonal ridge (see the bottom panels of
Figure 14.5). Now we see a problem. After the same number of iterations as
before, both sampling algorithms produce reconstructed distributions that
look quite different to the actual distribution. In this case, it looks like the
Random Walk Metropolis sampler has actually fared better than Gibbs.
So what is going on here? The problem here is that the underlying
distribution’s geometry – in other words, the sharpness of the ridge – is
causing us to take far longer to explore the posterior space. For the
Metropolis sampler, this is characterised by a high rejection rate, meaning
that we cannot explore the central ridge efficiently. Whereas, for the Gibbs
sampler, being forced to move in horizontal and vertical jumps means that we
take a long time to explore the diagonally orientated distribution.
The performance of the two samplers worsens as the correlation between our
variables increases. Both of these methods fail to work well for highly
correlated distributions because the distribution’s geometry is misaligned
with the stepping directions of each sampler. This misalignment induces a
high degree of autocorrelation in samples, resulting in a low effective sample



size per iteration.
We would, thus, prefer a sampler that moves in accordance with the
underlying distribution’s shape. In this case, this would correspond to a
sampler that moves mostly diagonally, in contrast to Gibbs’ horizontal and
vertical movements. By moving in this direction, we should avoid the high
rate of rejection that we see for Random Walk Metropolis, and explore the
posterior much more efficiently than Gibbs. Fear not! In Chapter 15, we
introduce the Hamiltonian Monte Carlo sampler that satisfies these criteria.

14.7 A change of parameters to speed up
exploration
Another way to speed up sampling is to change variables for the underlying
distribution so that the components are uncorrelated. In our crime and
unemployment example, if ρ = 0.5 this equates to sampling from C and U
defined as:

This is equivalent to a rotation of the axes by 45 degrees clockwise (see
Figure 14.6). Here C represents the difference between the crime level and
unemployment, and U is their sum. The new variables are still jointly
normally distributed, although they are now uncorrelated (see the chapter
problem set for a full derivation). Since these variables are now uncorrelated,
a Gibbs sampler in (C, U) parameter space fares much better (compare the
middle and right-hand panels of Figure 14.6). These type of parameter
transformations are what are known as affine, and actually underlie a class of
algorithms known as differential evolution MCMC, which actually aim to be
invariant to such changes of parameters.
While we have used a reparameterisation to speed up Gibbs sampling for this
example, this concept is also relevant more generally. In particular, most
sampling algorithms will have issues when parameters are highly correlated.
Intuitively, this high correlation means that it is difficult to disentangle one
variable’s effects from another’s. Whether we reconstruct the posterior by
exact calculation, or use sampling to understand it, we are going to struggle
to give separate meaning to highly correlated parameter estimates. The
manifestation of this difficulty is parameters with a high uncertainty
associated with their values. If you find that your sampler is struggling to
converge, then 99% of the time this is not due to computational issues, but to



your statistical model. (This is what Gelman calls his ‘Folk Theorem’ which
we discuss in Chapter 16.) In this circumstance, it pays to think whether there
is a way to change your model (often by a re-parameterisation) that reduces
correlation in your parameters. Sometimes this may be difficult, but more
often than not there is a solution.
Figure 14.6 Using MCMC sampling to reconstruct a density (left) using
simple Gibbs (left) and re-parameterised Gibbs (right). In the sampling plots
the lines indicate the paths taken by the sampler over time.



14.8 Chapter summary
In this chapter, we introduced the Gibbs sampling algorithm, a type of
dependent sampling routine that takes account of the particular mathematical
structure of each problem. Using this information allows us to build up a
picture of the unconditional posterior by iteratively drawing independent
samples from the conditional distributions for each of the parameters.
But Gibbs sampling is not the solution to all our problems. First, it requires
that we can calculate, and draw independent samples from, the conditional
distributions of each parameter. In many situations, this will not be the case.
Second, we have seen that correlated posterior geometries can make Gibbs
sampling highly inefficient. To quote Charles Geyer [7]: ‘If I had a nickel for
every time someone had asked for help with slowly converging MCMC and
the answer had been to stop using Gibbs, I would be rich.’ Following Geyer’s
advice, we recommend switching to another sampling method if Gibbs
sampling struggles. This is partly because another issue with Gibbs is that it
forces us down a path where there is little remedy for the situation. This
contrasts with the freedom of Metropolis (and Metropolis–Hastings), where
at least we get to control the proposal distribution.
A problem with all the sampling algorithms we have considered thus far is
that they do not adequately account for the geometry of the posterior
distribution, in the way they step through parameter space. We saw in Section
14.7 that re-parameterising a model using our knowledge of posterior
sampling can allow us to more efficiently sample from it. The question we
now turn to is: Can we use the posterior geometry to speed up MCMC more
generally? The answer is a resounding ‘Yes – just use Hamiltonian Monte
Carlo.’ Accordingly, in Chapter 15 we discuss Hamiltonian Monte Carlo, the
basis for the engine that powers Stan.



14.9 Chapter outcomes
The reader should now be familiar with the following concepts:

how Gibbs sampling works
the benefits and costs of Gibbs sampling
how highly correlated parameters make it difficult to do inference

14.10 Problem sets
Problem 14.1 The sensitivity and specificity of a test for
a disease
Suppose that for a particular tropical disease no gold standard clinical test
exists. Instead we have a test that is known to be imperfect, not always
identifying the disease if the patient has it, and sometimes yielding false
positives (patients that do not have the disease but test positive). However, by
using this test in a clinical trial it is hoped that we can obtain better estimates
for the test sensitivity (S, the proportion of disease-positive individuals who
test positive) and specificity (C, the proportion of disease-negative
individuals who test negative).

Table P14.1 
To do this we can construct a table of the observed and latent data for the test
outcomes (see Table P14.1). In the table a and b are the number of observed
positive and negative results, respectively. Y1 and Y2 are latent variables that
represent the gold standard – the true number of positive individuals out of a
and b, respectively.
Problem 14.1.1 Write down an expression for the likelihood, supposing that
the prevalence for the disease is π. (Hint: multiply together the likelihoods
corresponding to each of the cells in Table P14.1.)
Problem 14.1.2 Assuming priors of the form 
and , it is possible to code up a Gibbs sampler for this
problem [6] of the form:



Using the above expressions, code up a working Gibbs sampler.
Problem 14.1.3 Suppose that out of a sample of 100 people, 20 of those
tested negative and 80 positive. Assuming uniform priors on π, S and C, use
Gibbs sampling to generate posterior samples for π. What do you conclude?
Problem 14.1.4 Suppose that a previous study that compares the clinical test
with a laboratory iron standard concludes that  and 

. Use Gibbs sampling to estimate the new posterior for π.
Why does this look different to your previously estimated distribution?
Problem 14.1.5 Suppose a previous analysis concluded that π 

. Using this distribution as a prior, together with uniform
priors on S and C, determine the posterior distributions for the test sensitivity
and specificity, respectively. Why does the test appear to be quite specific,
although it is unclear how sensitive it is?
Problem 14.1.6 Suppose that based on lab results you suppose that the test
specificity , and π , but the prior for is S
still uniform. Explain the shape of the posterior for S now.
Problem 14.1.7 Now suppose that the sample size was 1000 people of which
200 tested positive. Using the same priors as the previous question, determine
the posterior for S. What do you conclude about your test’s sensitivity?
Problem 14.1.8 What do the previous results suggest is necessary to assess
the sensitivity of a clinical test for a disease?
Problem 14.2 Coal mining disasters in the UK
The data in gibbs_coal.csv contain time series of the annual number of coal
mining disasters in the UK from 1851 to 1961 [5]. In this section we will use
Gibbs sampling to estimate the point in time when legislative and societal



changes caused a reduction in coal mining disasters in the UK.
A model for the number of disasters Dt in a particular year t is:

where λ1 and λ2 are the early and late mean disaster rates in the UK, and n is
the time where the change in rates occurred.
Problem 14.2.1 Graph the data over time. Around what year (n) does it
appear the change in disaster rate occurred?
Problem 14.2.2 Assuming the same  priors for ,
and a discrete uniform prior for n between 1851 and 1861, determine an
expression for the full (un-normalised) posterior density.
Problem 14.2.3 Determine the conditional distribution for λ1 (namely, 

) by finding all those terms in the density that include λ1,
and removing the rest as constants of proportionality. (Hint: remember that a
gamma prior is conjugate to a Poisson likelihood.)
Problem 14.2.4 Using your answer to the previous problem, write down the
conditional distribution for λ2.
Problem 14.2.5 By collecting the terms that depend on n, show that its
conditional density can be written as:

Problem 14.2.6 Write a function in R that calculates the un-normalised
expression for  for a single value of n. (Hint: remember
that the change point cannot occur at the last data point, and so return 0 for
this case.)
Problem 14.2.7 Create a function that calculates the discrete probability
distribution across all values of n. (Hint: remember, this must be a valid
probability distribution.)
Problem 14.2.8 Create a function that independently samples from the
discrete distribution for the n you calculate. (Hint: use the sample function.)
Problem 14.2.9 Write functions to independently sample from the
conditional distributions for λ1 and λ2 that you previously determined.
Problem 14.2.10 Combine all three previously created sampling functions to
create a working Gibbs sampler. Hence estimate the change point and its 95%
central credible intervals.
Problem 14.2.11 Using your sampler, determine posterior median estimates



for λ1 and λ2.

Problem 14.3 Bayesian networks
Suppose that when you leave your house in the morning you notice that the
grass is wet. However, you do not know whether the grass is wet because of
last night’s rain, or because the sprinkler went on in the night. You want to
determine the cause of the wet grass, because this affects whether you need to
water your plants on your windowsill. The causal pathway of the grass being
wet is shown in Figure P14.1, along with the probabilities of the states. Here
‘cloudy’ means that the night was completely overcast.
Figure P14.1 A Bayesian network for the wet grass example.

Problem 14.3.1 Show that the probability that it was cloudy last night
conditional on the sprinkler being on, that it rained, and the grass being wet is
approximately 0.444.
Problem 14.3.2 Show that the probability that it rained given that it was
cloudy, the sprinkler was on, and the grass is wet is approximately 0.815.
Problem 14.3.3 The remaining (non-trivial) conditional probabilities are 

 and . Suppose that
when we walk outside we see that the grass is wet, and we also know that the
sprinkler went on last night (we were woken by its noise). Create a Gibbs
sampler to determine the unconditional probability that it was cloudy. Then
find the unconditional probability that it rained.
Problem 14.3.4 Using your Gibbs sampler, determine the joint probability
that it was cloudy and it rained.



Problem 14.3.5 Visualise the path of your Gibbs sampler by creating a
network graph showing the frequency of transitions between the four states.
(Hint 1: first create an adjacency matrix by calculating the frequency of
transitions between all states. Hint 2: to visualise the graph in R use the
iGraph package.)
Problem 14.4 Proofs
Problem 14.4.1 Prove that the Gibbs sampler can be viewed as a case of
Metropolis–Hastings.
Problem 14.4.2 For the bivariate normal density:

show that the conditional densities are of the form:

Problem 14.4.3 Show that the following changes of variables for a bivariate
normal (with ρ = 0.5) as described in this chapter result in uncorrelated
components:
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15.1 Chapter mission statement
At the end of this chapter the reader will understand how Hamiltonian Monte
Carlo works and how it can be used to efficiently sample from the posterior.



15.2 Chapter goals
In Chapter 13 we met the Random Walk Metropolis algorithm, which
generates a sequence of dependent samples from the posterior. Random Walk
Metropolis works by starting at a random location in parameter space. In each
step we randomly choose a new direction and distance to step by sampling
from a proposal distribution centred on our current location. If the value of
the posterior density is greater at the new location we move there. If it is not,
then we move there only probabilistically, with a probability given by the
ratio of the new to old densities.
The Random Walk Metropolis algorithm is, as its name suggests, a kind of
random walk through posterior space. It is random because we take no
account of the underlying shape of the posterior when deciding where next to
propose stepping. In Section 14.6 we saw that the arbitrary nature of the
proposals used in Random Walk Metropolis results in a high rejection rate
and, hence, inefficient exploration of the posterior distribution. If we imagine
stepping through parameter space, then Random Walk Metropolis amounts to
our doing it blindfolded. This stepping in the dark is scary, and inevitably it
takes us a long time to explore the landscape.
A better approach is to remove the blindfold. Removing the blindfold does
not, however, yield perfect vistas of the landscape in front of us; the air is
thick with fog. However, we imagine we can see a few metres in each
direction. This limited visibility nonetheless allows us to direct our stepping,
and we preferentially step towards higher locations. We choose to step
towards areas of high probability density, because these are the areas of
posterior space where the bulk of probability mass is typically found. By
using the local posterior geometry to determine where next to step, we can,
therefore, much more efficiently explore the posterior density. This is exactly
what Hamiltonian Monte Carlo (HMC) does, and is accountable for the
considerable success of this method in recent years.
However, in HMC we must still set a typical stepping distance, in similar
vein to Random Walk Metropolis. Determining this step length is crucial.
Remember that we can see only a very limited distance around us at any
point in time. It is this – localised – information that we use to guide our
stepping. While it might appear that one direction is upwards, we might find
that if we step too far, we actually overshoot a peak. In this case, based on
our intuition, we would be best turning on our heels and walking back the



way we came, in effect doing a U-turn. As you might expect, these about-
face turns are inefficient – we do not want to take two steps forward and one
step back.
The inefficiency of U-turns motivated the development of the so-called No-
U-Turn Sampler (NUTS) [19], which powers Stan. We finish this chapter by
discussing this magical device and how it can determine the right step length
for any position in posterior space.

15.3 Hamiltonian Monte Carlo as a sledge
Again, imagine that we are walking through posterior space. With perfect
sight we could see the huge peaks and low-lying deserts stretching out to
infinity. However, we do not have perfect sight; if we did, there would be no
need to do sampling in the first place. Instead, imagine that there is a dense
fog that limits our vision almost completely. A simple approach to
exploration is to ignore what our eyes tell us, and just step in a random
direction and distance, away from our current position. This random stepping
is exactly what we do in Random Walk Metropolis, which we discussed in
Chapter 13. However, as discussed previously (see Section 14.6), this
directionless wandering comes at a cost: it can take us a large amount of time
to explore posterior space. In particular, it takes us a long time to find those
areas of high density and explore them efficiently. Clearly, Random Walk
Metropolis is missing something – it does not take account of the posterior
distribution’s geometry when deciding where next to try stepping. For clarity,
this does not mean that Random Walk Metropolis completely ignores the
posterior geometry – if it did, then the sampling would be uniform over all
parameter space. We know that Random Walk Metropolis uses an accept–
reject rule that depends on the posterior density. In Section 13.6.4 we saw
that this rule is tuned to perfection to allow us to accurately reproduce the
posterior by sampling. Rather, what we argue here is that how we propose
where to step next is inefficient in Random Walk Metropolis, since it does
not take account of the posterior geometry.
The intuition behind the Hamiltonian Monte Carlo algorithm

We want to create a sampler which uses local geometric information to
determine our proposed steps. To do this we move away from this vision of
our stepping through posterior space, and instead imagine that we are



passengers on a vehicle that moves through a related landscape (see Figure
15.1). This new landscape is similar to the posterior space, although
everything is inverted: peaks become troughs and troughs are now peaks.
Specifically, this space is the negative log of the posterior density (NLP),
although do not worry about what this means for now. We imagine we are
gliding over the frictionless surface of NLP space on a type of sledge. At any
time, where we next move not only depends on our location, but also on our
momentum. Our momentum is, in turn, determined partly by the gradient of
NLP where we currently find ourselves. Dragged by gravity, if we had no
momentum we would always tend to descend in NLP space (ascend in
posterior space). However, our momentum also gives us enough forward
motion to climb upwards through the NLP landscape. Therefore the presence
of this second variable – momentum –allows us to explore areas of low NLP
(high posterior density) as well as high NLP (low posterior density).
However, the effect of gravity should mean that we will spend more time in
low areas and less in high-NLP regions, in good correspondence with our
hopes for an ideal sampler.
Figure 15.1 NLP space (bottom) is essentially the inverse of posterior space
(top). By travelling around NLP space on a sledge we are more likely to visit
areas of low NLP, which correspond to high posterior density.

Figure 15.2 Two minima in NLP space (maxima in posterior space) become
better connected if we allow our sledge to possess momentum.



It is important to remember that the physical analogy is really just a useful
idea, not indicative of any underlying reality. In particular, the momentum of
our sledge is purely a helper variable. It is useful because it allows us to reach
and explore efficiently areas of parameter space that would otherwise be hard
to reach. As an example, two isolated peaks may be troublesome for some
samplers but, by introducing momentum, it may become increasingly easier
to get from one peak to the other (see Figure 15.2). This amounts to a
reduction in multimodality that can cause slow exploration of the posterior.
However, the picture is not quite complete. As we have explained things, our
initial state – location and momentum – would completely determine our
future path. However, how should we select our initial state to ensure that we
visit all of posterior space in exact accordance with its density? Without
knowing what posterior space looks like, how can we ever hope to do this?
The solution to this issue is to select, at each step, a random momentum from
some proposal distribution. We use this momentum to determine the initial
direction we move off in. In accordance with the laws of Newtonian physics
in NLP space, we move in this direction for a specified distance, and then
abruptly stop. We then compute the (un-normalised) posterior value at our
new location and compare it to the original posterior height. To determine
whether we accept this step or return to our previous location, we use an
accept–reject rule much like for Random Walk Metropolis. The only
difference here is that we also need to make a slight correction to the rule to
account for our current and previous momenta (we delay going into these



details until Section 15.7).
Don’t worry if all of the algorithm’s details just flew right over your head! In
contrast to our previous MCMC samplers, HMC is a little bit more involved.
However, as we shall hopefully demonstrate over the next few sections, it is
no more difficult to understand.

15.4 NLP space
In Hamiltonian Monte Carlo we use the physical analogy of a sledge moving
over a frictionless terrain to help us visit those areas of high posterior density
preferentially over lower regions. But how do we design a terrain that allows
this to happen? The simplest way would be to use the negative of the un-
normalised posterior, since this means that troughs in this space would
correspond to peaks in posterior space. Since gravity will tend to pull us
towards the bottom of the landscape, by solving for the motion of our sledge
we will inadvertently tend to visit areas of high posterior density.
For reasons that we do not want to go into here (statistical mechanics) we
instead use the negative of the log of the un-normalised posterior density
(which we term NLP):

We term the surface described by the function in expression (15.1) NLP
space. By using the log transform this means that, technically, the landscape
on which we move is slightly less curved than the un-normalised posterior
space itself; the intuition remains the same, however – troughs in this space
correspond to peaks in posterior space, and vice versa. Therefore, in the
ensuing figures and discussion, we ignore this distinction. The important
thing is that, because of the physical analogy, the sledge will tend to visit
those areas of low NLP, which correspond to high posterior density (see
Figure 15.3).
Figure 15.3 The path in NLP space of 100 sledges that are each assigned
random initial momenta.



15.5 Solving for the sledge motion over NLP
space
If we had a sledge and a real frictionless terrain of the same dimensions and
shape as the actual NLP space for our problem, then we could just shove the
sledge (see Section 15.6 for how to do this properly) and follow its path.
However, this is not usually the case, so we need to computationally solve for
the path followed by the sledge over time. But how do we do this –
particularly because the sledge moves in a space whose dimensionality
typically exceeds that of everyday three-dimensional space?
Fortunately, the methods that we use to solve for the path of the sledge in any
number of dimensions are the same as those that an engineer would use for
three-dimensional space. This means that the number of dimensions does not
affect the complexity of the methods that we use. But what are those
methods? Technically, they involve objects known as Hamiltonians, which is
just a fancy word for the total energy of the system. This is composed of the
sum of the potential energy of the sledge, which depends on the location in
parameter space (θ), and its kinetic energy, which depends on its momentum
(m):

The potential energy of the sledge is given by the negative of the log of the
un-normalised posterior density:

While we would need to venture into statistical mechanics to understand why



we choose this exact form for the potential energy, we can nonetheless
appreciate the intuition that underpins it. As the posterior density increases,
the potential energy decreases (becomes more negative) because we move
towards a trough in NLP space. Intuitively, this is because there is less
gravitational potential energy available to be converted into kinetic energy at
troughs. Whereas at peaks in NLP space (troughs in posterior density space),
if we give the sledge a gentle shove it will start to rapidly descend, with a
corresponding increase in its kinetic energy. The potential energy at the top
of hills is, therefore, greater (see Figure 15.4).
Figure 15.4 Potential energy (left) is converted into kinetic energy (right) as
the sledge slides down a hill in NLP space so that the total energy remains
constant.

The kinetic energy term that we use is of the same form we encountered in
high school physics and is proportional to the square of the sledge’s
momentum. With the Hamiltonian fully specified, we can then use standard
methods to solve for the path of the sledge. Unfortunately, these methods are
typically approximate in nature, since solving exactly for the path is too
difficult.
HMC is insensitive to this approximation so long as the errors are not too
large – the difference between the exact path of the sledge and the one that
we estimate does not get too wide. To reduce the chance that this happens we
use a class of approximation methods that is known as symplectic, of which
the leapfrog algorithm is the most commonly employed. While we do not go
into the details of the algorithm here, there is code in the chapter problem set
that implements this routine (15.1.4). However, even this method is not
foolproof – it can still fail to produce reasonable approximations in particular
circumstances. It is this to which we next turn our attention.
15.5.1 Divergent iterations
Stan does its best to alert us of iterations where the approximate path diverges
from the exact (true) path of the sledge, appropriately terming these divergent



iterations (see Section 16.7.2). Are there characteristics of a posterior that
make it more likely that the approximate sledge path will become separated
from the true one? It turns out that, yes, there are.
To understand why these divergences occur, we need to understand a little
about how the approximation methods work. Typically these methods break
up the path of the sledge into discrete pieces over which the path is assumed
to be a straight line (see the left-hand panel of Figure 15.5). If the length of
these discrete pieces is sufficiently short, then the discrete approximate path
closely follows the true curved path (see the right-panel of Figure 15.5).
Figure 15.5 As smaller discrete links (black arrows) are used to approximate
the path of the sledge, the path becomes smoother and approaches the true
path (black lines). In all cases, we show the first part of the path without
arrows so that the true path can be seen.

However, if the curvature of the posterior is particularly sharp (see the right-
hand panel of Figure 15.6), then the approximate path may be a poor estimate
for the true one. In this context, the full path of the sledge may – as a
consequence of a few faulty steps – diverge from the true path.
Figure 15.6 Too much posterior curvature relative to the discretisation length
can cause divergent paths.

Figure 15.6 Too much posterior curvature relative to the discretisation length
can cause divergent paths.
Why do we care about such divergences? Well, the reason is that, if they
occur, we get an arbitrary reallocation of the posterior probability mass
around these points of divergence. Why does this matter? Because arbitrary is
not in line with the shape of the actual posterior – it is by definition arbitrary!
Stan drops any iterations it deems to be divergent. The consequence of



divergent iterations is therefore to bias the sampling distribution away from
these points in posterior space. This matters because any posterior summary
(mean, median, variance, and so on) will be incorrect. Just how incorrect
depends on how much probability mass is located near the point(s) where
divergences occur.
So we see that divergent iterations are always something to be concerned
about, because they indicate that our MCMC algorithm is failing in some
areas of posterior space. These failures are typically due to substantial local
posterior curvature in these areas. How do we solve these issues? One way is
to use a smaller step length (that is, the length of the discrete pieces of the
path that are used to approximate the true path) to stimulate the path to reduce
the approximation error in following the true path of the sledge (see Figure
15.6). The alternative way is to make a change to the model in an attempt to
smooth out the posterior. While the discussion here has been fairly abstract,
in Section 16.7.2 we include a more applied discussion of divergent iteration
resolution.

15.6 How to shove the sledge
If we simply let the sledge move under gravity, it would eventually reach,
then settle, in a trough in NLP space (corresponding to a peak in posterior
space). However, while we want to bias our path in favour of regions of high
posterior density, we still need to sample from regions of lower density,
otherwise our sampling distribution will be too narrow. There is also the risk
that if our sledge settles in one trough in NLP space, it will fail to reach other
troughs in other parts of the landscape, resulting in a posterior that is biased
away from certain peaks.
To avoid such problems we follow the path of our sledge for a predefined
amount of time T (to be discussed in Section 15.10), then bring it
instantaneously to rest, recording the position θ1 at this point only if we
accept this new location (see Section 15.7). We then give our sledge a shove
of random strength in a randomly chosen direction. The usual way we do this
is to select a new initial momentum of the sledge by independent sampling
from a multivariate normal:

We then solve for the path of the sledge for another length of time T as
discussed in Section 15.5. At the end of this time, we again bring our sledge
to rest and record the position θ2 if we accept this new location, otherwise we



return to θ1 and record this location instead. By repeating this process –
shoving, following and bringing to rest – a large number of times we build up
a set of samples (θ1θ2, ..., θθp). However, as we indicated in passing, there is
still one element of this process that is missing: the rule we use to determine
whether we accept or reject each proposed location in parameter space. We
turn our attention to this rule now.

