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Abstract

We consider the classic Gambler’s Ruin problem with our experi-
mental mathematics approach and extend it to higher dimensions and
even other graphs, e.g., ring graphs. Both the probability and ex-
pected duration are studies numerically and symbolically. The prob-
lem of the number of visits to the origin of a random walk is explored
as well.

1 Introduction

Gambler’s Ruin problem is a classic in probability theory. In this article,
we apply the experimental mathematics approach to the Gambler’s Ruin
problem.

At first, we review the classic Gambler’s Ruin problem in 1-dimension. We
mainly consider its probability to reach the exit state, the expected duration
and the probability generating function of the duration. Then we extend our
method to 2D situation where the game become much more complicated and
can be defined in different ways. Moreover, we generalize the problem to even
higher dimension and also look at its analogue on ring or torus graph.
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In strategic gambling, the strategy at each state could be different. So even in
1-dimensional situation, it is interesting to explore the result when a gambler
have a set of moves at each state. We also discuss the problem of the number
of visits to the origin of a random walk in a high dimension space.

This article is accompanied by a Maple package, GamblersRuin.txt, which
can be found on the front of the article
https://sites.math.rutgers.edu/ zeilberg/EM20/projs.html.

Readers are encouraged to download the package and use the procedures to
experiment.

2 The classic Gambler’s Ruin problem

In the classic Gambler’s Ruin problem, a gambler starts with an initial for-
tune of i dollars and on each game, the gambler wins $1 with probability p
or loses $1 with probability q = 1 − p, where 0 ≤ p ≤ 1. The gambler will
stop playing if either N dollars are accumulated or all