15.7 The acceptance probability of HMC
HMC is really a type of Metropolis algorithm, at its heart a rejection
sampling algorithm. In each step, we randomly generate a proposed location
in parameter space, then either accept or reject this location. The difference
with Random Walk Metropolis is the way in which we generate the proposal
in HMC. Whereas in Random Walk Metropolis we generate a proposed
location by random sampling a location (typically from a normal distribution
centred on our current location), in HMC we do something a little more
complicated: we assign a random momentum to a fictitious sledge, and then
solve for its motion as it slides through NLP space. Our proposal location is
then given by the position of our sledge in parameter space after a predefined
period of time T has elapsed.
As for Random Walk Metropolis, we need a rule to determine whether we
accept a given proposal. Remember, this rule cannot be arbitrary – we need to
design it so that (eventually) our sampling distribution will converge on the
actual posterior. Fortunately, clever people have already done this work for
us, so we accept a parameter θt+1 with probability:

where θt is our previous location in parameter space, m is the initial
momentum of our sledge (that is, the value we sample at θt ) and m’ is the
final momentum before we bring the sledge to rest. The function q(m) is
simply the probability density for whatever distribution was used to generate
a random initial momentum. As discussed previously, the usual choice here is
a multivariate normal distribution with mean zero and some covariance
matrix (that is often diagonal).
How does our new acceptance probability compare with that from Random
Walk Metropolis? The first part of the above expression is exactly the same
as what we had before – it is just the ratio of the un-normalised posterior at
the proposed location θt+1 to that at θt. However, the second part of the



expression is new. Is there an intuitive feel we can get for the purpose of this
new part of our expression for r? To do so, we need to remember that the
momentum proposal distribution we are using is a multivariate normal
peaked at zero. This means that the acceptance probability is maximised at m’
= 0, irrespective of the initial momentum m. But how can we get a small final
momentum? We must have reached a peak in NLP space, corresponding to a
trough in posterior space.
Hamiltonian dynamics of our sledge will naturally tend to make the sledge
visit troughs in NLP space (corresponding to peaks in posterior space).
Remember, this is the reason we used our physical analogy in the first place.
However, we still need to ensure that we sample from each location in
proportion to its height. If we do not, then we will get a sampler that is biased
towards troughs in NLP space which correspond to peaks in posterior space.
The function of the new term in expression (15.5) is to rebalance the path of
our sampler towards those locations that would rarely be visited otherwise –
the peaks in NLP space which correspond to the troughs in posterior space.

15.8 The complete HMC algorithm
Having surveyed the various elements of HMC, we are now in a position to
describe the algorithm in its totality:

1. Select a random starting location θ0 from some initial proposal
distribution.

2. For t=1,2,...,n do the following:
Generate a random initial momentum from a proposal distribution
(for example, m~N(µ,∑)).
Use the leapfrog algorithm to solve for the path of a sledge moving
over NLP space for a time period T.
After an amount of time T has elapsed, record the momentum of the
sledge m’ and its position in parameter space θt+1 .
Calculate 

Generate u~U(0,1). If r >u move to θt+1 , otherwise remain at θt.
An introduction to Hamiltonian Monte Carlo



15.9 The performance of HMC versus
Random Walk Metropolis and Gibbs
Now that we have described the HMC algorithm, let’s put it to use. Suppose
that we want to sample from the posterior distribution:

where, for example, (X,Y) could represent the daily returns of two different
stocks. In this case, we assume that we know the posterior distribution (given
above), so we simply use the value of the multivariate normal density at
points in parameter space to calculate the ratios used in Random Walk
Metropolis or HMC. If this were a Bayesian inference problem, the method
would remain the same except that we would use the un-normalised posterior
density.
In Figure 15.7 we compare the performance of 100 iterations of four
sampling algorithms: Random Walk Metropolis, Gibbs, HMC and
independent sampling. Random Walk Metropolis (top left) has relatively few
accepted steps, and so is slow to traverse parameter space. Gibbs (top right)
does a bit better, although, since it is constrained to move in either vertical or
horizontal directions, it does not explore as fast as it might otherwise. The
HMC sampler (bottom left) is, by contrast, unconstrained in its movement,
and as a result explores the posterior mode efficiently. We finally include
samples from an independent sampler (bottom right), to illustrate the gold
standard; however, note that in practice we usually do not have access to such
an efficient method.

15.10 Optimal step length of HMC:
introducing the ‘No-U-Turn sampler’
We have, thus far, skirted over the issue of how long (T) to follow our sledge
after we shove it. It should come as no surprise that, since HMC is really a
type of Metropolis algorithm, choice of this algorithm parameter affects the
rate at which our sampling distribution converges to posterior. Clearly, if T is
short, then in each step we do not move far, and it will take us a long time to
explore the posterior. Therefore, if we make T large, does this mean that the
distances we travel in parameter space will be similarly large? It turns out to
be a little more complex than this reasoning suggests, because of the
propensity of the sledge to loop round and retrace close to its original steps



(see Figure 15.8).
The tendency of the sledge to perform such U-turns means that simulating the
path of the sledge for longer periods can be an inefficient use of
computational time. This is because some time is spent on simulating the path
of the sledge when it is actually moving closer to its start point. This means
that the rate of exploration of the posterior landscape is slower than would be
the case if we chose a smaller T (see Figure 15.8).
Figure 15.7 Showing the path taken by four different sampling algorithms
from a bivariate normal distribution. In each case, 100 samples were drawn.

One way to proceed would therefore be to tune T in preliminary runs of the
HMC algorithm. By selecting a value of T that results in a high acceptance
rate, we hope to ensure a fairly efficient running of the algorithm. However, it
turns out that we can do slightly better.
The propensity of the sledge to do U-turns clearly depends on the geometry



of the posterior itself. If the posterior is fairly curved, then the sledge will
ascend hills, run out of momentum and descend, perhaps returning the way it
came. By contrast, if the posterior is flat, then such U-turns will not happen;
the sledge will just continue on its way until time runs out. For highly curved
posteriors, it is therefore preferable to use a relatively short T to negate the
possibility of U-turns, whereas for flatter landscapes a longer T is preferable.
Figure 15.8 The sledge has the propensity to perform U-turns if followed for
too long, meaning it can end up where it started. If, instead, we stopped the
sledge after 100 time points, we would have a faster rate of exploration of
parameter space.

U turns in posterior space: motivating the NUTS sampler

The situation is slightly more complex than this, however: a posterior will
often be composed of a patchwork of curved and flat regions. This means that
assigning a single global T value results in local inefficiencies: in curved
regions T will be too long and the sledge will tend to do U-turns; in flat
regions T will be too short, and so the rate of exploration of posterior space
will be slower than optimal.
So what can we do? Ideally, we would allow T to vary along with our
position in parameter space. By using a locally optimal T, we therefore hope
to produce a sampler that avoids U-turns when the posterior is highly curved,
and prevents early termination for flatter regions. But how can we do this



without knowing the shape of the posterior itself – the very thing we are
trying to understand by doing sampling in the first place?
Fortunately for us, some clever people have already done the work of
creating such an efficient algorithm: Matthew Hoffman and Andrew Gelman
call theirs the No-U-Turn Sampler, or (slightly unfortunately) NUTS for short
[19]. The way it works is essentially by monitoring the distance between the
starting location θ and the current position of the sledge . If this distance
increases during the next discrete step of the algorithm, then it terminates and
we use the current position as our proposal location. The actual algorithm is
more complex than this to ensure that we have detailed balance (see Section
13.6.3), although we do not wish to go into the details here. The best thing
about this algorithm is that it is already implemented in Stan (see Chapter
16), and it is this sampler that is used by default when we run the software.



15.11 Chapter summary
With the end of this chapter we finish our run through the three algorithms
that we discuss in this book: Random Walk Metropolis, the Gibbs sampler
and Hamiltonian Monte Carlo. The order in which we met these samplers
was chosen to correspond somewhat to their inherent complexity, and more
or less reflects the temporal order in which these algorithms were developed.
Random Walk Metropolis is simple to implement and places few
requirements on our knowledge of the problem at hand. Its simplicity has an
added benefit – generality. Random Walk Metropolis can be applied to
virtually any problem when a likelihood can be calculated (for example,
differential equations). However, while it is straightforward to code up
Random Walk Metropolis, it can be slow to converge to the posterior – too
slow for most interesting problems. Gibbs sampling requires that we know a
little more about the problem at hand, particularly its geometry. By taking
account of underlying geometric relationships between parameter sets, this
algorithm is typically faster than Random Walk Metropolis. However, for
many purposes, the maths required to derive the requisite conditional
distributions can be demanding, and there are many circumstances where
they do not exist. We have also seen that this algorithm is inefficient when
large correlations exist between parameters, because the directions in which
the sampler moves are not natural for the posterior geometry. HMC (and its
recently developed, smarter cousin NUTS) is a version of the Metropolis
algorithm that avoids some of these pitfalls by taking into account the
posterior geometry when deciding where next to step. This means that the
rate of convergence to the posterior can be orders of magnitude faster than for
aforementioned methods.
In HMC we move in a space called the negative log posterior (NLP) space.
This space is essentially the inverse of the posterior: peaks in NLP space
correspond to troughs for the posterior and vice versa. We imagine that we
slide over this frictionless NLP terrain on a sledge. Because of the physical
analogy, the path that our sledge moves is towards the bottom of valleys in
NLP space, corresponding to peaks in posterior space. The path that we
follow will, therefore, automatically tend to propose locations with high
posterior density, and hence the acceptance rate is typically much higher than
for Random Walk Metropolis. This higher acceptance rate means that the
algorithm explores posterior space more efficiently.



In each iteration of the HMC algorithm we solve for the path of the sledge
across NLP space using Newton’s laws of motion. Unfortunately, these
equations are too hard to solve exactly, so we approximate the curved path,
by breaking it up into a series of straight line segments. In order to achieve a
good approximation to the exact path, these links must be short, meaning that
many such straight steps are required to avoid the approximate path diverging
from the exact one. However, it is possible that the curvature of the posterior
at a particular point may be so extreme that tiny steps are required to avoid
such a divergence. As we shall see in Chapter 16, Stan does its best to
determine where such divergences occur and alerts us to their presence.
To increase the chance that we reach isolated NLP valleys, as well as climb
its peaks, we periodically bring the sledge to rest and then give it a shove in a
randomly chosen direction. This random initial value of the momentum is
typically obtained by independent sampling from a multivariate normal
distribution. The sledge is brought to rest after T time steps have elapsed. At
the end of such a period, we record the position of the sledge in θ space along
with its momentum. We then use a new version of the Metropolis accept–
reject rule to determine whether we accept this new parameter value or return
to the previous one. This rule ensures that we have asymptotic convergence
of the sampling distribution to the posterior.
The time period T between consecutive measurements of the sledge’s
position affects the efficiency of the HMC sampler. If it is too short, then the
sampler is slow to explore posterior space. If it is too long, then the sampler
can become inefficient because it performs U-turns, meaning that the sledge
moves over well-trodden turf. The No–U-Turn Sampler (NUTS) is an
advancement on HMC that was developed to allow a locally optimal T to be
determined at each position in parameter space.
Fortunately, NUTS is implemented in Stan, meaning that we are saved the
nightmare of coding up the algorithm ourselves. However, it is important that
we understand what is happening ‘under the hood’ in Stan (by reading this
chapter) so that we do not encounter the many pitfalls of MCMC. While Stan
obviates the need to code up the NUTS algorithm itself, to estimate our own
models we must be conversational in Stan’s own language. It is this challenge
to which we turn in Chapter 16.



15.12 Chapter outcomes
The reader should now be familiar with the following concepts:

negative log posterior (NLP) space
how a physical analogy – a sledge sliding down a frictionless NLP
landscape – helps us speed up sampling
what divergent iterations are, and how they are caused
how the No-U-Turn Sampler (NUTS) yields locally adaptive time
periods over which to simulate the sledge’s motion using Newton’s laws
of motion

15.13 Problem sets
Problem 15.1 Cerebral malaria: coding up samplers
Suppose you work for the WHO researching malaria. In particular, it is your
job to produce a model for the number of cases of cerebral malaria in a large
country. Cerebral malaria is one of the most severe complications resulting
from infection with Plasmodium falciparum malaria, and without treatment
invariably causes death. However, even for patients receiving treatment there
is still a significant chance of permanent cognitive impairment.
You decide to model the number of cases of cerebral malaria (X=5) as being
from a joint normal distribution along with the number of all malaria cases
(Y=20). The mean number of cases of cerebral malaria is μc, and the mean
number of cases of all malaria is μt. If we assume an (improper) uniform prior
distribution on these quantities and assume that the correlation between
cerebral and total cases is known (ρ = 0.8) along with the variances, the
posterior is:

where all quantities are measured in thousands.
Note that this example does not test your ability to do Bayesian inference
(because we have already provided the exact form of the posterior
distribution). Rather its purpose is to allow you to compare the performance
of a number of different sampling algorithms.
Problem 15.1.1 Use your statistical software of choice to generate 100
independent samples of (μt,μc). Draw a scatter plot of your (μt,μc) samples,
with lines connecting consecutive points. How close are the sample-estimated
means to the true means? Hint: to do this in R you will need to use the MASS



package:
library (MASS)
Sigma <- matrix(c(2,0.8,0.8,0.5),2,2)
mvrnorm(n = 100, c(20,5), Sigma)
Problem 15.1.2 Code up a Random Walk Metropolis sampler for this
example. This is composed of the following steps:

1. Create a proposal function that takes the current value of θ=(μt, μc) and
outputs a proposed value of these using a multivariate normal centred on
the current estimates. (Here use a multivariate normal proposal with an
identity covariance matrix.)

2. Create a function which takes as inputs θcurrent and θproposed, and outputs
the ratio of the posteriors at the proposed value to the current one. Hint:
to do this in R you will need to use the following to calculate the value
of the posterior at (x,y):
library (mvtnorm)
Sigma <- matrix(c(2,0.8,0.8,0.5),2,2)
dmvnorm(c(x,y),c(20,5), Sigma)

3. Create an accept–reject function which takes as inputs θcurrent and
θproposed, and then uses the above ratio function to find r=θproposed/
θcurrent; then compare r with a uniformly distributed random number u
between 0 and 1. If r>u then output θproposed; otherwise output θcurrent.

4. Combine the proposal function along with the accept–reject function to
make a function that takes as input θcurrent, proposes a new value of θ,
and then, based on r, moves to that new point or stays in the current
position.

5. Create a function called RWMetropolis that takes a starting value of θ
and runs for n steps.

Use your RWMetropolis function to generate 100 samples from the posterior
starting from (μt,μc) = (10,5). Draw a line plot of your (μt,μc) samples. How
do your estimates of the posterior mean from Random Walk Metropolis
compare with the true values? Why is there a bias in your estimates, and how
could this be corrected?
Problem 15.1.3 For your 100 samples, using Random Walk Metropolis
calculate the percentage of accepted steps.
Problem 15.1.4 Create a function that calculates Gelman’s  for each of
(μt,μc) using:



where:

measures the within-chain variance at time t averaged over m chains, and 

 is the sample variance of chain j. Also:

measures the between-chain variance at time t. Here  is the average

value of a parameter in chain j, and  is the average value of a parameter
across all chains. (Hint 1: first create two separate functions that calculate the
within- and between-chain variance. Hint 2: you will obtain a value of  for
each of (μt,μc).)

Problem 15.1.5 Start all eight chains at (μt,μc) = (20,5) and calculate  for a
per chain sample size of 5. Does this mean we have reached convergence?

Problem 15.1.6 Using eight chains, calculate  for each of (μt,μc) for a
sample size of 100. This time make sure to start your chains in overdispersed
positions in parameter space. Use a random number from a multivariate
normal centred on the posterior means with a covariance matrix of 40 times
the identity matrix.
Problem 15.1.7 After approximately how many iterations does Random
Walk Metropolis reach ?
Problem 15.1.8 The conditional distributions of each variable are given by:

Problem 15.1.9 Use your Gibbs sampler to draw 100 samples. Draw a scatter
plot of your (μt,μc) samples with lines connecting consecutive points.
Discarding the first 50 observations, how do the estimates of the mean of
each parameter compare with their true values?
Problem 15.1.10 Generate 200 samples from each of your Random Walk
Metropolis and Gibbs samplers. Discard the first 100 observations of each as
warm-up. For each calculate the error in estimating the posterior mean of μt.



Repeat this exercise 40 times, each time recording the error. How does their
error compare to the independent sampler?
Problem 15.1.11 Repeat Problem 15.1.10 to obtain the average error in
estimating the posterior mean of μt across a range of sample sizes from n=5 to
n=200.
Problem 15.1.12 Using the results from the previous question, estimate the
effective sample size for 150 observations of the Random Walk Metropolis
and Gibbs samplers.
Problem 15.1.13 What do the above results tell you about the relative
efficiency of each of the three samplers?
Problem 15.1.14 Code up a Hamiltonian Monte Carlo (HMC) sampler for
this problem. (Alternatively, use the functions provided in the R file
HMC_scripts.R adapted from [8].) Use a standard deviation of the
momentum proposal distribution (normal) of 0.18, along with a step size ∈ =
0.18 and L=10 individual steps per iteration to simulate 100 samples from the
posterior. How does the estimate of the mean compare with that from the
independent, Random Walk Metropolis and Gibbs samplers?
Problem 15.1.15 What is the acceptance rate for HMC? How does this
compare with Random Walk Metropolis?
Problem 15.1.16 Gibbs sampling has an acceptance rate of 100%. How can
HMC be more efficient than Gibbs given that its acceptance rate is less than
100%?
Problem 15.1.17 You receive new data that results in a change in the
posterior to:

Using your Random Walk Metropolis sampler, calculate  for eight chains,
where each chain generates 100 samples.
Problem 15.1.18 Estimate the value of  for HMC on the posterior from the
new data, for a sample size of 100. How does it compare to Random Walk
Metropolis?
Problem 15.2 HMC and U-turns
The code in HMC_UTurn. R simulates Hamiltonian dynamics for a single
particle on the distribution described in the previous question:



In this question we will see how the efficiency of HMC depends on the
choice of the number of intermediate steps. In particular we investigate the
propensity of a particle undergoing Newtonian dynamics to perform U-turns.
Problem 15.2.1 Simulate a single particle starting at (20,5) for L=10 steps
with the parameters ∈ = 0.18 (step size) and σ = 0.18 (momentum proposal
distribution width). Plot the path in parameter space.
Problem 15.2.2 Now try L=10,50,100 steps, again plotting the results. What
do you notice about the paths?
Problem 15.2.3 Simulate 100 iterations of the particle starting at (20,5), with
each particle running for L=100 steps. Examine the motion of the particle in
one of the parameter dimensions, and hence determine an optimal number of
steps for this distribution.
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16.1 Chapter mission statement
By the end of this chapter the reader will appreciate the benefits of using Stan
to do Markov chain Monte Carlo (MCMC). They will also understand how to
code up models in Stan’s language and know what to do when things go
wrong.



16.2 Chapter goals
Chapter 15 showed us the power of Hamiltonian Monte Carlo (HMC)
compared to the older Random Walk Metropolis and Gibbs algorithms.
However, this power comes at a cost of extra complexity. Furthermore, in
HMC, as in Random Walk Metropolis, there is a need to tune the algorithm
to ensure that it efficiently traverses posterior space. These two aspects can
make implementing HMC foreboding, even for more experienced MCMCers.
Fortunately, for many applications of Bayesian statistics, we do not need to:
Stan [8] does the hard work for us.
Stan actually implements an improved version of HMC known as the No-U-
Turn Sampler (NUTS) that self-tunes for maximal algorithmic efficiency.
This makes Stan fast, really fast. All that the user needs to do is use the
intuitive, and easy-to-learn, Stan language to code up their model, and Stan
does the rest. The language is being constantly updated and improved, using
some of the best minds in the business. In particular, the language is the
brainchild of Andrew Gelman, one of the world’s foremost Bayesians.
Stan is a probabilistic modelling language that implements black box MCMC
that can be accessed through a variety of interfaces, including R, Python, the
command line, Matlab, Stata, Mathematica and Julia. The R interface is
known as RStan, and is probably the most popular of these. Its popularity
means that it is well tested and supported, and so in this chapter we provide
examples using this package. However, while we use RStan to call Stan, the
underlying models are always written in the same Stan language, meaning
that the example Stan programs that we provide in this chapter do not change
across interfaces.
Stan programs are composed of a number of blocks, which are used to
specify a model. While this variety may, at first, appear scary, having
sections in compartments actually makes things a lot easier. In this chapter,
we step individually through the different blocks, so that the reader learns
their use and significance in an overall Stan program.
Stan supports a large range of data and parameter types, from continuous
variables to arrays to covariance matrices and so on. In this chapter, we cover
most of these and explain how to find out more if you are faced with a new
type of data. Stan also comes pre-loaded with a wide assortment of
probability distributions – both discrete and continuous. Also, even if a
distribution of choice is not available, so long as you can code its log density,



you can use it in Stan (see Section 16.6).
The Stan language is popular. This is important. When things go wrong with
your Stan program –and they inevitably will at some point – the popularity of
Stan means that there are ample resources to help you through. From very
active user forums (staffed by Stan developers) to a thorough manual and
numerous web case studies, Stan has got a lot of different ways to
troubleshoot. In this chapter, we walk the reader through these various ports
and explain how to get the most from them. There are numerous other, less
popular, MCMC packages, although they are not nearly as well supported as
Stan. If you use one of these and get stuck, you are on your own for the most
part. Our advice: use Stan!
The best way to get up and running with Stan is to code up example models.
As such, this chapter is littered with example code in both R and Stan, which
hopefully makes getting started a bit easier. However, we strongly encourage
the reader to attempt to code up their respective models sooner rather than
later. As with most things, we learn most rapidly when we step out of our
comfort zone.

16.3 Why Stan, and how to get it?
This section explains in detail the benefits of Stan and how to download and
start to use the software.
16.3.1 When to use black box MCMC rather than
coding up the algorithms yourself
We have been introduced to three basic flavours of MCMC algorithms:
Random Walk Metropolis, Gibbs and HMC. Each of these has its strengths
and weaknesses. Random Walk Metropolis is simple to code and, as such,
can be used in quite general settings. However, its generality comes at a cost
– the algorithm is usually slow to converge, particularly for more complex
models. Gibbs sampling can, at times, provide an increased rate of
convergence, although it requires that we know the conditional distributions
for parameters and can independently sample from them. HMC is a
generalisation of Random Walk Metropolis that uses posterior geometry
when deciding where to step next, and is usually much faster than the other
two. However, to code up HMC we need to calculate the derivatives of the
log density, which can be prohibitive for some classes of probability models,
for example large systems of differential equations.
While the packages that implement variants of the three aforementioned



algorithms are generally great, there will always be circumstances where they
cannot be used. These circumstances can be due to the nature of the
probability model or, sometimes, due to a mismatch in modelling software
between elements of an analysis. It therefore pays to understand how these
methods work so that they can be rewritten to suit different settings.
Furthermore, there are benefits to implementing these algorithms yourself;
you learn much more about how they work by doing so. These benefits are
realised when when you then go onto use so-called black box MCMC
software, like Stan, BUGS and JAGS, since naive use of these languages can
result in misleading results.
However, there are many circumstances where it pays to rely on the well-
tested MCMC software produced by others. One of the benefits of using
popular third-party software is that it may have fewer bugs than writing the
MCMC algorithms yourself. Furthermore, the authors of these packages
typically put a lot of thought into ensuring the implementation is efficient,
meaning that they can be significantly faster than a custom implementation.
An often-missed benefit of these packages is that they usually provide a raft
of useful MCMC summary statistics. These metrics often allow a quick
diagnosis of misbehaving chains and can point to issues with the underlying
statistical model.
Overall, whether you decide to use a third-party MCMC implementation, or
write one yourself, comes down to a number of factors: the time saved by
relying on others’ work, the convenience of the software to the problem at
hand and the cost of learning a new programming language. As we said
previously, there are definitely classes of problems that – at the moment – are
not covered by packages, although, in the near future, the size of this class
may shrink since the speed of software development in this area tends to be
unusually fast. Re. the cost of learning a new language, we argue that some
are easier to learn than others (see Section 16.3.2).
16.3.2 What is Stan?
Stan is an intuitive, yet sophisticated, probabilistic programming language
that provides an interface to a recently proposed extension to HMC, known as
NUTS [19, 8]. The idea is that you code up a model using Stan’s syntax, and
then Stan does the MCMC for you. But what exactly is the nature of the Stan
language, and how does it compare with the popular BUGS and JAGS
languages?
Stan is what is known as an imperative programming language. We will not



go into the details of what this means, but will just say that most traditional
programming languages like R, Python, Matlab, C++ and others tend to
behave in this way, at least approximately so. This is not true for BUGS and
JAGS, which are known as declarative languages. This distinction is
important for two reasons: (1) we believe learning Stan is easier if you are
familiar with other programming languages, and (2) partly because of its
imperative nature, Stan is a type of Turing-complete language that basically
means that it can be used to code up a larger swathe of models compared to
BUGS and JAGS.
We also argue that even if you are already familiar with BUGS and JAGS,
there are similarities between them and Stan (model blocks for one thing).
This means that the learning curve for Stan is not steep for existent BUGS
and JAGS users.
16.3.3 Why choose Stan?
There are a multitude of MCMC packages out there, so why do we suggest
using Stan above all others? There are number of reasons for this, but the
most important one is its popularity. While, on first glance, this might appear
to be no more than suggesting users go with the status quo, there are very
good reasons for choosing a popular piece of software. An important reason
is that more popular software is usually better tested and, as a consequence,
more bug-free. However, a more pressing reason is that Stan, because of its
popularity, has a huge range of resources generated by users and developers.
This is particularly relevant for MCMC, because inevitably there will be
times when things go wrong: for example, your model does not compile, or
your chains fail to converge. In these circumstances, it is important to know
that there are places you can go to help solve your problem: the Stan manual,
the user forum and the corpus of case studies produced for Stan are helpful
sources here. Other MCMC software does not have this wealth of materials,
and because of this, if you get stuck, you remain stuck. Even if the software
has all the bells and whistles available from all the latest papers (although
doubtful it would rival Stan), there is really no substitute for popularity.
However, if you do not find the above reasoning sexy, there are a bunch of
other reasons to use Stan:

Stan is fast. In general, it is much faster than BUGS and JAGS in terms
of the number of effective samples generated per second. This is partly a
result of implementing an extension to HMC known as NUTS, but also
because of other clever software quirks, like using algorithmic



differentiation to evaluate derivatives, and because it uses good software
design principles.
Learning Stan is easy. As already described in Section 16.3.2, the
imperative nature of the language means that it is similar to most other
traditional programming languages. Also, the switch from BUGS or
JAGS is not difficult because of the commonality between them.
Stan is more general than BUGS and JAGS. We discussed in Section
16.3.2 that Stan is a Turing-complete language, and hence can be used to
code a much wider class of problems than BUGS or JAGS.
Stan is written by smart people. Specifically, it is the brainchild of
Andrew Gelman, who is unequivocally the world’s foremost Bayesian
statistician. There are a load of other theoretical and applied statisticians
working on the project, meaning that the language is frequently updated
to include the latest methods, new data and parameter types as well as
things that make it better.
The developers have translated examples from the leading textbooks
in the field into Stan. These include books that previously contained
examples only in BUGS or JAGS (for example, the BUGS book [24]),
making it easier to transition from these to Stan.
Recent books contain examples in Stan. Following on from the
previous case, many of the recent books written contain examples
written in Stan, rather than BUGS or JAGS.
shinyStan makes inference fun. OK, maybe we are a bit biased here,
but the interactive nature of the shinyStan R package makes inference a
lot easier and more of a pleasure than a chore. This is another reason
why we suggest using R as opposed to one of the other statistical
software packages which are available to us.

Overall, Stan makes our life easier. Not a convert yet? Well, that is what this
chapter is for.

16.4 Getting set up with Stan using RStan
This section briefly describes how to get Stan set up on a computer. The
reason for its brevity is mainly because there are detailed resources for this
subject on the Stan website (http://mc-stan.org/). However, here we detail the
basic steps for getting up and running using RStan, the R interface to the Stan
language.
R. To begin with, since we are going to use R to call Stan, we need a newish

http://mc-stan.org/


version of it installed. To get this go to https://www.r-project.org/ and
download the latest version for your particular system.
RStudio. Although not essential, we strongly suggest using RStudio to write,
edit and run R code. It is great even if you do not use Stan. However, if you
do, a particularly nice feature of this development environment is its
capability to highlight Stan syntax as you write. To get RStudio go to
https://www.rstudio.com/.
Toolchain. The Stan package relies on your computer having a few
necessary tools to handle C++ files. Among other reasons this is because Stan
code is, under the hood, actually translated into C++ code and compiled. The
best way to get the requisite software for a Windows or Mac computer is to
install RTools. The Stan website walks the user through this for both cases. If
you are on a Linux computer, then you will need to install build-essential and
a recent version of either g++ or clang++ compilers.
RStan. The only remaining thing that we need is the RStan package itself.
This can be done from within R or RStudio, using the following commands:

install.packages(’rstan’,
repos = ’https://cloud.r-project.org/’,
dependencies=TRUE)

You can speed up the installation by preceding the above with the optional
command:

Sys.setenv(MAKEFLAGS = "-j4")
where you replace ‘4’ in the above with the number of processors available
on your computer.

16.5 Our first words in Stan
This section describes how to code up a basic Stan model. Since the
backbone of typical Stan programs does not vary considerably, this section
forms the basis for later, more complex models.
16.5.1 The main blocks of a Stan program
To explain the importance of each element of a typical Stan program, we
introduce a simple example. Suppose that we want to infer the mean height,
µ, in a population of interest. To carry out this inference we need some data,
so suppose that we have recorded the height, Yi (in metres), of 10 individuals
drawn from that population. Further, suppose that the normal sampling model
is appropriate given the multitude of different factors that affect the height of
a person (see Section 3.5), that is:

https://www.r-project.org/
https://www.rstudio.com/
https://cloud.r-project.org/


where σ is the standard deviation of the sampling distribution. To complete
our specification of a Bayesian model we need priors, which we choose as:

The completed Stan program implementing the above model is shown in
code block 1. Before we describe the importance of each of these blocks, we
first take a moment to describe how best to write and save a Stan program:

Writing a Stan program
Stan programs can be written in a text editor and, as long as they are saved
with a ‘.stan’ ending (for example, aModel.stan), they can be executed.
However, this is not best practice. Here, we suggest you write Stan models
using RStudio or emacs. Both of these editors recognise Stan syntax and
hence help to minimise errors while writing your models. To write a model in
RStudio, you will need a fairly recent version of the software. You then must
create a new text file, making sure to save it suffixed with .stan. The other
option, emacs, has a bit of a steeper learning curve, although it has a great
range of functionality that can speed up the model development process
considerably.
We now describe the three most important blocks of a typical Stan program.

How to write your first Stan program
Data

data {
real Y[10]; // heights for 10 people



}
The data block, as its name suggests, is used to declare all the data that you
will pass to Stan (from R, Python or whatever other statistical software you
use), which allow it to estimate your model. Stan is a strongly statically typed
language, which basically means that you must declare the type of data or
parameters which are used in your model. Also, if you declare a variable as
one type, you cannot later convert it to another.
In the above we declare the variable Y – representing the heights of the 10
people – to be of type real [10]. This means that it is an array with 10
elements, each of which is an unbounded continuous variable. There are a
range of different data types that can be declared, and we include only a
handful of examples here:

real<lower=0,upper=1> Z: a continuous variable bounded between 0
and 1
int<lower=0> Z: a discrete variable that takes integer values with a
minimum value of 0
int<lower=0> Z[N]: an array of length N, where each element of the
array is a discrete variable that takes integer values with a minimum
value of 0
vector[N] Z: a vector of continuous variables of length N
matrix[3,3] Z: a 3 × 3 matrix of continuous variables
matrix[3,3] Z[5,2]: a 5 × 2 array of 3 × 3 matrices

Among other types in the above, we introduced arrays, vectors and matrices.
You may be wondering what the difference is between these three types.
Vectors and matrices contain only elements of type real – that is, continuous
variables – whereas arrays can contain data of any type. In the above, we
show how to declare arrays of integers and matrices. So why ever use the
more limited vector and matrix types? First, they can be used to do linear
algebra, whereas arrays cannot. Second, some functions (for example, the
multivariate normal distribution) use these types as inputs rather than arrays.
Third, there are a few minor memory and speed benefits to using a matrix
rather than a two-dimensional array, due to the way data are stored in
memory.
You have probably also noticed that the Stan code has semi colons (;) at the
end of each statement where something is assigned. This happens for data
declarations and (as we soon see) for parameter declarations, and anywhere
where you access an element of a data type and assign it to something else.



One place they do not occur is at the start of any loops or conditional
statements, where nothing is assigned. However, to be honest it is usually
pretty obvious when and where these statements should occur. Hopefully the
rest of this example will illustrate this.
You may also have noticed that we can use // to make comments that
annotate the code and make it easier to understand. Use of comments is
essential for reproducible research – both for yourself and for anyone else
who tries to make sense of your work in the future. However, do not overuse
comments. Put them only in places where it is not obvious what your code
does. Overly commented code can be messy and hard to read.
Parameters
The next section of code we consider is the parameters block, where we
declare all the parameters that we will infer in our model:

parameters {
real mu; // mean height in population
real<lower=0> sigma; // sd of height distribution
}

Here, we declared the mean height in the population, which is an unbounded
continuous variable, and the standard deviation, which is a continuous non-
negative variable. Note that we could have specified a lower bound of zero
on mu here because it must be non-negative; however, parameter values near
this bound are not approached in practice.
As with the data block, a range of data types are available to us here. These
include the vector, matrix and array types that we discussed previously, but
also more exotic entities, some of which we show below:

simplex[K] Z: a vector of K non-negative continuous variables whose
sum is 1; simplexes are useful for parameter vectors, whose elements
represent probabilities
corr_matrix[K] Z: a K× K dimensional correlation matrix (symmetric,
positive definite matrix with unit diagonals, with all elements between
−1 and 1)
ordered[K] Z: a vector of K continuous elements where either Z[1]>
Z[2]>...> Z[K] or Z[1]< Z[2]<...< Z[K]

Notice that discrete parameters are missing from the above description. This
is not a mistake. Stan currently does not support integer-valued parameters,
directly at least. This is because the theory of HMC for discrete parameters is
not yet sufficiently developed. However, the Stan development team are



working on this, and hopefully at some point in the future this will be
possible. While this might seem like a serious issue, since many models
contain discrete parameters, it is possible to indirectly include discrete
parameters by marginalising them out (see Section 16.6). This means that the
vast majority of models that use discrete parameters can still be coded in
Stan.
Model
The next part of a Stan program we discuss is the model code block, which is
used to specify the likelihood and priors for a model (or, more generally, to
increment the log probability):

Sampling statements
An important thing to notice about the above block is the use of so-called
sampling statements written by ~. The term sampling statement is suggestive,
and not to be taken literally [8]. In the above, we use a sampling statement for
the individual elements of Y, because we assumed each height is drawn from
a normal sampling distribution, Yi~N(µ, σ). Similarly, we assumed that the
parameters µ and σ are drawn from normal and gamma prior distributions.
However, do not think that Stan actually does the independent sampling that
these statements seem to suggest. (If it could then we wouldn’t need to do
MCMC in the first place! See Chapter 12 if you can’t remember why this is.)
Remember that Stan essentially runs on HMC. HMC is an MCMC method
that works in negative log posterior space. Because the overall posterior
numerator is the product of a number of elements comprising the likelihood
and prior:

this means the overall log posterior is the sum of the individual log
probability of each element in the likelihood and prior:



Therefore, in HMC, all we need to do is evaluate the log probability of each
of these elements and sum them together. This is exactly what the sampling
statements (the ~) help us to do. For each step in the HMC, we get a new
value of µ and σ and, hence, need to evaluate the (un-normalised, negative)
log posterior density. So in each step Stan calculates a new log probability by
starting with a value of 0 and incrementing it each time it encounters a ~
statement. So:

for(i in 1:10) {
Y[i] ~ normal(mu,sigma);
}

increments the log probability by 
 for the heights of each of the

i=1, ..., 10 individuals. This is the normal density not including any constant
terms –sampling statements throw away the constants as they are usually not
needed. Another way to express the above sampling statement is by an
alternative Stan notation:

for(i in 1:10) {
target += normal_lpdf(Y[i]|mu,sigma);
}

which more transparently increments target – a container that holds the
current value of the log posterior – by a log probability corresponding to the
log of the normal density at a height of Y[i]. To be clear here, target
statements are not actually the same as ~ ones, because target statements keep
any constants in the log density. However, for the majority of cases the
distinction does not matter. Stan programs with ~ statements are generally
quicker, but if you want the actual log probability of the model you need to
use target statements.
Why do we highlight the distinction between what ~ means statistically and
what it means in the Stan language? This is because you may get errors that
you think are bugs in Stan but are actually due to interpreting ~ statistically.
Take the following excerpt from a Stan program:

parameters {
real theta;
}



model {
....
theta ~ uniform(0,1);
}

On first glance, it appears that the parameter theta should be constrained to lie
between 0 and 1, because it has a continuous prior with those bounds.
However, this is not the case. All the above sampling statement does is
increment the log probability by an amount given by the log uniform density.
This means that it is possible for theta to stray outside of the 0 and 1 bounds,
and if you run this program you may actually see this for a few iterations.
(Stan will output a statement of the form ‘Log probability evaluates to
log(0)...’.)
Vectorisation
There is actually a more efficient and compact way to write our original
model that takes advantage of the inherent vectorised nature of sampling
statements:

model {
Y ~ normal(mu,sigma); // likelihood
....
}

where we have replaced the for loop that accesses each element of Y
individually, by the above, where we use the array Y on the left-hand side.
For more complex models, using vectorised code can amount to serious
speed-ups in the MCMC because the code is better able to leverage the
benefits of C++ when it is translated.
Probability distributions
Stan comes equipped with a range of useful probability distributions. We do
not include all of these below because they are easily found in the Stan
manual and are constantly being updated. However, here are a few of the
more popular distributions:

Discrete: Bernoulli, binomial, Poisson, beta-binomial, negative-
binomial, categorical, multinomial
Continuous unbounded: normal, skew-normal, Student-t, Cauchy,
logistic
Continuous bounded: uniform, beta, log-normal, exponential, gamma,
chi-squared, inv-chi-squared, Weibull, Wiener diffusion, Pareto



Multivariate continuous: normal, Student-t, Gaussian process
Exotics: Dirichlet, LKJ, Wishart and inv-Wishart, Von-Mises

It is also worth noting that Stan sometimes provides different
parameterisations of the same probability distribution (see the binomial and
binomial_logit distributions in the Stan manual, for example), which make
life easier.
16.5.2 Executing a Stan program from R
Now that we understand the aforementioned data, parameters and model
blocks of a Stan program, let’s discuss how we execute a Stan program in R
through RStan. Note that this section assumes that you have installed R,
RStudio and RStan as described in Section 16.4. To get up and running,
follow these steps:

1. Create a new folder that will contain our .stan file along with an R file
that we will use to call Stan.

2. In RStudio create a new text file, and paste the code in code block 1 into
it. Save this file in the newly created folder as ‘simple.stan’ (when you
do so, you should see that RStudio highlights code in line with Stan’s
syntax).

3. In RStudio create a new R Script file, and save it in the folder.
4. In RStudio change the working directory to be the same as the newly

created folder. This can be done manually through the drop-downs at the
top of the window or using a line of code that will look something like:

Setwd("~/folder name")
dependent on the folder structure on your computer.

5. 5 In the R Script file, load the RStan package using:
library(rstan)

6. 6 (Optional) Set up RStan to run in parallel on multiple processors (if
your computer has them) with the following line in your R Script:

options(mc.cores = parallel::detectCores())
7. 7 Create some fake height data in R using:

Y <- rnorm(10,1.5,0.2)
8. 8 Compile and run the MCMC on your Stan program by the following

line in your R Script:
fit <- stan(’simple.stan’,iter=200,chains=4,
data=list(Y=Y))

The above translates your Stan model into C++ code and compiles it. (This
step may take up to a few minutes on older computers.) It then runs the



MCMC using 200 iterations across four chains. Using Rstan, we supply our
data as a list. So the overall R Script should look something like this:

library(rstan)
options(mc.cores = parallel::detectCores())
Y <- rnorm(10,1.5,0.2)
fit <- stan(’simple.stan’,iter=200,chains=4,
data=list(Y=Y))

16.5.3 Interpreting the results of a Stan MCMC run
Hopefully we have successfully run our first Stan model. How do we look at
the results? There are a number of ways to do so, and here we begin with the
simplest. We can look at summary statistics for our posterior samples using:

print(fit,probs = c(0.25,0.5,0.75))
where ‘fit’ is the object in which we saved the result of our Stan run
previously. This should output results that look something like the following.
The exact numbers will differ because they depend on the fake data that you
created using rnorm in R, and because MCMC is stochastic. However, the
structure should look similar.

So what do all the parts of the above mean? Well, the top part just states that
four chains were run for 200 iterations each. However, the first half of these
chains were discarded as ‘warm-up’ (see Section 13.9.5), meaning that there
are only 100 samples kept as posterior samples for each chain, resulting in
400=4×100 ‘total post-warmup draws’. The table in the output contains



summary statistics for the two parameters of our model (µ, σ) as well as for
the log probability of the model ‘lp__’. The last two columns of the table are
convergence diagnostics for each parameter: n_eff is the number of effective

samples and . In this case, we see that  for all our
parameters, giving us some confidence that our posterior shape will not
change much if we collect more samples The first six columns of the table
show summary measures for the posterior samples, including the mean (and
its standard error), the standard deviation and the three quantiles we specified
in our print(fit,probs=c(0.25,0.5,0.75)) statement. The last part of the output
contains information on the sampling algorithm used (NUTS) and the
estimated Bayesian Fraction of Missing Information (BFMI) for each chain.
BFMI is a newly created criterion that measures the autocorrelation in energy
distribution sampled by each chain, with values near 1 indicating efficient
sampling [4].
How do we extract the posterior samples and then graph them?

library(ggplot2)
mu <- extract(fit,’mu’)[[1]]
qplot(mu)

where extract is an RStan function that pulls out any parameter we desire
from a Stan fit object. We have chosen to use the ‘ggplot2’ library to display
a histogram of the data here.

shinyStan
If you are using R, there is another, more interactive (and hence fun!) way to
view the results from a Stan run, using the shinyStan package. You can install
this package from within R using:



install.packages(’shinystan’)
From there, it is simple to create a shinyStan object and launch the shinyStan
application:

library(shinystan)
aFit <- as.shinystan(fit)
launch_shinystan(aFit)

Upon executing the above, your web browser should open up (you do not
need to be connected to the Internet), and you should see an intro screen with
options including DIAGNOSE, ESTIMATE and EXPLORE. DIAGNOSE
allows you to view detailed MCMC diagnostic criteria by clicking through

the various options, including convergence criteria such as , effective
sample size, and divergent iterations. ESTIMATE provides tables and basic
graphs of the parameters in your model. EXPLORE, among other things,
allows you to create scatter plots of samples from each variable plotted
against one another. This graph, in particular, can be useful in diagnosing
issues with your MCMC (see Section 16.7.2).
16.5.4 The other blocks
The three code blocks that we have introduced thus far are typically essential
in a Stan program (see Section 16.6 for a counter-example); however, there
are other code blocks that help to make life even easier. In this section we
describe these.
Generated quantities
The most widely useful of the other blocks is the generated quantities code
block. One of the main uses of this section is to do posterior predictive
checks of a model’s fit (see Chapter 10). Once you know how this section
works, you will find that it is much easier to do posterior predictive checks
here rather than afterwards in R, Python, and so on. This section of a Stan
program is executed once per sample, meaning that it does not typically pose
a threat to efficiency (although it can significantly affect the memory used by
Stan; see Section 16.5.5).
Let’s use our heights example from the preceding sections to illustrate how
we can use this code block to do a posterior predictive check. Suppose that
we want to test whether our model can generate the extremes that we see in
our data. In particular, we choose to count the fraction of posterior predictive
samples – each of the same size as our original data – where the maximum or
minimum of the simulated data is more extreme than the actual data. We do



this using the following:

The first part of this code just declares the variables we intend to use in this
block. We then use our posterior samples of μ and σ to generate posterior
predictive samples of the same length as the actual data. We then determine
whether the maximum and minimum of the simulated data are more extreme
than the real data, generating a variable equal to 1 if this is the case, and 0
otherwise.
Note that to generate random samples from a given distribution, we use the
‘_rng’ suffix. So in the above, Y=normal_rng(mu,sigma) generates a single
(pseudo-)independent sample from a normal distribution with a mean of mu
and a standard deviation of sigma. This is completely different to Y ~
normal(mu,sigma), which means ‘increment the overall log probability by an
amount given by the log likelihood of a data point Y for a normal distribution
with a mean of mu and standard deviation of sigma’ (see Section 16.5.1 if
you need to remind yourself about this).
If we run the whole program, including the generated quantities section at the
bottom, we obtain results that look something like the following:



So we now have summary statistics for the posterior predictive data. In
particular, we have the means of the two indicator variables which represent
Bayesian p values (see Chapter 10). Therefore, using this posterior predictive
check, we conclude that our model is a reasonable fit to the data, since the p
values (the mean values of the indicator variable samples) are nowhere near 0
or 1.
Another use of this code block is to generate the requisite data for measuring
a model’s predictive performance. However, we leave a discussion of how to
do this until Section 16.6.
Finally, another use we will mention but not discuss now is that the generated
quantities block can be used to generate samples from parameters that interest
us at a given level of a hierarchical model (see Chapter 17).
Functions
Code can be made more readable and less error prone if we define functions
to carry out any frequently used operations. As an example, suppose that,
together with the height of individuals in our sample, we also had their
weight. Suppose that we believe that a reasonable model for the relationship
between these two variables could be described by:



where (Xi, Yi ) are the weight and height of individual i. While this model
does not have repetitions, we might find it neater to use a function that
calculates the mean of the normal:

functions{
real covariateMean(real aX, real aBeta){
return(aBeta * log(aX));
}
}

where the first real before the function name declares that the function will
return a continuous variable. The elements contained within parentheses tell
the function that it will accept two reals – aX and aBeta – as inputs. The
return statement then passes back the required value. Note that it is possible
to declare variables in a Stan function; here, because the function is simple,
we chose to calculate the value and return it in a single line. The whole Stan
program then has the following form:

We have placed an N(0, 1) prior on the β parameter. Note that we have
chosen to pass the sample size N as data to the Stan program. This is good
practice since it allows the model to generalise to bigger samples and
otherwise just neatens things up. Also note that functions must be declared at
the top of a Stan program, otherwise the other blocks cannot find the requisite



functions when they are executed. If you save this file in your working
directory (again, making sure to save it as .stan), you can take it for a test
drive. To do so, generate some fake data in R, then call Stan:

N <- 100
X <- rnorm(N,60,10)
beta <- 0.3
sigma <- 0.3
Y <- beta * log(X) + rnorm(N,0,sigma)
## Call Stan
fit <-stan(’covariate.stan’,iter=200,chains=4,
data=list(Y=Y,X=X,N=N))

Hopefully you should get posterior samples whose mean is pretty close to the
true value that was used to generate the fake data:

Apart from helping you create more transparent and reliable code, functions
also have another use – they can be used to allow sampling from any
distribution whose log density can be written in Stan code. So, even if Stan
does not have built-in functionality for a particular distribution, you can still
use Stan to sample from it. See Section 16.6 for the recipe for this magic
potion.
Transformed parameters
There are occasions when we want to generate samples for transformations of
those parameters defined in the parameters block and, possibly, even sample
from these transformed parameters. In our original heights example (no
covariates), imagine that instead of setting priors on the standard deviation
parameters – sigma – you wish to do so on the variance. However, you also
want to generate samples for sigma. One way to do this is to use the
transformed parameters block:



where we have now declared a parameter sigmaSq in the parameters block
which represents the variance of the sampling distribution; sigma, its standard
deviation, is now declared in the transformed parameters block. Notice that
we have set priors on sigmaSq in this program. Our results now contain
posterior summaries for both of these parameters:

Transformed data
The final code block is known as transformed data, and as its name suggests
it can be used to make transformations to the data you pass to Stan. These
transformations are carried out once at the beginning of the program, so it
usually does not significantly affect the efficiency of execution (see Section
16.5.5). As a silly example, imagine that instead of fitting a model to the
height data itself, we want our model to explain the squared deviation from



the sample mean. One way to do this is to carry out the data transformation in
Stan:

transformed data{
vector[N] lSqDeviation;
for(i in 1:N){
lSqDeviation[i] = (Y[i] – mean(Y))^2;
}
}

While data transforms can, of course, be carried out outside of Stan,
sometimes it is convenient and neater to do these operations within the Stan
script.
16.5.5 Efficiency and memory considerations for each
block
When writing a Stan program, as with any other software, it is important to
know where bottlenecks to efficiency are likely to occur. Further –
particularly if you are running Stan on a laptop – it may also pay to be aware
of the memory footprint of different parts of code. In this section, we briefly
discuss each of these issues.
There is heterogeneity in the number of times that each block is executed in a
typical Stan run:

data – once at the beginning
parameters – each time the log probability is evaluated
model – each time the log probability is evaluated
generated quantities – once per sample
transformed data – once after the data block is executed
transformed parameters – each time the log probability is evaluated

We have omitted the functions block from the above list since the frequency
it is called depends on its use.
In the above, we see that there is considerable heterogeneity in the
importance of each block for ensuring efficient MCMC. The log probability
is evaluated each time the HMC/NUTS takes a step (multiple times per
sample) and so causes the biggest bottlenecks for efficiency. Typically, the
model block is the biggest drain on processor time, so it pays to optimise it.
The parameters that you declare in the parameters or transformed parameters
blocks will have samples stored for each iteration. This can cause problems
for memory, particularly if you use a large number of MCMC iterations or



the parameters are multi-element objects like vectors, matrices or arrays.
Similarly, we have experienced memory issues arising from the generated
quantities block when doing posterior predictive checks with high-
dimensional data. (If you generate simulated data, you will get one replicate
per sample!) In these circumstances, it can pay to define variables locally in
blocks of braces { }, which ensures that you will not obtain samples for these.
As an example, consider our posterior predictive check for the original
model, where we compare the extremes of the simulated data with the actual
maximum and minimum. We originally did this using:

which kept the values of 10-element simulated data vector lSimData for each
MCMC sample. While this might not be onerous for data with N = 10, it will
be if we have data where N = 1000. An alternative way is to declare the
vector that will hold the data in braces (indicating a local block):



Now the output should not contain the simulated data itself but will have the
two indicator variables:

16.5.6 Loops and conditional statements
Stan has the loops and conditional statements that most programming
languages possess. This allows a large variety of models to be coded up in
Stan. Here we illustrate two looping constructs that Stan allows: for and
while.
For loops just iterate through the elements as suggested in the argument:

for(i in 1:10) {



execute something;
}

So the above executes 10 times, once per each value of i. While loops are
slightly different in that they are conditional; the number of times they
execute depends on a condition being met. So:

int i = 0;
while(i < 10) {
i = i + 1;
}

will execute where i=1, ..., 9 at the start of the loop. The condition will fail to
be met, however, when i=10, and the loop will terminate.
Stan also allows conditional behaviour via if and else statements:

if(i < 2) {
execute something;
} else if(i == 2) {
execute another thing;
} else{
execute that thing;
}

16.6 Essential Stan reading
This section introduces the reader to a wide, and somewhat unconnected,
range of tricks that we have found useful in writing Stan programs. Even if
you find no immediate use for these ideas, we believe that it nonetheless
helps to be aware of them.
Accessing elements using indices
Often we need to access elements of a given data or parameter object. For a
vector or array, this is straightforward using the square brackets notation in
Stan, for example:

vector[N] X;
real aTemp;
...
// access first element of vector
aTemp = X[1];

This holds even for more complex arrays, where each element is a structured
object:

corr_matrix[K] X[N];



corr_matrix[K] aTemp;
...
// access third element of array where individual elements correspond to
correlation matrices
aTemp = X[3];

For multi-index arrays and matrices, the process is no more difficult except
that we now need to specify multiple indices within the square brackets:

simplex[K] X[N,L];
simplex[K] aTemp;
...
aTemp = X[3,5];

If you want to pull out several elements of multi-element objects, this is also
straightforward:

real X[4];
int indices[3];
real Y[3];
X = (2,3,5,7);
indices = (4,1,2);
// yields Y = (7,2,3)
Y = X[indices];

Passing ragged arrays to Stan
Suppose that you have individual data for three studies of individuals’
heights. In particular, imagine that you have the following data in R, and you
want to generate a separate estimate of the mean population height for each
of the three cases:

X.1 <- c(1.53,1.67,1.52)
X.2 <- c(1.75,1.62,1.87,1.95)
X.3 <- c(1.25,1.75)

What is the best way to pass this data to Stan? A nice trick is to combine all
data into one long data vector. We then create helper arrays in R that indicate
the size of each data set and its starting position in the long array:

Y <- c(1.53,1.67,1.52,1.75,1.62,1.87,1.95,1.25,1.75)
S <- c(3,4,2) // sample sizes of each study
index <- c(1,4,8) // start position of each study

Next we create a Stan program that analyses each of the studies separately –
allowing estimates of the mean and standard deviation for each individual
study to be obtained:



where the above code has used the vectorised nature of the sampling
statements to write the likelihood and priors compactly. The above yields the
following results:

You may notice when you run the above code that you get a warning of
‘divergent iterations’. While we will cover what this means in Section 16.7.2,
we note briefly here that it can cause a bias in the results. Seeing as the
problem here is quite minor because we have only a few divergent iterations,



we can actually solve it by calling Stan as follows:
fit <-stan(’multipleStudies.stan’,
data=list(Y=Y,N=N,K=K,S=S,index=index),
iter=200,chains=4,control=
list(adapt_delta=0.95,stepsize=0.01))

This should sort the problem. See Section 16.7.2 for further explanation of
why this works.
An alternative way to estimate this type of model is to pass an array which
identifies the group to which each observation belongs:

where groups (=1,1,1,..., 2,2,2,..., 3,3,3...) is the array containing this
information. Here, rather than selecting the data that corresponds to each
parameter set, we do the reverse – select the parameters which correspond to
each data point.
Using Stan to generate independent samples
Sometimes it is helpful to use Stan as a tool to generate independent samples



from a distribution of interest. This may be useful for posterior predictive
checking or, alternatively, because we want to know how a given Stan
distribution behaves. Suppose that we want to know what independent
samples from the Stan neg_binomial_2 distribution look like. To do this, we
leverage the power of the generated quantities block and create a bare-bones
Stan program of the following form:

where we supply the desired mu and kappa of this distribution as data inputs.
Notice that we have to suffix the distribution with ‘_rng’ because we want to
generate independent samples from it. Also notice that the above model does
not contain a parameters block. Therefore, to execute this program we need to
slightly alter the way we call it from R:

fit <- stan(’bareBones.stan’,data=list(mu=10,kappa=5),
algorithm=’Fixed_param’,iter=4000,chains=1)

where we have generated 4000 independent samples from this distribution
with a mean of mu=10 and kappa=5. As before, we can extract the
independent samples and graph them:

Y <- extract(fit,’Y′)[[1]]
qplot(Y) + geom_histogram(binwidth = 2)
## ’stat bin()’ using ’bins = 30’. Pick better value with ’binwidth’.



Translate and compile a model for later use
It would be good to avoid having to re-compile models each time that we
want to reuse them. Fortunately, Stan has a number of ways of doing just this.
The simplest is to use the following option:

rstan_options(auto_write= TRUE)
This ensures a compiled version of the Stan model is written to the hard disk
in the same directory as the .stan file. An alternative way forward is to store
your model as an instance of ‘stanmodel’, which can be used later for MCMC
in the same R session:

aModel <- stan_model(’example.stan’)
fit <- sampling(aModel,iter=400,data=list(Y=Y),chains=4)

Custom probability density functions: no problem with
Stan
Suppose that we have a variable X that we believe follows the distribution:

where –∞ <x< ∞, which for µ=2 looks like:
curve((sqrt(2)/pi)*1/(1+(x-2)4), -5,5)

Unfortunately, this probability density function is not available in Stan.
(Which isn’t really that surprising since we invented it.) So what can we do?
Well, it turns out we can still use Stan for inference by writing a function that
returns the log density for each value of µ (just the log of the above). We then
use this log density value to increment the overall log density:



Coding up a bespoke probability density in Stan

where we have specified a µ~N(0,2) prior. In the above, we have suffixed our
custom log probability density function definition with ‘_lpdf’. This tells Stan
to regard this function as a typical log probability density function, which we
can use along with a ‘~ ’ statement resulting in the following:



To use this functionality for any density, we must define our data as the
function’s first input and all parameters after this, so:

real normalCustom_lpdf(real aX,real aMu,real aSigma)
would implement a log density function that we call using

X ~ normalCustom(mu,sigma);
or alternatively using

target += normalCustom_lpdf(X|mu,sigma);
Let’s prove this works for a distribution that exists in R and Stan – the
normal. The Stan model can be written as follows:

where we have assigned normal and log-N priors on mu and sigma,
respectively. Now we generate some fake data with X~N(3, 5) and fit the
model:



which works pretty well here since mu and sigma are close to their actual
values.
So the moral here is that – so long as you can write a function in Stan that
returns the log density of a distribution – you can use Stan to sample from it.
Calculating WAIC, LOO-CV and other measures
Often we want to estimate the predictive performance of a model to compare
it with others in order to choose between competing hypotheses. In Chapter
10 we discussed various alternative metrics and advocated, where possible,
that researchers should repeatedly partition their data into training and test
sets (that is, use explicit cross-validation). The training sets are used to fit the
model, and the test sets to estimate their out-of-sample predictive capability.
However, there are circumstances where repeated partitioning is not feasible
due to the computational cost of estimating a model. In these cases, we can
use WAIC and estimates of LOO-CV to measure the out-of-sample predictive
capability of a model. In this section, we show how to estimate a model’s
predictive capability using cross-validation, WAIC and LOO-CV through an
example. Suppose that we generate some fake data from a Student-t
distribution (see Section 8.4.7):

N <- 10000
## Student-t with nu=5
X <- rt(N,5)

We then fit two models to the data – one uses a normal sampling distribution
and the other assumes a Student-t sampling distribution. Here we know the
Student-t distribution should perform better since we used it to generate our
data, and hence we use this toy problem to illustrate how cross-validation,
WAIC and LOO-CV can be calculated.
WAIC and LOO-CV
We start by considering WAIC and LOO-CV since these are more easily
handled than explicit cross-validation. These methods require that we



calculate the log-likelihood for each data point across all posterior samples
(see Chapter 10). This is straightforward to handle using the generated
quantities block. We illustrate this for the normal model first:

generated quantities{
vector[N] logLikelihood;
for(i in 1:N){
logLikelihood[i] = normal_lpdf(X[i]|mu,sigma);
}
}

In the above, we iterate across all N elements in our data sample and record
the log-likelihood for these. Furthermore, this loop is undertaken for each
posterior sample of (mu,sigma), and hence a matrix of log-likelihoods is
obtained overall.
The Student-t model is similar, although we have an extra nu parameter in its
log density function:

generated quantities{
vector[N] logLikelihood;
for(i in 1:N){
logLikelihood[i] = student_t_lpdf(X[i]|nu,mu,sigma);
}
}

We set the following priors for both models, mu~N(0, 1) and 
, and  for the degrees of freedom

parameter for the Student-t model.
To calculate WAIC we use the excellent loo package [40]. Since we have
saved the log-likelihood for each model, this is actually quite easy to do:



We see that the Student-t model has a higher estimated expected log
pointwise predictive density (elpd = –16,467.8, which, times –2, corresponds
to a lower WAIC). However, to determine whether this difference represents
anything other than sampling error, we compare these two models in the
correct – pairwise – way using:

from the same package, and we see that the difference in elpd is much greater
than the standard error. This suggests that there is a significant difference in
performance between these two models, and we prefer the Student-t model.
But how do we determine whether the difference is significant? One way is to
calculate a z score and compare with a standard normal:



While we are not in general fond of Frequentist hypothesis tests, this is the
current state of the art here. In this case, it indicates that there is basically
zero probability of this difference occurring if both models are equally
predictive.
The same package allows us to estimate elpd via LOO-CV without doing
explicit cross-validation. This proceeds as before except we substitute 

:

This produces similar estimates of elpd as for the WAIC in this case. In both
cases, we find that the estimated elpd is greater for the Student-t model than
for the normal one, as expected.
In general, we prefer the LOO-CV measure since it represents a better
approximation to the out-of-sample predictive capability of our model.



However, it is important to note that it is not uncommon to get warnings
about either the ‘p_waic exceeding ...’ or ‘Pareto k estimates exceeding...’.
While we refer the interested reader to the details of the loo paper itself [40],
we mention here that it is important to take heed of these warnings. These
warnings typically indicate that one or more of the approximations used to
estimate these criteria are likely violated, and hence inferences about model
performance cannot be trusted. In these cases, it may be better to use explicit
cross-validation, to which we turn our attention now.
Explicit cross-validation
We recommend that, where possible, the reader should use explicit cross-
validation to estimate a model’s out-of-sample predictive performance. The
reason for this recommendation is twofold: first, the aforementioned WAIC
and LOO-CV methods can fail to produce reasonable estimates of out-of-
sample predictive error if one or more of a number of conditions are not met;
second, explicit cross-validation allows us to manually select a test set that
may better represent the model’s eventual use.
Using a poorly chosen partitioning can lead to very inadequate measures of a
model’s performance, so we recommend thinking carefully here. If the model
will be used to predict batches of new data, then perhaps a K-Fold cross-
validation scheme is best. Alternatively, if the unit of interest is a single data
point, then perhaps a leave-one-out cross-validation scheme is best. (Time
series and hierarchically structured data can be a bit tricky here.)
Lacking any preference for an explicit cross-validation scheme, we suggest
using K-Fold cross-validation since it is less computationally onerous than
leave-one-out cross-validation. In K-Fold cross-validation, the data are
repeatedly partitioned into training and test sets. The process continues until
each data point has been included once (and once only) in a test set.
We continue the previous example, but now show how to estimate model
performance on a test set for the normal model:



where we fit the model on the training set XTrain and calculate the log
probability on the test set XTest. To do K-Fold cross-validation we use the
brilliant Caret R package (which is our favourite library for machine
learning) to generate equally sized randomised test sets, where each data
point features once, and once only, in each test set [22]:

library(caret)
testIndices <- createFolds(X, k = 5, list = TRUE,
returnTrain = FALSE)

where we have specified five folds. We then create an R function to handle
the repeated training and testing of a given model, and calculate the elpd for
each of the test sets:



which we then use to compare the normal and Student-t models:

noting that again the Student-t distribution performs better than the normal



distribution. (Above, we calculate the standard deviation on the difference in
log pointwise predictive density to calculate a z score.) We also note the
similarity in estimates compared with the more approximate WAIC and
LOO-CV methods described above, which is reassuring.
Jacobians: when do we need these?
Suppose that we have a uniformly distributed variable, θ, and draw samples
for it:

library(ggplot2)
theta <- runif(100000)
qplot(theta)

Then we square the samples. What does the distribution of θ2 look like?
qplot(theta^2)

This is definitely not uniform. Whenever we apply a non-linear transform to a
variable, its probability distribution is stretched in some areas and squashed
in others. The correct way to mathematically determine how this stretching
manifests is known as the Jacobian transform.



In Stan, we are required to manually specify this Jacobian if we ever sample
from a transformed parameter. As an example [8],1 imagine we have some
binary data Y=(0,0,1,0) that represents the outcomes of some sort of test –
where individual data points can be either a success (1) or failure (0). We
model each outcome as a Bernoulli distribution (see Section 8.4.1) and use
the following Stan model:
1. Inspired by Bob Carpenter’s example: http://mc-
stan.org/documentation/case-studies/mle-params.html.

http://mc-stan.org/documentation/case-studies/mle-params.html


This specifies alpha as our parameter, which represents the log odds of
success, and theta as a transformed parameter. If we run this model, we get a
warning from Stan:

DIAGNOSTIC(S)FROM PARSER:
Warning (non-fatal):
Left-hand side of sampling statement (~) may contain a non-linear
transform of a parameter or local variable.
If so, you need to call increment_log_prob() with the log absolute
determinant of the Jacobian of the transform.



Left-hand-side of sampling statement:
theta ~ uniform(...)

This indicates that we are sampling from a transformation of the alpha
parameter and need to add a term that corresponds to a Jacobian term. Before
we change our model, let’s look at our posterior summaries:

Here we have a posterior mean of theta – the probability of success – being
0.25. However, we know that since the uniform prior is actually a beta(1,1)
distribution, the posterior is a beta(1+1,1+4−1) = beta(2,4) distribution (see

Chapter 9). This has a mean of , which is not what we
obtained.
The reason we obtained this bias is because we failed to account for our
change of variables. In particular, since we set a prior on a transformation of
alpha, we got a bias in our posterior samples. How do we correct this? We
first have to calculate the Jacobian. For α=logit(θ) we find that the density
satisfies:

where the second term on the right-hand side is the Jacobian. The inverse
logit function is actually the sigmoid function yielding a Jacobian equal to:

which we log and then use to increment the log probability in a line in our
model block:

model {
for (n in 1:N){
Y[n] ~ bernoulli(theta);
}
theta ~ uniform(0, 1);
target += log(theta) + log(1-theta);



}
which, when we run the new Stan program and look at the posterior
summaries, gives:

in accordance with the analytic mean.
Knowing when you need to use a Jacobian can seem confusing at first.
However, it is not if you know the following rule:

Use a Jacobian when you transform a parameter and then sample it, but
not when you sample a parameter and then transform it.

So if, instead, we use the model:



there is no need for a Jacobian term because we have defined theta as a
parameter (which we sample from) and alpha as the transformed one. So here
we get the correct posterior summaries:



Marginalising out discrete parameters
Stan does not directly allow discrete parameters. This is because currently the
theory of how to extend HMC to these circumstances is not well developed.
While in the future it may be possible to directly include discrete parameters
in Stan, fortunately it is still possible to indirectly use them by marginalising
them out of the joint log density. This amounts to summing the joint density
over all possible values of the discrete parameter θ:

However, we must do so on the log probability scale because this is what
Stan uses:

We obtained the second line of (16.11) from the first by using exp(log(x))=x.
To reiterate, we need expression (16.11) because Stan uses log p, not p itself.
The last line uses the definition of a function available in Stan:

which makes life easier for us with discrete models. Note the Stan function is
equivalent to the expression (16.11), but is computed in a way that makes it
more numerically stable (since the exponential of the log probabilities can be
tiny).
So how do we implement discrete models in Stan itself? Let’s consider an
example. Suppose that we have two coins in our pocket. One is heavily
biased towards tails and the other is heavily biased towards heads. In each
experiment, we pull out a coin at random – not observing which coin it is –
and throw it 10 times, recording the total number of heads, X. We run the
same experiment 20 times, each time recording the total number of heads.
Suppose that we want to infer the (unobserved) identity of the coin in each
experiment as well as the probabilities of throwing a heads for each of the
two coins.
On first glance, the above model seems problematic because the identity of
the coin in each experiment can be one of two possible states – tails- or
heads-biased – and hence is discrete. We can write down this model in
statistical form:



// tails-biased

// heads-biased (s=2)
else

where θ1< 0.5 < θ2. The key to writing this model in Stan is finding a way to
calculate the log posterior density, lp. If we can find the log density, then we
can simply use:

target += logProb;
and run Stan as per usual. We start by considering each of the studies
individually and assume that both coins are equally likely a priori. The
probability of each coin type s for a single experiment where we throw X
heads out of 10 throws is then:

where theta[s] is the probability of heads for coin type s ϵ[1,2] and
binomial_pmf is the binomial probability mass function. In Stan, we want the
log probability and hence use instead:

log(0.5) + binomial_lpmf(X|N,theta[s]);
where binomial_lpmf is the log probability mass for a binomial distribution.
In our Stan program, we store the log probability for each coin type s in a 1 ×
2 vector for each experiment. This amounts to storing all the results in a 20 ×
2 matrix, lp, where a single row corresponds to an individual experiment:

transformed parameters{
real<lower=0,upper=1> theta[2];
matrix[nStudy,2] lp;
for(n in 1:nStudy){
for(s in 1:2){
lp[n,s] = log(0.5) + binomial_lpmf(X[n]|N,theta[s]);
}
}
}

We then marginalise out the discrete coin type s from the joint density by
summing over it using log_sum_exp. Once it is marginalised, we then
increment the log probability by this amount:

model {



for(n in 1:nStudy){
target += log_sum_exp(lp[n]);
}
}

In this case, we actually find it easier to make use of Stan’s logit formulation
of the binomial, where we pass an unconstrained real parameter to the
distribution. Writing the entire program now:





where we have used the Stan type orderedordered to ensure that one of the
coin probabilities (obtained by transforming the alpha variable using the
inverse logit transform) is always larger than the other. In the model block,
we iterate through the individual studies and increment the log probability by
an amount determined by marginalising the joint log density over the variable
that corresponds to the status of an individual coin. So the idea is that – in
each step of Stan – we sample a value for alpha (then transformed to get
theta), then we use these values to calculate the log probability of each coin
state s. We then marginalise s out of the joint log density and update the total
overall log probability accordingly.
We use the generated quantities block to estimate the probabilities of state s =
1 in experiment n by averaging over all L posterior draws:

where q(.) is the un-normalised posterior density. The averaging over all
posterior draws is necessary to obtain the marginal un-normalised density for
coin type (where alpha, and hence the coin bias, have been averaged out of
the joint density). To normalise the posterior density, we therefore divide the
above by the sum of the un-normalised probability across both states:

In the Stan code, we use the log density and so need to take the exponent of
each term. A more numerically stable (but slightly more opaque) way to write
the above in Stan is as follows:

generated quantities{
real pstate[nStudy];
for(n in 1:nStudy){
pstate[n] = exp(lp[n,1] – log_sum_exp(lp[n]));
}
}

This only requires that we take the exponential once. We now generate some
fake data in R assuming that θ1= 0.1 and θ2= 0.9:



and pass this data to our Stan program:



where we see the model has correctly inferred the probabilities of throwing
heads for each coin as well as the correct coin type in each experiment:

## predict state 1 if prob>0.5
state_est <- ifelse(colMeans(extract(fit,’pstate’)[[1]])>0.5,1,0)
sum(abs(state_est – state))
## [1] 0

16.7 What to do when things go wrong
Rarely in life do things run entirely smoothly. This is particularly true with
statistical modelling. However, this is only part of the problem in statistics.
The other part of the problem is recognising that something is actually wrong.
In this section, we describe how to see and interpret the ample warning signs
that Stan provides us with. Broadly, there are two categories of errors: coding
errors and sampling issues. Coding errors are, in general, easier to diagnose
and typically can be resolved fairly quickly. Sampling issues can be trickier



since their resolution is typically quite problem specific. However, once you
have got a few models under your belt you should start to understand the
source of these issues. At the heart of sampling issues is a principle that
Gelman refers to as his folk theorem: A problem with MCMC is usually a
problem with the model, not the sampling algorithm. If you remember this
dictum you will save time fiddling with MCMC parameters and find yourself
spending more time thinking about what really matters – the statistical model.
We divide the following sections into coding errors and sampling issues
because diagnosis and solution differ quite considerably between the two.
In the last sections of this chapter, we consider how to get further help should
you need it. Fortunately, Stan has excellent resources, and we explain how to
make best use of them.
16.7.1 Coding errors
Stan is pretty good at telling you when you make a mistake with code.
Suppose that we are missing a semicolon at the end of a statement:

data {
int N;
real X[N]
}

If we try to run this model we get the following message:

We read at the end that our parser expected a semicolon but did not find one.
Another common error that we find ourselves making is illustrated by the
following:



generated quantities{
vector[N] XPred;
for(i in 1:N){
XPred[i] <- normal(mu,sigma);
}
}

which looks OK on first glance but produces an error:
## SYNTAX ERROR, MESSAGE(S) FROM PARSER:
##
## No matches for:
## normal(real, real)
## Function normal not found.
## Function normal not found.

This seems puzzling at first because we have actually defined sigma to be a
real<lower=0> variable. The issue here is that we actually want to replace
normal with normal_rng because we want to generate independent samples
from this distribution, not increment the log probability.
Stan is, in general, quite informative about the root cause of most coding
errors. However, there will be circumstances when the warning messages
produced may not necessarily shed too much light on a problem. In these
cases, we recommend consulting the Stan manual and user forum. If you still
have trouble finding a solution, then consider asking a question on the Stan
user forum, although before you do, try to recreate the simplest possible
model that replicates the error. This process is highly informative in itself, but
also helps others to most rapidly find the source of any problems.
Debugging through fake data simulations
Another class of coding problems is subtler. They may not produce any error
messages and can go unnoticed unless we actively search for them. One of
the most powerful methods in this search is to use fake data simulations. In
this method, we generate simulated data from a statistical process whose
parameters we know for certain. We then compare our MCMC-estimated
parameter values with the true parameter values. While there may be
statistical reasons for discrepancies here (see Section 16.7.2), coding errors
can also cause differences between the estimated and actual data.
As an example, imagine we are again estimating the height of individuals in
three separate populations, in a similar vein to that in Section 16.6. We start
by generating fake data from three populations of known means:



As before, the index contains the starting position of each series and S holds
the number of individuals in each sample.
We then write our model:



and run the Stan model from R – it compiles; no errors here, we think.
However, on printing the results we find the following:

The first two means are well replicated in our data, but the latter one is not.
Why is this? It is because we failed to notice the K–1 in the for loop
declaration – it should say for(i in 1:K). We change this, rerun the model and
print the results:

We see that the posterior summary statistics are now in much better
accordance with the true values.
Debugging by print
Another useful tool in debugging is the use of the print statement:

real X;
X = 1.0;
print(X);

This prints the value of a given variable to the output. This tool can be
particularly useful when you want to determine the value of an element of a
vector that is assigned in some sort of loop.
16.7.2 Sampling issues
Another class of problems has to do with issues with the MCMC sampling.
These problems are, in general, trickier to resolve than coding problems.
However, we believe that if you understand the basis of the issues that we



introduce in this section, you will know how to diagnose this type of
problem, should it appear. An important idea to always keep in mind is
Gelman’s folk theorem – that issues with sampling are usually due to
problems with the model, not the sampling algorithm. Further, it is important
to remember that any MCMC sampling algorithm, Stan or otherwise, is
approximate in nature. The quality of the approximation hinges crucially on
our ability to recognise and deal with any issues that arise. Stan is very good
at pointing out these issues, but it is our responsibility to act on them. Ignore
the warning signs at your own peril!
The real power of fake data
The following examples make clear the importance of using fake data
simulation in applied research. In each of the cases, we simulate data from a
statistical process whose parameters we know for certain. In doing so, we can
test the limits of knowability using our models. If we did not go first through
the exercise and, instead, started to analyse our real data straight away, we
would not necessarily understand the reason for slow convergence, divergent
iterations, and so on. Fake data simulation is thus a prerequisite for all dªta
analyses. The exercise of generating fake data may seem annoying at times –
particularly for hierarchical models – but there is always a considerable
improvement to your knowledge about the system at hand if you do so.
Fake data generation can also be useful before we receive data, for example
when designing a physical experiment. By simulating data from an entirely
known process, we learn how much data are necessary to achieve a given
level of accuracy in parameter estimates, and can adjust our experimental
design accordingly.

Slow convergence indicated by  > 1.1
You may notice that one or more of your parameters has a value of 
. This is always something to be concerned about. It means that there is some
area of posterior space that has not been adequately explored. Further, you
cannot assume that since all of your ‘important’ parameters have ,
you can forget about the few that have not converged. Parameter estimates
depend on one another, so it is entirely possible that exploring a new area of
parameter space for one ‘unimportant’ parameter may lead to exploration of
new areas for an ‘important’ one. These epistatic interactions2 mean that we
must be confident that our nuisance parameters have converged.



2. This term is borrowed from genetics, where it means that one gene’s effect
can depend on whether other genes are present.
So why are some models slow to converge? Generally, it means that the
posterior is not very curved in some areas of parameter space, meaning that
the posterior has long tails. These extended tails mean that MCMC samplers
take much longer to explore the posterior space and, as a result, convergence
is slow. The lack of curvature can also make it difficult to separate the effect
of one parameter from another one; that is, there is an identification issue.
Poor identification can be caused by a wide variety of reasons: inadequate
data, uninformative priors and ill-conceived models are common causes.
However, common to all of these causes is the idea that the data provides
insufficient information to tease apart the effect of one parameter from
another.
For example, suppose we generate 10 data points from a Student-t
distribution with ν =3, σ =1 and µ =2:

N <- 10
X <- rt(N, df=3)*1 + 2

If we fit the same distribution to this data in Stan using the following code:
model {
X ~ student_t(nu,mu,sigma);
}

where we have not specified priors on the three parameters, then this means
that Stan will place (improper) uniform priors on all of these. If we pass the
data to Stan, and run the full Stan model, we obtain the following results:

and we see that the values of  are a long way from 1.
So what is the problem? The issue here is that the current data does not
provide enough information to estimate the parameters of the Student-t
distribution. So if we generate more data – say 1000 data points – we then get
much faster convergence:



However, in most real-life examples we do not have the luxury of simply
collecting more data – at least as easily as we did here. So we need another
way of putting more information into the system to allow our parameters to
be identified. One way forward is to use weakly informative priors (see
Section 5.6.1):

model {
X ~ student_t(nu,mu,sigma);
mu ~ normal(0,10);
sigma ~ lognormal(0,1);
nu ~ lognormal(0,1);
}

While these priors have quite a gentle curvature, this added information is
sufficient to identify the parameters:

Increasing the number of MCMC samples will facilitate convergence to the
posterior. However, in many circumstances the rate of convergence is so low
that we have to run our samplers for an inordinate amount of time to
adequately explore posterior space. Furthermore, we argue that this does not
really address the cause of the problem; your time would be better spent
trying to diagnose the reasons behind slow convergence. Remember,
Gelman’s folk theorem states that problems with MCMC sampling are
usually due to problems with the underlying model, not the sampling
algorithm. As a rule of thumb, we recommend that if, after a few thousand
iterations (obviously this depends a bit on model complexity) the NUTS



sampler has not converged, then we should consider making changes to the
model.
Divergent iterations
Suppose that we work as economists for the government of a small country.
Part of our job is to estimate the length of time that typical paper currency
remains in domestic circulation before becoming lost, broken or travelling
abroad. Furthermore, suppose that the governmental mint that print the notes
does not include the date of printing on the currency, making it hard to
accurately estimate the age of a given note. However, the mint can add a
marking to the note that shows up under UV light.
To estimate the life span of currency, we decide to create an experiment
where we release 3000 marked notes into circulation. As is the case in many
countries, the central bank has a physical bank where individuals can go and
exchange coins for notes (or vice versa) or exchange foreign currency for
domestic. The workers in the bank have a UV machine that allows them to
determine whether a given note is marked. The idea behind our experiment is
to monitor the returns of marked bank notes over time as a way of
determining their life span in circulation. If notes leave circulation quickly,
there will be a corresponding rapid decline in the numbers of marked notes
collected in the central bank. If notes last a long time, then there should not
be too much change in the numbers of notes collected over time.
We choose to model the number of notes Yt collected in year t as having a
binomial sampling distribution:

where ψ is the probability that a single note is collected in a given year and µ
is a parameter that – along with β – determines the life span of notes. We
expect that, as notes age, their probability of leaving circulation increases, at
a rate whose magnitude is modulated by β.
We code up the above model in Stan, choosing to use Stan’s default uniform
priors on all parameters (which are improper for µ and β):



What are divergent transitions and what to do about them?
We suppose that we will collect 10 years’ worth of data. To determine how
easily the parameters of our model can be estimated, we generate fake data
where we assume a constant rate of note ‘mortality’, β = 1:

numReleased <- 3000
psi <- 0.01
mu <- 0.1
N <- 10
Y <- vector(length=N)
for(i in 1:N){
Y[i] <- rbinom(1,numReleased,psi*exp(-mu*i))
}

We run Stan (with 2000 iterations across each of eight chains) using the fake
data we generated and get the following warning message:

## WARNING: Warning messages:
## 1: There were 203 divergent transitions after warmup.
## Increasing adapt_delta above 0.8 may help.
## 2: Examine the pairs() plot to diagnose sampling problems

This indicates that the sampler experienced 203 divergent iterations. (You



may need to run the above Stan model a few times to generate a comparable
number of divergent iterations.) What does this mean, and is it something to
worry about?
Divergent iterations occur when the methods used to approximate the path of
our fictitious particle in parameter space produce paths that are poor
approximations to the exact solution (see Section 15.5.1). NUTS is able to
determine if these divergences likely occur and terminates the simulation of
the particle – for this particular iteration of the sampler – early. The number
of divergent iterations reported is then the total number of these divergent
iterations (after warm-up) that occur. So what causes divergent iterations?
The most usual cause is having step sizes (that is, the length of the discrete
pieces of the path that are used to approximate the true path) that are too large
relative to the posterior curvature in certain areas of parameter space. Taking
steps that are too big results in a crude approximation to the exact path of our
particle and we get a divergence (see Chapter 15).
Divergent iterations are definitely something to worry about. Since NUTS
terminates early for these iterations, this causes a bias away from this area of
parameter space. This bias means that we do not explore posterior space fully
and our posterior summaries will not faithfully reproduce the exact posterior
properties.
But why do some models or data produce divergent errors and others do not?
Remember that NUTS self-tunes to find a step size which results in an
efficient global exploration of posterior space. However, for some models,
there may be areas of high posterior curvature which mean that the globally
optimum step size is too large. So if a model has a wide variation in the
amount of posterior curvature, it is ripe for divergent iterations.
So looking at our bank note example, why do we get divergences? The best
way to diagnose this is either through use of shinyStan or, as we show below,
through the pairs function:

pairs(fit)



On the plot any samples with divergent iterations are shown as red points.
From this we see that there are quite distinct regions where divergent
iterations occur. For example, in the plots of mu against beta, we see that
many divergent iterations occur in the ‘neck’ region of the posterior samples.
This makes sense because, in this region, small changes in either parameter
can strongly affect the behaviour of the model – the posterior is highly curved
in this region, and small step sizes are warranted. By contrast, in the tails of
this scatter plot, large changes in either mu or beta (mu in bottom right and
beta in top left) change fairly little about the model’s behaviour. Here, the
resultant posterior density is more gently curved, and large step sizes make
most sense. Therefore, a step size that is globally optimal may fail to be
appropriate in these two regions. In the tails, the exploration of posterior
space is inefficient; in the neck, the step sizes are too large and we get
divergent iterations.
How can we deal with these divergent iterations? As a first step we can try
decreasing the step size and increasing the target acceptance rate of NUTS.
Both of these have the effect of tuning down the global step size of the
sampler, which should help to mitigate against divergent iterations. To do this
we make the following call to Stan in R:



fit <- stan(’aModel.stan’,data=list(N=N,Y=X,
numReleased=numReleased),iter=2000,
chains=8, control=list(adapt_delta=0.95,stepsize=0.01))

The resultant pairs plots should now be devoid of divergent iterations.
In more serious cases it may not be possible to entirely eliminate divergent
iterations by modifying the target acceptance rate and step size of the
sampler. As a rule of thumb, we say that if changing a target acceptance rate
to 0.99 does not remove divergent iterations, then we need to think carefully
about their cause. This is another example of Gelman’s folk theorem in
action. Often a re-parameterised model may be available that will avoid some
of the issues that result in divergent iterations or slow convergence (the two
often go hand in hand).
An alternative way to avoid divergent iterations is to use priors that give less
weight for certain regions of parameter space, which have wildly different
optimal step sizes. This makes the specification of a single, global, step size
less suboptimal. In the above example, we could use a prior for beta that
gives most weight around beta = 1, if we believe that there is not a strong
effect of bank note age on whether a note leaves circulation.
Tree depth exceeding maximum
In some circumstances, the posterior may have considerable curvature,
resulting in NUTS using small step sizes. These small step sizes can mean
that it takes the sampler a long time to explore posterior space. A small step
size can cause NUTS to hit what is known as the maximum tree depth. While
we were deliberately fairly shallow in our discussion of NUTS in Chapter 15,
we can nonetheless describe the significance of this. Essentially, this means
that NUTS cannot as effectively determine the optimal number of steps for a
given position in parameter space (to travel as far as possible without doing a
U-turn) with resultant inefficiencies in the sampler. These inefficiencies in
themselves are not problematic for inferences, but they often go hand in hand
with slow convergence or divergent iterations. As before, we suggest
attempting to get to the bottom of the problems rather than side stepping them
by changing NUTS parameters manually.

16.8 How to get further help
It has been a challenge to write this chapter to include enough commonly
encountered Stan issues without the book becoming a more boring version of
War and Peace. Inevitably, we have had to leave out cases in order to save



space. However, it was never a goal of ours to write a fully comprehensive
guide to Stan. There are a few reasons for this: (1) Bayesian inference issues
tend to be quite problem specific, meaning that there are as many issues as
there are models. (2) The existing documentation – both the case studies on
the Stan website and the Stan manual – contain thorough examples. (3) The
Stan user forum is a great place to troubleshoot.
If you experience a problem with your model (as inevitably you will), we
encourage you to first attempt to find the cause of your issues using similar
methods to those described in this chapter. In particular, we suggest
attempting to reproduce the issue using the simplest version of your model
possible. This is often best done with fake data so that you can see how
characteristics of the data affect the occurrence of the issue. Reproducing
issues with simpler models is often very informative in itself, and this may
illuminate you sufficiently to be able to proceed without outside help.
However, there will be circumstances when you fail to understand the causes
of, or potential solutions to, a particular issue. Fortunately, the Stan
documentation is quite extensive; the manual, case studies and user forum are
three essential resources.
There will be times, however, when, despite your best efforts, you are unable
to solve a given issue. In these circumstances, you can consider asking a
question on the Stan user forum. But before you do so, it pays to create a
simple example model that reproduces the same issues. When you post, be
sure to include your code, and potentially data, and try to make your question
as succinct and clear as possible. The development team at Stan are usually
very good at responding, although this depends on the day of the week and
other factors, as well as the quality of your question!



16.9 Chapter summary
In this chapter, we introduced Stan as a language for doing efficient MCMC
sampling. We believe that it is by far the best tool out there currently, and
hope that the examples contained in this chapter have convinced you of some
of its benefits.
We also covered some of the more common issues that users of Stan will
encounter. These fall into two groups: coding errors and sampling issues.
Coding errors are usually relatively simple to handle and can be diagnosed by
intelligent use of fake data and print statements. Gelman’s folk theorem states
that sampling issues are almost invariably due to problems with the
underlying statistical model, not the sampling algorithm. We cannot advocate
this view strongly enough – do not waste too much time fiddling with
NUTS’s sampling parameters. If you are having trouble with convergence or
divergent iterations, take a good hard look at your model. The best way to do
this is by fitting your model to fake data which has been simulated from a
process whose parameter values you know. By comparing your model
estimates with the true parameter values, you can determine whether you
need more data, or need to use more informative priors or, finally, to re-
parameterise the model. Failing that, fortunately Stan has considerable
resources to consult if you do run into a problem you cannot solve on your
own.
Now that we have introduced Stan, we are in a good position to tackle
hierarchical models. In the final part of the book we introduce this concept
and show its usefulness in a wide range of real-life settings.



16.10 Chapter outcomes
The reader should now be familiar with the following concepts:

how to write basic Stan models and call these from R
how to do posterior predictive checks using the generated quantities
block
how to troubleshoot when things go wrong with your Stan model
the fact that most problems with MCMC sampling are due to problems
with the underlying model, not the sampling algorithm (Gelman’s folk
theorem)

16.11 problem sets
Problem 16.1 Discoveries data revisited
The file evaluation_discoveries.csv contains data on the numbers of ‘great’
inventions and scientific discoveries (Xt) in each year from 1860 to 1959 [1].
In this question you will develop a model to explain the variation in scientific
inventions over time. The simplest model here is to assume that (a) one
discovery is independent of all others, and (b) the rate of occurrence of
discoveries is the same in all years (λ). Since the data are discrete, these
assumptions suggest the use of a Poisson likelihood:

Problem 16.1.1 Open a text editor and create a file called discoveries.stan in
your working directory. In the file create three parameter blocks:

data {
}
parameters {
}
model {
}

Problem 16.1.2 Fill in the data and parameter blocks for the above model.
Problem 16.1.3 Using a log-N(2,1) prior for λ, code up the model block,
making sure to save your file afterwards.
Problem 16.1.4 Open your statistical software (R, Python, Matlab, and so
on) and load any packages necessary to use Stan. (Hint: in R this is done by
using library(rstan); in Python this is done using import pystan.)
Problem 16.1.5 Load the data into your software and then put it into a
structure that can be passed to Stan. (Hint: in R create a list of the data; in
Python create a dictionary where the ‘key’ for each variable is the desired



variable name.)
Problem 16.1.6 Run your model using Stan, with four chains, each with a
sample size of 1000, and a warm-up of 500 samples. Set seed=1 to allow for
reproducibility of your results. Store your result in an object called fit.
Problem 16.1.7 Diagnose whether your model has converged by printing fit.
Problem 16.1.8 For your sample what is the equivalent number of samples
for an independent sampler?
Problem 16.1.9 Find the central posterior 80% credible interval for λ.
Problem 16.1.10 Draw a histogram of your posterior samples for λ.
Problem 16.1.11 Load the evaluation_discoveries.csv data and graph it.
What does this suggest about our model’s assumptions?
Problem 16.1.12 Create a generated quantities block in your Stan file, and
use it to sample from the posterior predictive distribution. Then carry out
appropriate posterior predictive checks to evaluate your model. (Hint: use the
poisson_rng function to generate independent samples from your lambda.)
Problem 16.1.13 A more robust sampling distribution is a negative binomial
model:

where µ is the mean number of discoveries per year, and .
Here κ measures the degree of overdispersion of your model; specifically if κ
increases then overdispersion decreases.
Write a new stan file called discoveries_negbin.stan that uses this new
sampling model. (Hint: use the Stan manual section on discrete distributions
to search for the correct negative binomial function name; be careful – there
are two different parameterisations of this function available in Stan.)
Assume that we are using the following priors:

Draw 1000 samples across four chains for your new model. Has it converged
to the posterior?
Problem 16.1.14 Carry out posterior predictive checks on the new model.
What do you conclude about the use of a negative binomial here versus the
simpler Poisson?
Problem 16.1.15 Find the central posterior 80% credible interval for the
mean rate of discoveries μ from the negative binomial model. How does it
compare with your results from the Poisson model? Why is this the case?
Problem 16.1.16 Calculate the autocorrelation in the residuals between the



actual and simulated data series. What do these suggest about our current
model?
Problem 16.1.17 Following on from the above, suggest an alternative model
formulation.
Problem 16.2 Hungover holiday regressions
The data in file stan_hangover.csv contains a series of Google Trends
estimates of the search traffic volume for the term ‘hangover cure’ in the UK
between February 2012 and January 2016. The idea behind this problem is to
determine how much more hung over people are in the ‘holiday season’,
defined here as the period between 10 December and 7 January, than on
average for the rest of the year.
Problem 16.2.1 Graph the search volume over time, and try to observe the
uplift in search volume around the holiday season.
Problem 16.2.2 The variable holiday is a type of indicator variable that takes
the value 1 if the given week is all holiday season, 0 if it contains none of it,
and 0 < X < 1 for a week that contains a fraction X of days that fall in the
holiday season. Graph this variable over time so that you understand how it
works.
Problem 16.2.3 A simple linear regression is proposed of the form:

where Vt is the search volume in week t and ht is the holiday season indicator
variable. Interpret β0 and β1 and explain how these can be used to estimate
the increased percentage of hangovers in the holiday season.
Problem 16.2.4 Assuming  and  priors,
write a Stan model to estimate the percentage increase in hangoverness over
the holiday period.
Problem 16.3 Coding up a bespoke probability density
In the file stan_survival.csv there is data for a variable Y that we believe
comes from a probability distribution:

where b > 0 is a parameter of interest. In this question we are going to write a
Stan program to estimate the parameter b even though this distribution is not
among Stan’s implemented distributions.
Problem 16.3.1 Explain what is meant by the following statement in Stan:

theta ~ beta(1,1);



In particular, explain why this is essentially equivalent to the following:
target += beta_lpdf(theta|1,1);

where target is a Stan variable that stores the overall log probability, and +=
increments target by an amount corresponding to the right-hand side.
Problem 16.3.2 Work out by hand an expression for the log probability of
the density in expression (16.22).
Problem 16.3.3 Write a Stan function that for a given value of y and b
calculates the log probability (ignoring any constant terms). Hint: Stan
functions are declared as follows:

functions{
real anExample(real a, real b){
...
return(something);
}
}

where in this example the function takes two reals as inputs and outputs
something of type real.
Problem 16.3.4 Use your previously created function to write a Stan program
that estimates b, and then use it to do so with the y series contained within
stan_survival.csv. (Hint: Stan functions must be declared at the top of a Stan
program.)
Problem 16.4 Is a tumour benign or malignant?
Suppose that if a tumour is benign the result of a clinical test for the disease
for individual i is , whereas if the tumour is malignant 

, where θb <θm. Suppose that we collect data on 10
patients’ scores on this clinical test, X={4,18,6,4,5,6,4,6,16,7}, and would
like to infer the disease status for each individual, as well as the parameters
θb <θm .
Problem 16.4.1 Write down in pseudo-code the full model, where we
suppose that we use uniform priors on θb< θm and discrete uniform priors on
the disease status si of individual i.
Problem 16.4.2 Assuming that si ϵ[1,2] is the disease status of each
individual (1 corresponding to a benign growth, and 2 to a malignant one),
use the transformed parameters block to calculate the log probability of each
individual’s data. (Hint: this will be a 10 × 2 matrix, where the 2 corresponds



to two possible disease statuses for each individual.)
Problem 16.4.3 The disease status of each individual si ϵ[1,2] is a discrete
variable, and because Stan does not support discrete parameters directly it is
not as straightforward to code up these problems as for continuous parameter
problems. The way to do this is by marginalising out si from the joint
distribution:

where we have illustrated this for the disease status of individual 1. This then
allows us to find an expression for the posterior density which we log to give
lp, and then use target+=lp to increment the log probability. However,
because we do this on the log-density scale we instead do the following:

where log_sum_exp(.) (a function available in Stan) is defined as:

and is a numerically more stable way of doing the above calculation. Using
this knowledge, write a full Stan model that implements this marginalisation,
and use it to estimate θb and θm. (Hint: use the
binomial_logit_lpmf(X[i]|N,alpha[s]) function in Stan and define ordered[2]
alpha, then transform from the unconstrained alpha to theta using inv_logit.)
Problem 16.4.4 We use the generated quantities block to estimate the
probabilities of state s=1 in each different experiment by averaging over all L
posterior draws:

where q(.) is the unnormalised posterior density. The averaging over all
posterior draws is necessary to marginalise out the alpha parameter. To
normalise the posterior density we therefore divide the above by the sum of
the un-normalised probability across both states:

Using the above knowledge, add a generated quantities block to your Stan
model that does this, and hence estimate the probability that each individual’s
tumour is benign.



Problem 16.4.5 An alternative way to code this problem is to derive a Gibbs
sampler. As a first step in this process, write out the full joint posterior
numerator. (Hint: now use a slightly altered definition of siϵ[0,1], where 1
indicates a benign tumour for individual i.)
Problem 16.4.6 By removing those terms that do not depend on θb, derive
the conditional distribution θb | θm, S,X. Hence write down θm | θb, S,X.
Problem 16.4.7 Show that the distribution for si |s–i,θb | θm, X can be written
as:

Problem 16.4.8 Using your three derived conditional distributions, create a
Gibbs sampler in R, and use it to estimate .
Problem 16.5 How many times did I flip the coin?
Suppose that I have a coin and that θ denotes the probability of its landing
heads up. In each experiment I flip the coin N times, where N is unknown to
the observer, and record the number of heads obtained, Y. I repeat the
experiment 10 times, each time flipping the coin the same N times, and
record Y={9,7,11,10,10,9,8,11,9,11} heads.
Problem 16.5.1 Write down an expression for the likelihood, stating any
assumptions you make.
Problem 16.5.2 Suppose that the maximum number of times the coin could
be flipped is 20, and that all other (allowed) values we regard a priori as
equally probable. Further suppose that, based on previous coin flipping fun,
we specify a prior θ~beta(7,2). Write down the model as a whole (namely,
the likelihood and the priors):

Problem 16.5.3 This problem can be coded in Stan by marginalising out the
discrete parameter N. The key to doing this is to write down an expression for
the log probability for each result Yi conditional on an assumed value of N,
and θ. Explain why this can be written in Stan as:

log(0.1) + binomial_lpmf(Y[i]|N[s],theta);



where N[s] is the sth element of a vector N containing all possible values for
this variable.
Problem 16.5.4 In the transformed parameters block, write code that
calculates the log probability for each experiment and each possible value of
N.
Problem 16.5.5 Write a Stan program to estimate θ. (Hint: in the model
block use target+= log_sum_exp(lp) to marginalise out N and increment the
log probability.)
Problem 16.5.6 Use the generated quantities block to estimate the
probabilities of each state.
Problem 16.5.7 An alternative way to estimate N and θ is to derive a Gibbs
sampler for this problem. To do this, first show that the joint (un-normalised)
posterior distribution can be written as:

where K=10 and (α,β)=(7,2) are the parameters of the prior distribution for θ.
Problem 16.5.8 Derive the conditional distribution θ|N, Y. (Hint: remove all
parts of the joint distribution that do not explicitly depend on θ.)
Problem 16.5.9 Write an R function that independently samples from the
conditional distribution θ|N, Y.
Problem 16.5.10 Show that the conditional probability mass function N|θ, Y
can be written as:

Problem 16.5.11 Using the previously derived expression, write a function
that calculates the un-normalised conditional N|θ, Y for N = 11,...,20, which
when normalised can be used to sample a value for N. (Hint: use the sample
function in R.)
Problem 16.5.12 Write a working Gibbs sampler using your two previously
created functions, and use this to estimate the probability distribution over θ
and N.
Problem 16.5.13 Compare the rate of convergence in the mean of N sampled
via Gibbs with that estimated from the p(N) distribution that you sampled in
HMC. Why is the rate of convergence so much faster for HMC? (Hint: this is
not due to the standard benefits of HMC that were extolled in this chapter.)



Part V Hierarchical models and regression



Part V mission statement
This part introduces the reader to hierarchical models. We shall see that
hierarchical thinking can be applied to a range of different settings, including
regression models, and often yields results that are preferable to more
traditional modelling frameworks. While we argue that hierarchical models
actually simplify many analyses, it can be harder to efficiently sample from
them. In this context Stan’s lightning-fast speed is a key weapon in the data
scientist’s toolbox, and here we show how to use this language to sample
from a number of different hierarchical models. Along the way we shall
cover how best to specify, estimate and test linear and generalised linear
regression models – themselves ubiquitous tools in the social and physical
sciences.



Part V goals
In real life we are often required to analyse data that is structured in some
hierarchical way. For example, we might collect data on individual students’
SAT scores. These individuals belong to particular classes within particular
schools within particular states. We expect that individuals in different
classes may not perform equivalently in the SATs due to variation in teaching
and peers. Further, we might believe that individuals in separate schools will
obtain different scores in the SATs due to variation in school quality and the
local neighbourhood. Finally, individuals from two different states may
experience different curricula and live in varying geographies, both of which
might affect how they fare on tests. Implicit to this example is the supposition
that individuals in the same class are more similar than individuals in the
same school (not in the same class) which, in turn, are more similar than two
randomly chosen individuals from the same state. We would like to estimate
a model that accounts for the within-group similarity, yet allows for a
gradation of differences between groups in accordance with the hierarchical
structure of the data. Hierarchical Bayesian models do just this. They bridge a
gap between methods that estimate a separate model for each individual
group and a ‘pooled’ model where we allow for no inter-group differences.
Furthermore, the position where hierarchical models lie on this spectrum is
not specified by the analyst – the data determines it!
By making more sensible assumptions about the data-generating process,
hierarchical models produce more reliable estimates that are less sensitive to
outliers. While hierarchical models may appear, at first, to be more complex
than non-hierarchical equivalents, they are actually, in a way, simpler. Since
the parameters across different groups are related to one another in
hierarchical models, their effective model complexity is less than
‘heterogeneous’ models that estimate separate models for each group. As a
consequence, hierarchical models produce the best forecasts – an example
use is Nate Silver’s correct prediction of the 2008 US presidential election
results.
Hierarchical models make it easier to specify a more realistic model, yet do
pose some difficulties to estimation. Like many non-hierarchical models, this
class of models is typically too complex for exact inference, and so is best
handled by MCMC. However, it is generally easier to specify an unidentified
model in hierarchical settings. By Gelman’s folk theorem we thus find that



pathologies with sampling (divergent iterations, slow convergence, and so
on) occur more frequently in hierarchical models. We therefore need to use
all the good practices we learned in Chapter 16 to avoid these pitfalls, fake
data simulation being particularly important.
An important use of hierarchical models is in regression, where the data can
often be structured in nature. Fortunately, in the Bayesian paradigm there is
really no difference between regression and many other types of model that
we have already covered. However, there are some techniques and ideas that
are worth discussing, so we devote the latter two chapters of this part to this
purpose – Chapter 18 to linear regression and Chapter 19 to generalised
linear models.



17 Hierarchical models
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17.1 Chapter mission statement
This chapter introduces the concept of hierarchical models, and describes the
benefits of this framework over more traditional ‘non-hierarchical’ models.
We also explain how best to specify and estimate these types of models.



17.2 Chapter goals
Suppose that we want to estimate the average decrement to life expectancy
for an individual due to smoking one year during their teens. To do so, we
conduct a meta-analysis, where we use the results of all previously published
studies to produce an overall estimate of the effect of smoking. While we
may believe that each of the studies follows good experimental and statistical
protocol, there will no doubt be differences between the studies. For example,
the research in each study will likely be carried out by unique teams, and the
clinical methodology may also vary. One way to proceed is to take the raw
data and apply a common statistical procedure to each individual data sample,
to produce separate study-level estimates of the effect of smoking. We might
even consider simply averaging these estimates to produce an overall
estimate across all groups. We could then use graphs to describe the variation
in estimates, and hope to find consensus estimates by visual inspection of the
plots.
However, this approach does not give us exactly what we want – a single
posterior distribution representing the estimated effect of smoking that
combines the evidence from all of the previous studies. Only when we have
this object will our result truly represent the synthesis of all information
available to us. Most importantly, unless we have an overall posterior we will
not have a proper gauge of uncertainty.
One way to generate an overall posterior would be to combine the raw data
from the various studies, and estimate a model with a set of parameters that
are fixed across the individual studies. By fixing the parameters and pooling
the data, we arrive at ‘overall’ effect estimates. However, while we
superficially obtain cross-study estimates of the effect of smoking on life
span, the estimates will not be worth their weight in cigarettes. This is
because the assumptions that underlie a pooled model are inappropriate here.
By crudely pooling our data from all the previous studies, we implicitly
assume that the methods used to generate each data set were the same. But
we know from reading the individual studies that the methods they used
differ. Clearly, pooling the data from all the previous studies together in an
uninformed matter will not suffice – this will lead to an understatement of the
uncertainty involved in the data-generating process.
Hierarchical models walk a line between the two extremes we just discussed:
a heterogeneous model, where we estimate a separate model for each study;



and a fully pooled one, where we estimate a model where the parameters are
the same across all studies. Hierarchical models assume that the methods
used to generate the data in each study are related to one another, but,
crucially, not the same. How similar, you ask? Well, one of the beautiful
things about a hierarchical approach is that the data determines the degree of
similarity, not the analyst. The other benefit of this framework is that it can
produce an overall estimate of the effect of interest – in our present case, the
average effect on life expectancy for smoking for a single year during the
teenage years. And unlike the fully pooled estimates, the hierarchical
posterior distribution will reflect the true uncertainty across all studies.
Hierarchical models may appear complex due to the statistical models that we
are required to use. However, one can actually view hierarchical models
simpler than approaches where we estimate a different model for each group
(the ‘heterogeneous’ framework). An additional benefit of the hierarchical
approach is that because we, in effect, partially pool data across groups, we
often achieve more precise estimates of quantities of interest at the group
level. Additionally, because of the greater statistical power that comes from
pooling data, these estimates are generally more robust to extreme
observations.
In this chapter we use Stan to estimate two different hierarchical models,
since we believe that the benefits and consequences of the hierarchical
framework are best demonstrated through examples. Using Stan also means
that we can mostly forget about the relatively complex statistical distributions
involved in these models, and focus on what matters – analysing the data.

17.3 The spectrum from fully Pooled to
heterogeneous models
Suppose that we work for a state education authority and have the scores on a
standardised mathematics test for randomly selected students (of the same
age) from 100 schools in the region. For simplicity’s sake, we assume that the
scores are continuous, and can be either positive (for a good student) or
negative (for a student that spends too much time playing Candy Crush). We
want to estimate the mean test score for a randomly selected pupil within the
region.

What is a hierarchical model?



17.3.1 Fully pooled model
Starting out, we decide to forget about the school which a student belongs to,
and plot the aggregate data (see Figure 17.1). Looking at the graph in Figure
17.1, we model the test scores as being normally distributed:

where Sij is the test score for individual i who goes to school j with an overall
(that is, across all schools) mean of µ and standard deviation σ. We code up
this model in Stan to allow us to estimate the posterior distributions for µ and
σ:



Pooled versus heterogeneous coefficients versus hierarchical models
where we have used weakly informative priors for µ and σ (see Section
5.6.1). This results in a posterior distribution for the mean score µ as shown
in the left-hand panel of Figure 17.3. We seem contented – we estimated the
mean test score and have an uncertainty in our estimate – so we are done,
right? However, remember from Chapter 10 that we cannot rest until we have
subjected our model to posterior predictive checks (PPCs), to check that our
model adequately describes the data.
Figure 17.1 The count of test scores for students across all schools. The data
sample comprises the results of 550 students.

The distributions of test scores for each individual school are shown in Figure
17.2. One way to test our model is to compare the performance of the worst
school with data that has been simulated from the posterior distribution. To
do this we use the generated quantities code block:



Figure 17.2 The distribution of test scores for fictitious students, grouped by
school. The upper and lower fences indicate the 75% and 25% quantiles of
the data, and the middle bar shows the median test score. The upper and
lower whiskers indicate 1.5 times the interquartile range from the upper and
lower fences, respectively. The points indicate outliers. The overall data
sample comprises the results of 550 students.

Figure 17.3 Posterior samples for the overall mean test score for the fully
pooled model (left), and for the hierarchical model (right).

where we have simulated test scores for all N individuals in our data set. We
then find the worst school in the simulated data, and compare its mean test



score with the school that actually did the worst in the real data (see the left-
hand panel of Figure 17.4). Unfortunately, in none of the simulations was the
simulated data as extreme as the real test scores – our model is clearly
deficient.
Figure 17.4 Left: simulated mean test scores for the worst-performing
schools using the pooled model. Right: the same but using the hierarchical
model. In both cases the dashed line indicates the mean of the school with the
lowest test scores in the real data. If the simulated data are lower than the
actual data, the bars are coloured grey; otherwise red.

17.3.2 Heterogeneous model
Examining Figure 17.2 again, we see there is considerable variation in test
scores between schools. Perhaps it would be better if we used a model that
accounted for this heterogeneity? We now decide to use a model that
estimates separate means and standard deviations for each of the schools. The
Stan code for this model is the following:



where school is an index ranging from 1 to 100 which indicates the school
each student belongs to (see Section 16.6). Using this model we obtain
estimates of the mean test scores shown in Figure 17.5 (the heterogeneous
estimates).
Figure 17.5 Posterior estimates of the mean test scores for each school using
the heterogeneous and hierarchical models. The line is the y = x line. The
points indicate the posterior means.

It is not clear how to apply the same PPC to this heterogeneous parameter
model. Since we have allowed there to be separate means (and standard
deviations) for each of the schools, this model will likely overfit the data.
This means that, if we compare the mean test scores for simulated and real
data for our worst-performing school, we will surely (and somewhat
artificially) find these to be in good correspondence.
Even if we forget about the problems inherent with applying the previous
PPC, we still have issues. In particular, how can we draw conclusions about
the overall mean test score, since all we have is a bunch of school-level
estimates? While with the fully pooled model our overall posterior
distribution was too narrow, at least it represented something we were
actually trying to estimate in the first place.



17.3.3 Hierarchical model
The heterogeneous model accounted for differences between the schools by
estimating separate models for each of the schools, but this meant we were
unable to make statements about the population as a whole. The fully pooled
model (where we assumed the parameters were fixed across all schools)
allowed us to estimate the overall mean test score, although, by ignoring the
school-level grouping of the data, the overall estimate had insufficient
uncertainty associated with it. We would like a model framework that lies
somewhere between these two extremes. It should account for the
hierarchical structure of the data, but still allow us to make inferences about
the overall population. When we have such a framework we hope to have a
better handle on the uncertainty in our estimates than that obtained from the
fully pooled model.
Hierarchical models are such an invention. In a hierarchical model we assume
that the individual school means are, in some way, related to one another.
This relation, or dependence as it is called in statistics, is because the schools
are from the same state. While the individual students in the schools will be
different, they will likely come from similar types of families – with similar
incomes, parental education, and so on. Also, the state’s education policy will
likely constrain the pedagogical practices of the teachers, and will naturally
result in similar test score performance across different schools.
By the same reasoning, however, we cannot conclude that the schools will be
exactly the same. For a start, the schools have different teachers. Anyone who
has been to school knows that teacher quality varies, and that this partly
determines student performance on tests. Further, the student composition
will vary. Some schools may be composed of students from families with
slightly higher parental education than others, for example.
In a hierarchical model, we therefore assume that the mean test scores in each
school can differ, but that these means are related to one another. In
particular, we assume that the µi (representing the mean test score for school
i) is determined from a state-level distribution of means:

where we have chosen to specify the state-level distribution as another
normal distribution, where  is the average of the mean test scores across all
schools in the state, and  determines the spread of school means around the
overall state-level mean.
The above relation is really just a type of prior, except where the prior



distribution’s inputs are parameters ( , ), not numbers as before.
According to the Bayesian paradigm, these inputs are also set priors
(sometimes called hyper-priors since they are specified for parameters that
determine priors for other parameters). This results in a Stan file of the
following form:

We want to use this model to estimate the mean test score for a randomly
selected student in the state. Because  is the average of the school means, it
will naturally have lower uncertainty associated with it than the quantity we
actually want – the mean test score of an individual taken from a randomly
chosen school. To get this quantity we use the generated quantities code
block:

generated quantities{
real mu_average;
mu_average = normal_rng(mu_bar,sigma_bar);
}

where mu_average is the mean test score in a hypothetical school (different
from the other 99 for which we have data). The resultant posterior is
considerably wider than the fully pooled equivalent, so is better able to
account for the variation in school quality that is evident in the data (see
Figure 17.3). Because of this greater variation in estimates the hierarchical
model produces simulated means that are much closer to the actual means for
the worst-performing school (Figure 17.4). Therefore, by accounting for the
hierarchies in the data, we have more confidence that the posterior



distribution we estimate from this new approach truly represents the
uncertainty seen in the data.
17.3.4 The additional benefits of hierarchical models
It is noticeable from Figure 17.5 that the estimates of the school-level mean
test scores obtained from the hierarchical model are shifted versus their
heterogeneous equivalents. In general, the hierarchical estimates are shifted
towards the overall average. Further, the schools with the most extreme
parameter estimates are shifted the most. This type of behaviour is common
for hierarchical models, and is known as ‘shrinkage towards the mean’. This
is a desirable by-product of using hierarchical models, because it takes
probability mass away from the outlier estimates, which often have higher
uncertainties associated with them, and reallocates it towards those points
with lower uncertainty. This means that hierarchical models are naturally
more robust than heterogeneous models and, because they are less likely to
overfit the data, they perform better on out-of-sample prediction.
An additional benefit of hierarchical models is that, because they partially
pool data across groups, the sample size is essentially greater than for the
heterogeneous model, where an independent model is fitted for each group.
This increased sample size means that we typically achieve higher precision
for group-level estimates in hierarchical models.
In short, hierarchical models are a great thing to use. They combine the best
bits of both the fully pooled and heterogeneous models, without bringing
along any of their flaws. Additionally, the data decides where estimates
should locate on the spectrum between these two extremes. If the data from
each group looks similar, then we end up nearer the fully pooled estimates.
Alternatively, if the data varies considerably by group, the hierarchical
estimates will be closer to the heterogeneous ones.
The benefits of hierarchical models grow as the number of groups increases,
and when the data are sparser for each group. Typically, this type of approach
works best when there are more than, say, 10 groups. Too few groups and
there just is not enough data to reach an overall consensus.

What are the benefits of hierarchical models?
The only downside of hierarchical models is that we have to be even more
careful than before to ensure that we can disentangle the effects of the various
parameters in our model: it is much easier for our model to become



unidentified. This means that fake data simulation is even more crucial for
hierarchical models (see Sections 16.7.2 and 17.6).

17.4 Non-centred parameterisations in
hierarchical models
In Section 17.3 we used priors of the form:

where i corresponds to an individual group in our sample,  is the
population-level mean, and σθ determines the spread of individual group
parameter values about this mean. The Stan code that we used to estimate this
type of model was of the following form:

model{
...
theta ~ normal(theta_bar,sigma_theta);
theta_bar ~ normal(a,b);
}

This seemed to work OK, although it turns out that there is a better way to
sample from such models. This is due to the dependence structure in the
prior, and the way in which the HMC and NUTS samplers work. Both
algorithms optimise their step sizes to result in a high acceptance rate for the
proposed steps. This optimisation is done at the global level. By global we
mean across all points in the posterior landscape. Inevitably, by striving for a
globally optimal step size, we end up with a step size that is locally
suboptimal: in places where the posterior is flat, it is optimal to use long
strides; in other locations where there is significant posterior curvature, we
want to step smaller distances to allow us to efficiently explore the posterior
density. This means that there will be locations where the step size is too
short (and we spend too long in that area), and others where it is too long
(and we fail to properly explore an area of interest). The manifestation of
suboptimum local step sizes is that our sampler can be slow to converge to
the posterior.
So why is this a problem for hierarchical priors like the ones we specified in
expression (17.3)? The issue is that for some values of  it is optimal to take
short steps in some of the θi parameter dimensions, whereas for others a
longer step length is preferable. This dependence in the posterior makes it
hard to choose a global step size that allows efficient exploration in both of



these regimes. Sometimes this dependence is so extreme that it also causes
pathologies with the sampling, which manifest in the form of divergent
iterations (see Sections 15.5.1 and 16.7.2). This occurs because the posterior
curvature in some regions of parameter space can be extreme, and requires a
very fine approximation scheme to adequately approximate the true path of
our sledge.
So what can we do? One solution is to allow stepping distance to be
determined by the local posterior curvature. This is the approach taken by a
recently proposed MCMC method known as Riemannian Monte Carlo
(RMC) [3], which uses the second derivative of the log posterior to measure
curvature. This approach will yield more effective samples per iteration;
however, the computational burden of determining the second derivative may
limit its practical use. So, while we may get more effective samples per
iteration, the individual iterations may take so long that we get fewer
effective samples per second.
Does this mean that we cannot use hierarchical priors? No. It turns out that
we can sample efficiently from these types of model, so long as we re-
parameterise them using what is known as a non-centred parameterisation
[8]. To do this we use a helper parameter, , along with the following
prior structure:

We then set:

What prior for θi is implied by the above? It is the same as before, 

. So why do we do this? Because this type of prior
structure results in lower dependence between and . This means that the
optimal step length for  is less sensitive to  than it was for θi in the

original model, and that the locally optimal step length for  will tend to
be closer to the global optimum. We can now explore the posterior much
more efficiently than before.
So how do we code up such models in Stan? The following is a
straightforward way to do this:



What are non-centred parameterisations and why are they useful?
The methods used to obtain non-centred parameterisations depend on the
specific model; however, the basic principle is similar to the above. We
advise the interested reader to consult the Stan manual for more examples of
these reformulated models.

17.5 Case study: forecasting the result of the
UK’s referendum on EU membership
In this example we use a hierarchical model to analyse political poll data. In
particular, we imagine a dystopian future where the UK decides to hold a
referendum about its membership in the EU. We work for an independent
think tank, and want to predict the outcome of the election using data from 30
recent polls, each comprising 10 individuals (see Figure 17.6). These polls



were conducted by a number of different polling agencies, with differing
methodologies used to select their samples. Note that, as per many other
examples in this book, the data here is fake.
Figure 17.6 The numbers of individuals intending to vote ‘remain’ in a
referendum about the UK’s membership in the EU, across 30 different polls.
In each case the polls comprised 10 individuals.

In this context it seems reasonable to use a binomial sampling model for the
number of people Xi intending to vote ‘remain’ in poll i (see Section 8.4.2):

where N = 10 is the sample size of each poll, and θ is the probability that a
randomly chosen individual intends to vote ‘remain’.
Figure 17.7 The structure of the hierarchical model used to explain the
polling data. Since each poll used different methodologies to select its
sample, the probability that a randomly chosen individual intends to vote
‘remain’ varies in each case. For poll i this parameter θi is determined by
drawing a value from a population-level distribution (shown as the top plot).
In turn, the value of θi that is sampled characterises a probability distribution
for the numbers of individuals intending to vote ‘remain’ in that sample
(bottom panels). In the example cases shown, 0 <θ1 < θ2 < θ3 <1.



If we use the binomial likelihood given in expression (17.6) this amounts to
pooling the data across all 30 studies. However, we know that the polls were
conducted by a number of agencies, each with their own sampling
methodology (for example, the way in which they chose their sample and the
exact interview process). It therefore seems restrictive to assume a θ value
that is common to all the polls. Instead, we allow this probability to vary by
poll, and assume that each θi is drawn from some population-level
distribution (see Figure 17.7):

where a and b are parameters that characterise this distribution (see the upper
panel of Figure 17.7). Since (a, b) are parameters, in Bayesian inference, we
must assign them priors. It is actually easier to set priors on the transformed
parameters:1
1. This parameterisation comes from the Baseball case study at http://mc-
stan.org/documentation/case-studies.

where  measures the overall probability that an individual intends
to vote ‘remain’, and  represents our confidence in this value. We use
the following Stan code to implement this model:

http://mc-stan.org/documentation/case-studies


We specify a pareto(1,.) distribution as a prior for K, since this has support
only for , and a beta prior (see Section 8.5.1) for α, where we specify

most weight towards , corresponding to an equal split of remainers
and leavers in the population.
The purpose of this model was to estimate the proportion of individuals that
will vote ‘remain’ in the final poll – the EU referendum itself. To do this we
follow two steps: independently sample  from their posteriors, and
then sample . We use the generated quantities code
block in Stan to do this:

generated quantities{
real<lower=0,upper=1> aTheta;
aTheta = beta_rng(alpha * kappa, (1 – alpha) * kappa);



}
This results in the posterior shown in Figure 17.8. Seeing this, we lose our
lunch – it looks very possible that the UK will vote to leave the EU! (We
actually used the above approach with real data in the weeks running up to
the real EU referendum and obtained a similarly close forecast, which was
echoed in the eventual result in the UK where ‘remain’ scored 48% versus
52% for ‘leave’.)

17.6 The importance of fake data simulation
for complex models
Before applying any model to real data, it is crucial to test it on fake data (see
Section 16.7.2). This is for a number of reasons: first, to ensure that the code
you have written is not wrong and, second, to ensure that your model is
identified. Usually, coding errors are spotted relatively easily, even when
using real data, because the results are nonsensical. However, without using
fake data, it is difficult to determine whether a parameter is unidentified
because of the model’s structure (including choice of priors), or due to a lack
of data.
Figure 17.8 The forecasted proportion of people intending to vote ‘remain’
in the EU referendum. Note that this was estimated using fictitious data.

Consider again the EU referendum example introduced in Section 17.5, and
suppose that we want to estimate the hierarchical model we described.
Suppose that we want to determine the number of polls required to accurately
estimate the proportion of individuals θ intending to vote to remain in the EU.



To do this we generate fake data for K separate polls, each comprising a
sample of 10 individuals, assuming that the data in each poll is generated
from a single θ value. We then examine how close the estimated population
proportion is to the true value of θ. Of course, we could have allowed θ to
vary according to some overall distribution. However, we only want to get a
feel for how much data we need, so we use the simpler case where this
parameter is fixed.
In the R code below we generate fake data from five polls, assuming θ =
0.35, and then estimate the previously defined model using Stan:

K <- 5 ## number of polls
aN <- 10 ## number of individuals in each poll
theta <- 0.35
Y <- rbinom(K,aN,theta)
N <- rep(aN,K)
aModel <- stan_model(’Hierarchical_eu.stan’)
fit <- sampling(aModel,data=list(N=N,K=K,Y=Y), iter=400,chains=4)

The resultant posterior is shown in the left-hand panel of Figure 17.9 where
there are K = 5 polls. This indicates that it is hard to draw any conclusions
about the overall proportion θ. There are two ways to remedy this situation:
either collect more data or use more prior information. Both of these actions
inject more information into the system, and hence allow more precise
estimates to be obtained.
We repeat the above exercise now using data from K = 30 polls (see the right-
hand panel of Figure 17.9). There is now a much better resolution for the
overall proportion θ; parameter identification now appears possible.
This exercise is useful and worth doing before we obtain or analyse the data
from the real polls, because it shows us the limits of our model. In this case it
tells us that in order to be confident in our estimates, we need about 30 polls’
worth of data. When only five polls are completed, we can report our
estimates, but it will be difficult to draw conclusions about the underlying
proportion θ with so little data.
Figure 17.9 Samples from the posterior distributions for the overall
proportion of individuals intending to vote ‘remain’ for (left) 5 polls and
(right) 30 polls of fake data. In both cases = 0.35 across all the polls (dashed
line), and each poll was composed of 10 individuals.



Fake data simulation is also useful when trying to determine the reasons why
it takes MCMC algorithms a long time to converge. Slow convergence is
always due to a posterior distribution having fat tails, meaning there is
insufficient curvature in the posterior to precisely identify parameters. This
can be for a number of reasons: using a poorly conceived model, using priors
that are too broad, or having insufficient data. By generating data from a set
of parameters whose values you know, it is possible to determine how
collecting more data, or specifying priors encompassing more information,
will result in faster convergence.



17.7 Chapter summary
Nowadays data that is structured or grouped in some way is more common
than ever. This is particularly true for longitudinal data, where information is
collected for the same group of individuals over time. Here, there will be
dependence between the data produced by the same individuals at different
points in time. To model this relatedness we want the parameters of a model
to depend on one another. This is exactly what happens in hierarchical
models.
In hierarchical models the concept of a prior is extended to encompass a
number of different levels (which has led some to call these multilevel
models, although this is sometimes used to mean something altogether
different). In these models the line between prior and likelihood is more
blurry, and as we shall see in the following chapters it is possible for data to
directly enter one or more of these levels.
Hierarchical models typically cause shrinkage of individual estimates towards
the overall group mean. This is because, in these models, data are shared
across individuals within the same group, and hence the individual estimates
converge to the overall consensus. Much like we trust committees to arrive at
better decisions than individuals, hierarchical models tend to outperform the
array of separate individual-level models that are often used instead.
The benefits of hierarchical models increase along with the number of
groups, and the sparser the data are within each group. In this circumstance
there is much to be gained by pooling together the data in an intelligent way.
This is because, by pooling the data, in effect we increase the sample size,
which leads to increases in the statistical power (the probability of detecting
an effect if it exists). This means that the group-level estimates are typically
more precise than those obtained from a non-hierarchical model.
In all analyses it is essential to use fake data simulation before you begin to
analyse real data. It is tempting to start the ‘real’ analysis rather than waste
time working with fake data. In our experience, for all but the simplest of
models, testing on simulated data saves considerable time, frustration and
embarrassment. On more than one occasion, we have presented results that
more reflected the inadequacies of the model than real insights into the data
itself. Save yourself this embarrassment – do fake data simulation before you
start modelling the real thing.
Hierarchical models provide a richer framework than that available for non-



hierarchical models. Their nuances become even more crucial when the data
and settings are more complex. In Chapters 18 and 19 we shall encounter
circumstances when hierarchical models confer considerable opportunities
compared to their simpler cousins.



17.8 Chapter outcomes
The reader should now be familiar with the following concepts:

fully pooled and heterogeneous coefficient models
how hierarchical models sit somewhere along a spectrum between the
two above extremes
the benefits of a hierarchical approach: shrinkage towards the grand
mean, lower group-level variances, and a better quantification of overall
uncertainty
the added importance of fake data simulation for hierarchical models

Table P17.1 

17.9 problem sets
Problem 17.1 A meta-analysis of beta blocker trials
Table P17.1 shows the results of some of the 22 trials included in a meta-
analysis of clinical trial data on the effect of beta-blockers on reducing the
risk of myocardial infarction [3]. The file hierarchical_betaBlocker.csv
contains the full data set.
The aim of this meta-analysis is to determine a robust estimate of the effect of
beta-blockers by pooling information from a range of previous studies (this
problem has been adapted from Splegelhalter et al. [9]).
Problem 17.1.1 Start by assuming that the numbers of deaths in the control 

 and treated  groups for each trial are given by binomial
distributions of the form:



where  are the numbers of individuals in the treatment and control
data sets, respectively. Further assume that the probabilities of mortality in
the treatment and control data sets are given by:

where:

and we expect  if the beta-blockers have the desired effect. We
assume the following diffuse priors for the parameters:

Estimate the posteriors for δi for the above model using Stan, or otherwise.
Note that for this model there is no interdependence between the studies.
(Hint: use the Stan binomial_logit function.)
Problem 17.1.2 An alternative framework is a hierarchical model where we
assume there to be a common overarching distribution across trials such that 

. By assuming the following priors on these parameters
estimate this model:

Estimate the posteriors for δi using Stan. How do these estimates compare to
the non-hierarchical model?
Problem 17.1.3 Using the hierarchical model, estimate the cross-study effect
of the beta-blockers. (Hint: use the generated quantities code block.)
Problem 17.1.4 For an out-of-sample trial suppose we know that μI = –2.5.
Using the cross-study estimates for δ, estimate the reduction in probability for
a patient taking the beta-blockers.
Problem 17.1.5 Estimate a model with a single, constant value of δ and μ
across all trials. Graph the posterior for δ, and compare it with the cross-study
hierarchical model estimate.
Problem 17.1.6 Carry out appropriate posterior predictive checks on the
homogeneous and hierarchical models, and hence conclude the preferred
modelling choice.



Problem 17.2 I can’t get no sleep
The data are from a study described in Belenky et al. [2] that measured the
effect of sleep deprivation on cognitive performance. There were 18 subjects
chosen from a population of interest (lorry drivers) who were restricted to 3
hours of sleep during the trial. On each day of the experiment their reaction
time to a visual stimulus was measured. The data for this example is
contained within evaluation_sleepstudy.csv, consisting of three variables,
Reaction, Days and Subject ID, which measure the reaction time of a given
subject on a particular day.
A simple model that explains the variation in reaction times is a linear
regression model of the form:

where R(t) is the reaction time on day t of the experiment across all
observations.
Problem 17.2.1 Assuming N(0,250) priors on both α and β, code up the
above model in Stan. Use it to generate 1000 samples per chain, across four
chains. Has the sampling algorithm converged?
Problem 17.2.2 Plot the posterior samples for α and β. What is the
relationship between the two variables, and why?
Problem 17.2.3 By using the generated quantities code block or otherwise,
generate samples from the posterior predictive distribution. By overlaying the
real time series for each individual on a graph of the posterior predictive,
comment on the fit of the model to data.
Problem 17.2.4 Fit a model with separate (α,β) for each individual in the data
set. Use separate and independent N(0,250) priors for the parameters. Again
use 1000 samples per chain over four chains.
Problem 17.2.5 Compute the posterior mean estimates of the β parameters
for the new heterogeneous parameters model. How do these compare to the
single β estimate obtained for the homogeneous model?
Problem 17.2.6 Using the generated quantities code block or otherwise,
generate samples from the posterior predictive distribution. By comparing
individual subject data to the posterior predictive samples, comment on the fit
of the new model.
Problem 17.2.7 Partition the data into two subsets: a training set (of subjects
1–17) and a testing set (of subject 18 only). By fitting both the heterogeneous
and homogeneous coefficients models to the training sets, compare the
performance of each model on predicting the test set data.



Problem 17.2.8 Alternatively, we can fit a hierarchical model to the data
which (hopefully) captures some of the best elements of each of the
aforementioned models. Fit such a model in Stan using normal priors for αi
and βi and appropriate priors on the hyper-parameters of these distributions.
Problem 17.2.9 Graph the posterior distribution for β for another individual
(not in the original data set). How does this distribution compare to the value
of β obtained from the homogeneous coefficient model?
Problem 17.3 Hierarchical ODEs: bacterial cell
population growth
The file hierarchical_ode.csv contains data for five replicates of an
experiment in which bacterial cell population numbers were measured over
time. The following model for bacterial population size is proposed to
explain the data:

However, measurement of bacterial cell numbers is subject to random,
uncorrelated measurement error:

where N*(t) is the measured number of cells, and N(t) is the true population
size. Finally, we suppose that the initial number of bacterial cells is unknown,
and hence must be estimated.
Further we assume the following priors:

where all parameters have a lower value of 0.
Problem 17.3.1 Write a Stan function that returns (α,β). Hint 1: this will need
to be done within the functions block at the top of the Stan file. Hint 2: the
function must have a structure:

real[] bacteria_deriv(real t,real[] y,real[] theta,real[] x_r,int[] x_i)
where the variables xi and xr are not used here, but nonetheless need to be
defined:

transformed data {
real x_r[0];



int x_i[0];
}

Problem 17.3.2 Estimate a model where the parameters (α,β) are assumed to
be the same across all experimental replicates.
Problem 17.3.3 By graphing the data or otherwise, comment on the
assumption of a common (α,β) across all replicates.
Problem 17.3.4 Now estimate a model that estimates separate values for
(α,β) across all replicates. Graph the posterior distribution for each parameter.
Problem 17.3.5 Estimate a hierarchical model assuming the following priors:

Compare your estimates of (α,β) with those from the completely
heterogeneous model.
Problem 17.3.6 Estimate the overall (α,β) for the hierarchical model. How do
these compare to the pooled model estimates?
Problem 17.3.7 By holding out one of your data sets, compare the predictive
performance of each model.
Problem 17.4 Bowel cancer model selection
The file hierarchical_cancer.csv contains (fictitious) data on the population
size of a given county (N) and the number of bowel cancer cases in that
county (X). In this question we aim to build a model to estimate the
underlying rate of cancer occurrence λ.
Problem 17.4.1 A simple model is to assume that cancer occurrence is an
independent event, and hence we use the model:

where Ni is the population in county i, and Xi is the number of cases of bowel
cancer in the same county. Write a model in Stan to estimate the underlying
rate of bowel cancer occurrence (), where we assume a prior of the form 

.
Problem 17.4.2 Using the generated quantities block record the estimated
log-likelihood of each data point, for each posterior sample of λ.
Problem 17.4.3 By using Stan’s optimizing function to obtain the MAP
estimate of λ, estimate the expected log pointwise predictive density (elpd)



via a deviance information criterion (DIC) method:

where  is the variance in log-likelihood for all data points
across S posterior draws. (Hint: the latter part of the formula requires that we
estimate the model by sampling.)
Problem 17.4.4 Estimate elpd using the Akaike information criterion (AIC)
method. (Hint: use Stan’s optimizing function where the Stan file has had the
prior commented out, to achieve the maximum likelihood estimate of the log-
likelihood.)
Problem 17.4.5 Either manually or using the loo package in R, estimate elpd
by a Watanabe–Akaike information criterion (WAIC) method. If you choose
the manual method, this can be done with the formula:

where:

Problem 17.4.6 By partitioning the data into 10 folds of training and testing
sets (where one data point occurs in each testing set once only), estimate the
out-of-sample predictive capability of the model. (Hint 1: in R use the Caret
package’s createFolds to create 10 non-overlapping folds. Hint 2: adjust your
Stan program to calculate the log-likelihood on the test set.)
Problem 17.4.7 A colleague suggests fitting a negative binomial sampling
model to the data, in case overdispersion exists. Using a 
prior on the dispersion parameter, change your Stan model to use this
distribution, and estimate the out-of-sample predictive density using any of
the previous methods. Which model do you prefer? (Hint: use Stan’s
neg_binomial_2 function to increment the log probability.)
Problem 17.4.8 A straightforward way to estimate the marginal likelihood is
to use:

where . Either using Stan’s generated quantities block or
otherwise, estimate the marginal likelihood of the Poisson model. (Hint: if
you use Stan then you need to use log_sum_exp to marginalise the sampled
log probabilities.)
Problem 17.4.9 Estimate the marginal likelihood of the negative binomial
model, and hence estimate the log Bayes factor. Which model do you prefer?
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18.1 Chapter mission statement
In this chapter we discuss Bayesian linear regression. In particular, we
examine the use and benefits of hierarchical models in the context of
regression, where the benefits of this approach become even more apparent.



18.2 Chapter goals
Regression is a ubiquitous tool across the physical and social sciences, where
it is used to try to untangle cause and effect in a range of settings. Regression
is used to determine the nature of relationships between sets of variables. For
example, to determine how the weight of an individual is affected by their
height. In linear regression the dependent variable (in the example, height) is
modelled as being equal to a linear combination of coefficients and
independent variables (here there is a single factor, weight). The dependent
variable depends on other factors not included in the regression, typically
because we do not have data for these inputs. In our example, the height of an
individual is determined by an individual’s genetics, diet, and so on. This
means that the dependent variable is not perfectly determined by the variables
that we include and, hence, there is variation about the value predicted by the
regression model. In the Bayesian approach to regression we specify a
sampling distribution to describe this variation, which is often chosen to be a
normal distribution. In Bayesian approaches we then place priors on the
regression coefficients. In our weight and height example, this amounts to
specifying a prior on the strength of covariance between these two variables.
As for a number of other analyses, the Bayesian approach to regression will
typically produce results that look similar to those obtained from a
Frequentist approach, particularly if vaguely informative priors are used.
However, the Bayesian method really distinguishes itself when model
complexity increases. This is most evident when we consider data that is
hierarchically grouped in some way. While hierarchical models do exist in
Frequentist frameworks (often called Random Effects or Mixed Effects
models), the Bayesian method makes it substantially easier to extend a model
to incorporate more realistic assumptions about the data-generating process.
This is particularly true when we use Stan for the analysis, and the example
we use in this chapter – examining the determinants of high school education
scores in England – is accordingly estimated using this tool.
In Bayesian hierarchical regression prior knowledge and data can be
incorporated in the model at every level of the hierarchy. This freedom means
we can estimate models that are a much better approximation to real life than
non-hierarchical approaches. Unsurprisingly, hierarchical models typically
outperform other approaches. Most notably, Nate Silver used Bayesian
hierarchical regression models to correctly predict the outcome of the 2008



US presidential election [32].
This chapter is less theoretical and more applied than those previous. This is
because we have already covered most of the requisite theory (particularly in
Chapter 17), but also because we believe that the nuances of Bayesian
regression are best illustrated through applied examples.

18.3 Example: high school test scores in
England
Unlike many of the preceding chapters, the data we analyse here is real. It
consists of data collected by the Department for Education in England and
contains measures of high school test performance collected over the
academic year 2015–2016. The variable of key interest to us is the percentage
of students achieving C or above (or equivalent) in their maths and English
GCSEs (standardised tests taken by pupils typically at 16 years of age) for
each school where data was available (3458 in total; see Figure 18.1). For
each school we also have data on the percentage of female students, the
percentage of students receiving free school meals, and the percentage of
students for whom English is not a first language. For all schools we also
know which local education authority (LEA) they belong to. LEAs are
responsible for managing education provision for schools within a given
region. Since decisions made by LEAs (choice of curriculum, allocation of
funds, and so on) may have an impact on the performance of students, we
want our eventual model to allow us to determine the influence of LEAs on
test performance.
Figure 18.1 The data from 3458 schools in England collected for the
academic year of 2015–2016. ‘scores’ is the percentage of pupils achieving
grades A*–C, or equivalent, at GCSE; ‘meals’ is the percentage of students
who take free school meals; ‘english’ is the percentage of students with
English not as a first language; ‘female’ is the percentage of female students
in the school. The numbers in the upper diagonal cells indicate the correlation
between the variables, and *** indicates that the correlation is significant at
the 1% level. The diagonal plots show the marginal distributions of each
variable, and the lower-off-diagonal plots show the bivariate relationships
between variables, with a local regression line added.



18.4 Pooled model
The most basic model to describe test scores is a linear regression of the
form:

where ‘score’ represents the percentage of students achieving a C or higher at
GCSE in English and maths for school i within a local education authority j.
Here we have chosen a normal likelihood for computational ease, although
we recognise that this is less than ideal, given that the dependent variable is
bounded between 0% and 100%. This model assumes that the effect of each
of the independent factors on test scores is fixed across all LEAs. So, for
example, an incremental increase in the proportion of female students has the
same average effect on test scores for a school in LEA A as it does for
another in LEA B.
This model can be coded up in a straightforward way in Stan:



where we have set fairly uninformative priors on each of the effect sizes, and
a vaguely informative prior for α:

So it appears that schools with a higher proportion of students taking free
school meals perform considerably worse on tests. Schools with more female
students do a bit better. Finally (and perhaps controversially for UK
Independence Party supporters), schools comprising more students with



English as a second language fare slightly better too. It should not surprise us
that schools where large proportions of students take meals do worse on
exams since these students likely come from impoverished backgrounds,
often from broken families, with a low level of parental education. It should
also not surprise us that the effect size we estimate for school meals (more
than a percentage point decrease in test scores for a one-point increase in the
proportion of students taking free school meals, on average) is the largest out
of the three variables we consider, since in Figure 18.1 we see a strong
negative correlation between the percentage of students taking free school
meals and the test scores.
While the results of this model would be similar to those from a Frequentist
analysis, it is much more straightforward to extend this model. Suppose, for
example, we want to use the more robust Student-t distribution for our
likelihood. All we need to change in Stan is:

To re-estimate the model using a Frequentist method would require a large
change to our code. With Stan we need only to add three short lines!

18.5 Interactions
Suppose that we believe that the impact of having more students for whom
English is not their first language may depend on the school’s gender
composition. As such, we estimate an equation of the form:

We can use expression (18.2) to calculate the average score for a school with
a 1% higher rate of pupils with English not as their first language:



where  is the average score for a school with a 1% lower rate of
pupils with English not as a first language. So by including an interaction
term, δ, in the model, the effect of an increase in English is modulated by the
proportion of females in the school. The strength of this interaction effect is
given by δ.
Estimating this model in Stan is straightforward and requires only a modest
change to the model block (also a declaration of delta in the parameters
block):

for(i in 1:N){
score[i] ~ normal(alpha + beta_m*meals[i] + beta_f*female[i] +
beta_e*english[i] + delta*english[i]*female[i],sigma);
}
...
delta ~ normal(0,1);

where we have set a fairly uninformative prior on the interaction parameter.
The results of running this adapted model are as follows:

So the positive effect of having English as a second language is slightly
diminished if a school has a higher proportion of female students.
Specifically, a one-point increase in the percentage of females in the school
leads to a 3/1000 of a percentage point decrease in the effect of having more
students with English as a second language.
We note that the estimated posteriors for coefficients are all fairly narrow.
Perhaps too narrow. Are we really confident that a 1% increase in the
percentage of pupils that have free school meals lowers test scores by 

 (25–75% credible interval) on average? Something is
probably amiss (see Section 18.7).

18.6 Heterogeneous coefficient model
The assumption that the provision of free school meals has the same effect



across all of England is highly suspect. Schools, and the regions they belong
to, vary in quality of education provision. As an example, there may be a
different effect size based on whether the school is located in an urban or
rural area. Fortunately for each school, we know which LEA it belongs to.
There are 152 LEAs in England, which are the local councils responsible for
education provision in their jurisdiction.
A crude way to use this data is to estimate separate models for each LEA, and
hence use a regression equation of the form:

where the j subscript for each of the parameters indicates the effect size for
LEA j, and we assign independent priors for the set of parameters for each
LEA. This amounts to estimating a separate model for each LEA.
Figure 18.2 The estimated impact on GCSE test performance of a 1%
increase in the proportion of students with English not as a first language for
each LEA, as a function of per capita education spend for the heterogeneous
(left) and hierarchical models (right). The points indicate posterior median
estimates, and the upper and lower whiskers show the 75% and 25% posterior
quantiles.

Figure 18.3 The data for three selected LEAs with estimated regression lines
obtained from the heterogeneous model (black lines), the hierarchical model
(red lines) and the fully pooled model (dashed black lines). In all cases the



lines are constrained to go through the sample mean of the data for that LEA.

Unlike for the fully pooled case, we now have estimates of the effect sizes for
each LEA. Because each LEA has differing amounts of data (one LEA has
data for only three schools!), there is considerable variation in the estimates
across the LEAs. Consider the estimates of the effect of having more students
with English not as a first language on test scores (see Figure 18.2). This
includes a strongly negative effect for Haringey (n = 13 schools) and a
strongly positive effect for York (n = 10 schools; Figure 18.3).

18.7 Hierarchical model
A better way to allow for LEA-level variation in the effect sizes is to estimate
a hierarchical model. In this framework the parameters for each LEA are
drawn from an overarching ‘England-level’ distribution. For example, for the
effect of free school meals, we use the following priors:

where  is the average effect of free school meals across all of England,
and measures the variation in individual LEA effects about this mean. This
type of model can be implemented in Stan as follows:





Here we have assigned hierarchical priors for each of the regression
parameters (for simplicity we assume independent standard deviations for
each of the LEAs). We use the generated quantities block to produce overall
estimates of the effect sizes for a randomly selected LEA, by independent
sampling from the respective priors. We need this step because the ‘top’-
suffixed parameters represent means of effect sizes, and hence would yield
overly confident estimates at the LEA level.
Running the above model we obtain the following results for the overall
effect sizes:

The posterior distributions for the effect sizes are now wider than those that
we found previously (particularly for the effect of free school meals) using
the non-hierarchical model. This increased uncertainty seems warranted
given the heterogeneous nature of the individual LEAs. However, the overall
picture is similar: schools with a higher proportion of students who get free
school meals perform much worse on GCSEs; those with a higher proportion
of females do slightly better; and similarly those schools with a greater
proportion of students with English as a second language also score
marginally higher.
Even though there is more uncertainty in the overall estimates of the effect
sizes versus the fully pooled model, there is reduced variance in the posterior
distributions for each LEA compared with the heterogeneous coefficient
model (see Figure 18.2). This is because in the hierarchical model we
partially pool information across LEAs. In effect, this partial pooling of
information raises the sample size for each LEA, resulting in a reduction in
variance of the estimates.
It is also evident that the individual effect size estimates are reweighted
towards the overall grand mean. In Figure 18.3 we show how the hierarchical
estimates of the effect of not having English as a first language (red lines) lie
between the position of the heterogeneous estimates (black lines) and the
grand mean (dashed black line). This reduction in individual heterogeneity is
desired as it reduces the leverage of individual extrema on the overall



inferences, increasing their robustness. The degree to which the
heterogeneous estimates are moved to form the hierarchical estimates
depends on the amount of data available for that group. For example, for
Birmingham (n = 87 schools) the hierarchical estimates lie close to the
heterogeneous estimates because there is considerable data.

18.8 Incorporating LEA-level data
Suppose that we want to assess how policy changes at the LEA level affect
the test scores of students in a randomly selected school within that LEA. In
particular, we might hope that increases in education spending by LEAs
would lead to better student performance. Here is an example of a model that
accounts for this LEA-level variable:

where we model the score of school i within LEA j, and educationj is the per
capita education spending for that LEA. As before, we allow there to be
LEA-specific effects of free school meals, English as a foreign language and
female students. However, we now allow the per capita expenditure on
education services for each LEA to influence test scores, with an effect size
given by . We can implement this in Stan as follows (data block same as on
P460–461):





In this code we used what is known as a non-centred parameterisation of a
statistical model (see Section 17.4), which is a technique used to speed up
convergence to the posterior distribution (see Section 16.7.2). In this
parameterisation we can generate a prior distribution of the form we specified
in the previous expression by first sampling a parameter alpha_raw that is
assigned a standard normal prior, then multiplying this by sigma_alpha and
adding on a mean in the transformed parameters block. While mathematically
this is equivalent to the prior given in the bottom line of (18.6), by sampling
from alpha_raw rather than alpha itself, the optimal step size of our NUTS
algorithm no longer depends as strongly on population-level parameters. This
results in faster exploration of the posterior distribution, and a lower risk of
divergent iterations.
Unfortunately, it appears that spending at the LEA level does not strongly
affect the test score performance of students (Figure 18.4). This could be for
a number of reasons. Perhaps the test score of a student reflects the education
that they have received throughout their childhood. Thus, using the latest
LEA spending figures (as we have done here), may neglect the integrative
effect of education spending. We might also expect that the effect of changes
to LEA education funding depends heavily on the way in which this money is
spent. For example, increasing the number of teachers (resulting in fewer
students per teacher) may be effective, but building new sports facilities may
not. However, these results do seem to hint that determining the effect of
regional education spending on test scores may not be as straightforward as
hoped.
Figure 18.4 Posterior samples for the estimated effect of a £1K increase in
education spending per capita for a randomly selected LEA on GCSE
performance, as estimated by the hierarchical model described by the
likelihood and prior in (18.6).





18.9 Chapter summary
This chapter has provided a whistle-stop tour of Bayesian regression models.
These models in their simplest (non-hierarchical) flavour produce results that
are often similar to Frequentist approaches, particularly when there is
abundant data available to inform parameter estimates. However, we still
prefer the Bayesian approach because of the creativity it provides in model
testing through posterior predictive checks.
Where the Bayesian approach really shines is when the data are structured in
some way. Multilevel models allow the analyst to include relevant
information at the most appropriate level of the data hierarchy and, as a
result, often provide the best predictions. The quality of data that is collected
will likely improve over time, meaning that the prevalence and importance of
these models are set to increase.
Hierarchical linear regression models, like the hierarchical models we
introduced in Chapter 17, partially pool data across groups in an intelligent
way. This information sharing means that parameter estimates for each group
tend to have lower uncertainty associated with them than is obtained by
estimating a separate model for each group (as is the case for the
heterogeneous coefficients model). Also, the group-level estimates for
hierarchical models tend to be closer to the grand mean than equivalent
estimates from the heterogeneous coefficients model. This is particularly
evident for those groups with few observations, and where the estimates are
particularly extreme. This reduction in the heterogeneity of group-level
estimates is desirable since it increases the robustness of the model, meaning
it will generalise better to out-of-sample data.
In the next chapter we discuss the next logical extension of the Bayesian
methodology, to handle generalised linear models, where it is no longer
suitable to assume that the dependent variable is unbounded and continuous.
However, somewhat unlike Frequentist approaches, the Bayesian method
extends naturally to these new circumstances, without a notable increase in
model complexity or much of a change in the methods used to estimate the
model. Also, fortunately, we can use the same hierarchical modelling
approaches to build multilevel models with generalised linear models,
meaning that we can again leverage the power of the Bayesian approach.



18.10 Chapter outcomes
The reader should now be familiar with the following concepts:

the Bayesian approach to linear regression
the benefits of a hierarchical linear regression model over approaches
where we pool the data, or estimate a separate model for each group of
individuals
how multilevel models allow data to be incorporated at the most relevant
level of a hierarchy

18.11 problem sets
Problem 18.1 Crime and punishment
The data in linearRegression_crimePunishment.csv contains the murder rate
per capita and the rate of automobile crimes per 100,000 individuals (both on
the log scale) in the 10 US states that have changed their legislation on capital
punishment since 1960 (in all cases the states abolished capital punishment).
We also include a dummy variable (law) that is 1 if the state allows capital
punishment in that year, and 0 otherwise. The crime data are from
http://www.disastercenter.com.
Problem 18.1.1 Graph the data and comment on any trends.
Problem 18.1.2 A simple model for murder rates is of the form:

where we assume that the effect of having the death penalty is given by β,
which is assumed to be the same across all states. We include , a
measure of crimes on automobiles, as an independent variable to proxy for
the contemporaneous underlying level of crime. Estimate this model and
hence determine whether the death penalty acts as a deterrent to murder.
Problem 18.1.3 An alternative model allows there to be state-level effects:

where we assume that  and 

 (we assume fully heterogeneous estimates for α). Estimate
the above model and compare the results with the homogeneous coefficients
model.
Problem 18.1.4 Compare the predictive fit of the models using the estimated
leave-one-out cross-validation from the loo package. Which of the three
models do you prefer? Hence conclude whether the death penalty acts as a
deterrent to murder.

http://www.disastercenter.com


Problem 18.1.5 Critically evaluate the best-performing model and hence any
conclusions that can be drawn from this analysis.
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19.1 Chapter mission statement
This chapter introduces the Bayesian approach to generalised linear models,
which are used in situations when the dependent variable is not constrained to
be continuous and unbounded. The chapter also discusses the important topic
of how to estimate models with discrete parameters in Stan.



19.2 Chapter goals
We often want to build models to describe a real-life behaviour that cannot be
summarised using a continuous unbounded metric. As an example, we might
model the occurrence of disease outbreaks in a particular geographic region.
This variable of interest is constrained: the count of disease outbreaks must
be a non-negative integer. As per standard linear regression we may want to
use information from covariates, such as the quality of water sanitation in an
area, to help explain some of the variation in disease outbreak count. Such
independent variables are often, in contrast to the dependent variable,
unconstrained. We therefore need a way to allow changes in an unconstrained
factor to affect the dependent variable on an appropriately constrained scale.
This is the motivation behind generalised linear models (GLMs). In these
models, the mean of a sampling distribution is modelled as a function of
linear combination of coefficients and independent variables. This linearity in
independent factors is what accounts for the word linear in the GLM name.
GLMs are incredibly flexible beasts. They basically provide a way to test the
effect of potential causative agents (the independent variables) on an outcome
(the dependent variable), regardless of what sort of scale the latter is
measured on. So, whether the dependent variable is a binary outcome, a count
variable, a waiting time or almost whatever, we can still try to explain its
variation using other variables. Basically, GLMs allow us to do regression
analyses in almost any circumstance we can think of.
Fortunately, GLMs are really no different from linear regression, except that
we are more constrained in our choice of likelihood. Whereas linear models
typically assume a normal likelihood (or sometimes a Student-t), GLMs
require a likelihood that is appropriate to the nature of the particular
dependent variable. So, for a binary outcome variable we might choose a
Bernoulli likelihood along with something known as a link function (here an
example might be a logit function) that allows us to map continuous changes
in independent factors to an interval between zero and one (the scale of the
probability variable that characterises the Bernoulli distribution). However,
once this choice has been made, we are free to analyse our models in similar
fashion to linear regression models.
Like linear regression models, the Bayesian approach really inspires when the
data are hierarchically structured in some way. In this circumstance we are
free to use information at each level of the hierarchy to better explain our



data. Like their linear model counterparts, these multilevel GLMs are usually
the best in class. Their predictive performance on out-of-sample data is
usually better, and they provide a richer explanation of the data-generating
process than non-hierarchical equivalents. In summary, these types of models
are great!
We are nearly done in our exposition of Bayesian analysis through Stan.
However, there is one remaining gap in our knowledge that limits our ability
to estimate a wide class of models in Stan. Currently, we cannot explicitly
include discrete parameters in Stan models. This is because the Hamiltonian
Monte Carlo (HMC; really the No-U-Turn Sampler (NUTS)), which is the
algorithm that Stan implements, is not yet extended to deal with discrete
parameters. While this might seem like a major blow to Stan, in practice it is
not limiting as there is a solution to this issue. By marginalising out the
discrete variables from the joint probability distribution (which we met in
Chapter 3), we can still estimate these types of models in Stan. Although we
had a short discussion about this topic in Chapter 16, we wish to spend a little
more time here to consolidate our understanding.
The process of marginalisation may seem a little opaque at first, and an extra
difficulty when considering the use of Stan as your primary MCMC engine,
but there actually are real benefits of this approach. While we do not want to
go into the details here, a result known as the Rao–Blackwell theorem means
that marginalising out discrete parameters can often significantly speed up
sampling convergence.
As in the linear regression chapter, we explain the use of GLMs and discrete
parameter models through examples. We believe this is the best way to cover
the material, particularly since the theory has largely been covered in
preceding chapters.

19.3 Example: electoral participation in
European countries
The data that we use to illustrate the GLM approach comes from the
European Social Survey. Our data consists of individual voter electoral
participation data (that we represent by a variable called ‘vote’) derived from
surveys conducted in 25 countries in Europe in 2012. This variable is a
binary indicator equal to 0 if the individual did not vote in the last national
election and 1 if they did (see Figure 19.1 for a map of the aggregated data).
To explain the individual voter preferences, we use three variables: whether



participants stated they belonged to a religion (rlgblg), their gender (gender =
1 for male, 0 for female) and their age (age). The simplest model assumes
that the effect of each of these variables on voter participation is the same
across all countries included in our sample. What sort of model should we
use here? This, at first, does not appear simple since the dependent variable is
binary, and we want to determine the impact of the independent variables
(that are not all binary indicators).
One solution is to model the dependent variable as the outcome of a Bernoulli
process:

where  is the probability that individual i in country j voted in
the last national election. In our GLM we allow this probability parameter to
be a function of the other independent variables:

where  is a function whose output is constrained to lie between 0 and 1.
Here we use the logistic sigmoid that has this property:

Figure 19.1 A map showing the percentage of sampled individuals who
voted in the last general election. See Figure 19.3 for the percentage who
answered that they belonged to a religious group in the survey.



whose graph is shown in Figure 19.2. This function  is an example of a
link function in generalised linear modelling.1 This is because it links linear
combinations of predictors with the mean of the outcome variable.
1. More commonly the term link is used to refer to the inverse of such a
transformation. In this context this would be logit(.). However, for our
purposes we find it easier to buck the trend.
The full likelihood for the model can be written as follows:

Since none of the β s have a j subscript this model assumes that the effects of
each of the independent variables are the same across all countries. This is an
example of a pooled model. This model can be coded up in Stan as follows:



Figure 19.2 The logistic function used to convert an unbounded variable (x)
to a bounded one (Λ(x)).

where bernoulli_logit(.) is Stan’s shorthand way of estimating the model
written in the equation above. The results from estimating the above model
are shown below:



So we estimate that women are, on average, less likely to vote than men
(gender is 1 for men, 0 for women), older people are more likely to vote, and
people who belong to a religion are marginally more likely to participate in
elections.
The various countries that comprise our sample have diverse societies,
meaning it is unlikely that the effects of the aforementioned variables are the
same in each. One way to allow for such variation is to estimate a separate
model for each country, which can be written as:

where the j subscript on each of the parameters allows there to be different
effect sizes for each of the countries in our data set. If we assign independent
priors for all of these country-level parameters, this is equivalent to
estimating a separate model for each country. This type of model can be
coded up in Stan using the following:



Estimating the above model, we obtain the results shown in the left-hand
panel of Figure 19.4. We see that there is considerable cross-country
heterogeneity in our estimates of the effect of being male on electoral
participation. Whereas for most countries there is a positive effect of being
male on the probability of voting, for Estonia the effect is strongly negative
(women are about 10% more likely to vote, on average).
However, we feel that estimating entirely separate models for each of the
countries is missing a trick. Is there some information that could be shared
across the different countries to help produce better inferences? We now
consider a hierarchical model, which is similar to the previous model except
that we now allow dependence between the individual country-level
parameters. So, for example, considering the effect of gender on voting
preferences, we might choose a normal ‘Europe-level’ model of the form:

where  and  are the mean and standard deviation in the effect sizes in



our sample of countries. We omit the full Stan model here for brevity because
the general structure is similar to the hierarchical model we encountered in
Chapter 18. However, we note that the individual country-level estimates are
generally closer towards the grand mean than their heterogeneous model
equivalents (see the right-hand panel of Figure 19.4). There is also lower
uncertainty in the individual estimates obtained from the hierarchical model
since we are, in effect, pooling information from across the different
countries.
Figure 19.3 A map showing the percentage of sampled individuals who
voted in the last general elections who answered that they belonged to a
religious group.

Figure 19.4 The country-level estimates of the effect of being male (as
opposed to female) on the probability that an individual voted in the last
election from the heterogeneous model (left) and the hierarchical model
(right) as a function of the democracy index of each country. The democracy



index is a measure created by The Economist, and measures state of
democracy in each country (low values indicate a poorly functioning
democracy). Here we use values from this index for 2012. The estimates of
the effect size assume that each individual belongs to a religious group, and
are at the mean age we find in the data.

19.3.1 Multilevel interactions
Suppose that we believe that the effect gender has on an individual’s electoral
participation depends on the society they belong to. Looking at the
correlation between our estimates and the democracy index in Figure 19.3 we
might hypothesise that as a nation becomes more democratic, males are even
more likely to vote. In other words, in a highly democratic country the gap
between the electoral participation rates of men and women (with men voting
more often) is greater than for a less democratic country. The simplest way to
encode such an effect would be by including an interaction term between
gender and democracy in our likelihood:

where democracyj is measured at the country level, meaning that we estimate
a single parameter that quantifies the strength of this interaction. However, do
we believe that the effect of a changing democratic landscape is independent
of the society in question? In other words, do we think that the effect of an
improved democratic rule is exactly the same for all countries? Of course not.
Countries within Europe have diverse cultures, and it would be naive to
expect a unimodal response to societal transition.



A better way to capture the interaction between democracy and gender would
be to consider a higher level of abstraction. In particular, we suppose a
system of the form:

where the bottom line in (19.8) indicates there is an average effect of size ,
which quantifies the impact of gender on electoral participation across all
Europe. However, importantly, this formulation allows there to be individual
country variation in the strength of this interaction. This means that the above
model is less restrictive than the aforementioned non-hierarchical one.
To estimate this model in Stan, we use a non-centred parameterisation to
reduce the risk of divergent iterations (see Section 18.8):





The above produces the following results:

So overall we find that the only reliable indicator of whether an individual
will vote is their age. Presumably, there is so much variation in the impact of
gender or religion on electoral participation across countries that we do not
estimate an overall effect that differs from zero. The interaction of gender and
democracy is also estimated to be relatively weak.
19.3.2 Comparing the predictive fit of each of the
models
Suppose that we want to determine which of the four models provides the
best predictions on voter participation. Ideally, we would do this by
repeatedly partitioning our data into training and testing sets (see Chapter 10
for the theory and Chapter 16 for the implementation), using the former to fit
our model and the latter to evaluate its predictive fit. However, the
aforementioned models are fairly complex and the data set is also quite large,
meaning that it will be impractical to use explicit cross-validation here
because of the computational burden involved. Instead, we evaluate the
predictive capability of the model on within-sample data, and then try to
correct for any potential overfit.
Here we use the loo package for R to estimate the leave-one-out cross-
validation predictive capability of each of the models (see Chapter 10). To
use this method we need only to store the log probability of each data point
for each posterior sample from our parameters. We do this using the
generated quantities block. So for all models but the pooled one, this can be
done using the following (the pooled code is simpler because we do not allow
variation in the parameters for each country):



Table 19.1 
The results of using the loo package for each of the models are shown in
Table 19.1. This package outputs estimates of the expected log predictive
density for an out-of-sample data point, along with standard errors associated
with these estimates (see Chapter 10). Our analysis indicates that the
multilevel model fits the data best, followed by the hierarchical model, then
the heterogeneous one. Unsurprisingly the pooled model is least able to
explain the variation in the dependent variable. However, taking the
uncertainty into account (using the compare function from loo), we find no
real difference between the hierarchical and multilevel interaction models,
although both of these are better than the other two.

19.4 Discrete parameter models in Stan
Although we discussed discrete models in Stan in Chapter 16, we now spend
a little more time on this subject to consolidate our thinking on this topic.
HMC and its faster cousin NUTS are truly excellent strings in the data



scientist’s bow. These samplers are best explained by using a physical
analogy. Here we imagine a sledge sliding over a smooth landscape that is
related to posterior space. By design this landscape (negative log posterior
space) means our sledge (whose position relates to samples for the
parameters) will more often visit areas of high density (see Chapter 15 for a
more complete discussion of HMC). This results in more accepted proposals
than are possible for Random Walk Metropolis. The Achilles heel of the
physical analogy is that it requires parameter space to be continuous,
otherwise we have difficulty describing the motion of our sledge over the
space with Newtonian mechanics.2 This might seem like a severe roadblock
to using Stan to estimate a model with discrete parameters, but there is a neat
and, as it turns out, efficient way to do this in Stan. It involves marginalising
out the discrete parameters.
2. However, recent research by Akihiko Nishimura et al. into HMC suggests
ways to extend this sampling algorithm to discrete parameter spaces (see
https://arxiv.org/abs/1705.08510).

How to code up a model with discrete parameters in Stan
What do we mean by ‘marginalising out’ here? Suppose that we have a two-
dimensional probability distribution  where the 
is discrete parameter with K possible values, and θ is continuous. We can
actually remove the joint probability’s dependence on the discrete parameter
by summing over all possible values of βi:

leaving a marginal density  that is only a function of a continuous
parameter .
If we can carry out such a marginalisation in Stan, this means that we can
then proceed as usual, since our posterior will only be a function of
continuous parameters and HMC will work. However, there is a slight
complication, because – remember – Stan actually deals in the log of the (un-
normalised) posterior density as its preferred currency. So we need to do
something akin to the following mathematical operation:

where the left-hand side of expression (19.10) is the marginalised log
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posterior. On the right-hand side of this expression we must take the
exponent of the log probability to convert it into a probability. However, if
we explicitly code up expression (19.10) in Stan, we would suffer from issues
of numerical instability, since the probabilities themselves can be very small.
Handily, Stan has a function that avoids such computational instability, and
obviates our need to code things up ourselves. This function can be used to
rewrite expression (19.10) as:

where we choose not to specify the exact functional form of 
 since it is unnecessary here, but we note that the result of

using either expression (19.10) or (19.11) is the same.
19.4.1 Example: how many times was the coin flipped?
To provide an example of how to code up a model involving discrete
parameters in Stan, we imagine a coin where θ denotes the probability of its
landing heads up. In each repetition of the experiment, the coin is flipped
exactly N times, where N is unknown to us. Suppose that the experiment is
repeated 10 times, and the following numbers of heads are obtained, 

. We use a binomial distribution to describe the
number of heads obtained in each replicate:

where N and θ are the same across all repetitions. Suppose that we know that
the maximum number of times the coin is flipped in a single replicate is 20,
and we believe that all feasible values of N are equally likely. Also, imagine
that from our previous coin-flipping experience we believe that the coin is
biased towards heads. We quantify these beliefs using the following priors:

where 11 is the minimum number of flips possible, since this equals the
maximum count of heads that we see in our data. The key to writing this
model in Stan is deriving an expression for the (un-normalised) log posterior
probability that is devoid of any explicit reference to N. To do this we first
write the log posterior probability for all the data (the following is
vectorised):

log(0.1) + binomial_lpmf(Y|N[s],theta);
where binomial_lpmf is the log probability for a binomial distribution for our
vector of counts Y, and N[s] is the number of total throws for each
experimental repetition. Here s indexes an array int N[10] that contains all



integer values of N between 11 and 20. The log(0.1) term here is due to the
discrete uniform prior we place on N: because there are 10 possible values of
, the individual probability is 0.1. When we use Stan we deal with the log
probability, meaning that we log this value and add it onto the likelihood
term (we add it because the log of a product is a sum of logs).
In our Stan code we record the log posterior probability for each possible
value of s in a vector:

transformed parameters{
vector[10] lp;
for(s in 1:10){
lp[s] = log(0.1) + binomial_lpmf(Y|N[s],theta);
}
}

We then marginalise out any dependence on s in the model block and
increment the overall log probability by this amount:

The whole model can therefore be written in Stan as follows:



where int N is not defined as a parameter in the model, but created as a data
object in the transformed data block. The results of estimating the above
model are as follows:

Our posterior here largely reflects our prior beliefs that the coin is biased



towards heads. This makes intuitive sense because there is little information
in the data to suggest which values of θ are more likely.
Estimating this model gives us a posterior for θ but how can we obtain a
posterior for N? On first glances this appears tricky since we deliberately
avoid including N as a parameter in the model. However, we can calculate the
un-normalised probability for any particular value of N by marginalising θ
out of the un-normalised posterior probability:

where  is the un-normalised posterior probability of N = 11,
and L is the number of posterior samples. How do we convert this un-
normalised probability into a valid probability distribution? Since the
distribution is a discrete function of N we just sum all the possible un-
normalised probabilities, then normalise using this value:

How do we do this in Stan? This is straightforward if we use the generated
quantities block:

generated quantities {
simplex[10] pState;
pState = exp(lp – log_sum_exp(lp));
}

where we remember that lp is a 10-dimensional vector with each entry
corresponding to the un-normalised posterior probability of a particular value
of . We also remember that log_sum_exp(lp) determines
the log of the marginalised un-normalised posterior probability (the
denominator of expression (19.15)). So the term lp – log_sum_exp(lp) just
amounts to determining the log of the normalised posterior probability for
each value of (because a minus in logs corresponds to a division in levels).
Using this code, we generate the posterior shown in Figure 19.5. Since we
have estimated that the coin is biased towards heads, the posterior
distribution for gives highest weight to N = 11 since this corresponds to the
maximum number of heads that we observe in the data.



19.5 Chapter summary
This chapter extended the idea of multilevel regression models to encompass
more general situations, where the dependent variable is no longer an
unconstrained continuous variable. These generalised linear models (GLMs)
are incredibly flexible tools for trying to bind cause and effect in the social
and physical sciences. They allow us to estimate models where the dependent
variable represents a count, a binary or multi-outcome result, a waiting time,
a probability vector, and so on. The only limitation we have with these types
of models is finding an appropriate likelihood. However, so long as we can
find or construct such a likelihood, we can estimate our model.
As in the previous chapter we saw how the Bayesian paradigm allows us to
straightforwardly build models that account for the hierarchical structure of
the data. The line between prior and likelihood is blurred in these types of
models, as priors for lower-level parameters can be informed by data at the
group level. This provides a flexibility that means that these models tend to
perform better than their non-hierarchical equivalents, because they can more
realistically represent a given data-generating process.
Figure 19.5 The estimated posterior probabilities for the number of times.
The coin was flipped. The upper and lower fences indicate the 75% and 25%
quantiles of the data, and the middle bar shows the median test score. The
upper and lower whiskers indicate 1.5 times the interquartile range from the
upper and lower fences, respectively. The points indicate outliers.

We also saw how we can use Stan to estimate models with discrete



parameters through marginalisation. While it may seem like an extra step to
estimate these models in Stan, as opposed to JAGS or BUGS, the
marginalised models are, in general, much more efficient to sample from than
the full joint distributions. This increased efficiency means that the rate of
convergence of the sampling algorithm to the posterior distribution will be
considerably faster. We also saw that, even though we marginalise discrete
parameters out of the log probability in Stan, we can still estimate their
posterior distribution using the generated quantities block. To do so we
estimate the un-normalised probability of each discrete state. We then
normalise this quantity to produce the posterior probability by dividing
through by the sum of the un-normalised probabilities across all discrete
states.
More generally, we have now come to the end of our tour through Bayesland.
This will no doubt be sad times for you all. If pathetic fallacy is not a fallacy,
there will be torrents of rain smashing against your window panes. But do we
have any advice to lighten the mood and help you in your own analysis
quest? In order of importance, we now list what we think are key steps to
becoming a Bayes master.

1. Spend a long time visualising your data before you start modelling.
There are no hard rules to follow here, unfortunately, and achieving the
right visualisation for your data can be an arduous process. Try to be
creative. Do not just follow what you or others have done in the past.
That said, it is still worth trying to inform yourself about what others
have done to produce creative and illuminating visualisations of data. A
great book on the subject by the master of graphics, Edward Tufte, is
The Visual Display of Quantitative Information [39].

2. When building a model, start simple and build up complexity as
needed. Here, posterior predictive checks are your best friend as they
typically are good (if chosen correctly) at hinting at a model’s
inadequacies. Good visualisations help us to pick sensible posterior
predictive checks.

3. Read articles and books on statistical inference from a range of
sources. You have started with this one (a good choice, we hope), but
there are certainly large gains to be had by being polygamous here. See
Section 1.11 for a list of such books.

4. If you use statistics in your work, take the opportunity to present
your results to your colleagues. The process of writing the



presentation, collecting one’s thoughts and getting feedback is really
valuable and inevitably results in a higher quality of work.

5. When in doubt use hierarchical models. As you can probably tell
from the propaganda of the last part of this book, we truly believe in the
power of these models, and think they are an indispensable tool in the
data scientist’s toolkit.



19.6 Chapter outcomes
The reader should now be familiar with the following concepts:

what a generalised linear model is and how it can be used to do
regression in more general settings than linear models
the power of multilevel hierarchical models where data can be used as
inputs to priors at a range of different levels of a hierarchy
how to estimate models in Stan with discrete parameters through
marginalisation, and how to estimate the posteriors for these parameters
using Stan’s generated quantities code block

19.7 problem sets
Problem 19.1 Seatbelts
The file glm_seatbelts.csv contains data on the monthly total of car drivers
killed (on a log10 scale) in Great Britain between January 1969 and December
1984 (see https://stat.ethz.ch/R-manual/R-
devel/library/datasets/html/UKDriverDeaths.html). It also contains a measure
of petrol prices over the same period, as well as a variable that represents the
month on a scale of 1–12.
During the period for which the data runs there was a change in the law that
meant it became a legal requirement to wear seatbelts in cars. In this question
we are going to estimate when this event occurred by examining the data.
Problem 19.1.1 Plot the data. Can you see by eye when the legislation was
likely enacted?
Problem 19.1.2 A model is proposed of the form:

where:

and γ0 < 0 represents the effect of the seatbelt legislation on the numbers of
car drivers killed after some implementation date s; D(i,t) is a dummy
variable for month i equal to 1 if and only if the date t corresponds to that
month, and equal to 0 otherwise.
Implement the above model in Stan, and hence estimate the effect that the
seatbelt legislation had on car driver deaths.
Problem 19.1.3 Using the generated quantities block, estimate the date when
the legislation was enacted.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html


Problem 19.2 Model choice for a meta-analysis
Suppose that the data contained in GLM_metaAnalysis.csv contains the
(fictitious) result of 20 trials of a new drug. In each trial 10 patients with a
particular disorder are treated with the drug, and the data records the number
of individuals cured in each trial.
Problem 19.2.1 Graph the data across all 20 trials. What does this suggest
about a potential model to explain the data?
Problem 19.2.2 Suppose that we have two models that we could use to
describe the data:

or

where Xi is the number of successes in trial . Write two Stan
programs to fit each of the above models to the data, and use the estimated
LOO-CV (use the loo package in R) to choose between the above models.
(Assign  and  for priors for each model,
where a and b are constrained to be positive.)
Problem 19.2.3 An alternative way to choose between these models is to use
Bayes factors. Rather than determine the marginal likelihoods explicitly, this
can actually be done in Stan by allowing a discrete model choice parameter 

 that dictates which model to use. Code up this model in Stan, and
by examining the posterior distribution for  determine which sampling
distribution fits the data best. (Hint: assign equal probability to each model a
priori and marginalise out s to obtain the log probability.)
Problem 19.2.4 An alternative approach is to use the binomial likelihood, but
use a hierarchical model where each θi is drawn from some population-level
distribution. Comment on whether you would prefer this approach or the
beta-binomial model. (Hint: do not estimate the hierarchical model.)
Problem 19.3 Terrorism
In this question we will investigate the link between the incidence of
terrorism and a country’s level of income. The data in glm_terrorism.csv
contains for 100 countries (those for which the latest data was available) the
following series:

count: the number of acts of terrorism perpetrated in each country from
2012 to 2015, as compiled by START [7].
gdp: the gross domestic product of each country in 2015, as compiled by



the World Bank.
population: the population of each country in 2015, as compiled by the
World Bank.
gdpPerCapita: the GDP per capita in each country.
religion, ethnic, language: measures of fractionalisation with respect to
each of these measures, obtained from
http://www.anderson.ucla.edu/faculty_pages/romain.wacziarg.
law and corruption: measures of the rule of law and corruption (actually
an inverse measure), as compiled by the World Bank in its 2016 World
Governance Indicators report.
democracy and autocracy: indicators of democracy and autocracy
respectively from the polity4 database.
region and region_numeric: the region to which a country belongs out of
Asia, Europe, Middle East and North Africa, Sub-Saharan Africa, South
America and North America.

Problem 19.3.1 Graph the data. What does this tell you about the processes?
Problem 19.3.2 A simple model for the terrorism count is:

where i corresponds to one of the countries in our data set. Code up this
model in Stan, and use it to obtain estimates of the effect of a country’s
income level on the incidence of terrorism.
Problem 19.3.3 Now include corruption, religion and ethnic as further
variables in the above generalised linear model. What is the impact of each of
these variables on the terrorism count?
Problem 19.3.4 Conduct posterior predictive checks to assess the
applicability of the model to the data. What do these tests suggest? Use this
information to formulate an improved model and use it to determine the
effect of economic development on terrorism.
Problem 19.4 Eurovision
The file Eurovision.csv contains historical data on the outcome of the
Eurovision song contest from 1976 to 2015 for the 20 countries which have
featured most consistently in the finals throughout the years. Along with the
results from the contest, we also include data on the distance between pairs of
countries, whether those countries share a common language, and if one was
ever colonised by the other. In this question we ask you to develop a model to
help explain the way in which countries award points to one another. Choice
of the model’s structure, the covariates to include, and the way in which the

http://www.anderson.ucla.edu/faculty_pages/romain.wacziarg


model is tested should be decided upon by you. How far you wish to go with
this analysis is up to you, but could take the form of a project.
Problem 19.5 More terrorism (harder)
The file terrorism.csv contains historical pairwise counts of terrorist attacks
perpetrated by citizens of an origin country against a target country, compiled
by Alan Krueger (see http://krueger.princeton.edu/pages/) and assembled
from the US State Department’s annual list of significant international
terrorist incidences (PGT). In this question we ask you to develop a model to
explain the incidence of such attacks using data on the attributes of each
country (the origin and target). Choice of the model’s structure, the covariates
to include, and the way in which the model is tested should be decided upon
by you. How far you wish to go with this analysis is up to you, but could take
the form of a project.

http://krueger.princeton.edu/pages/
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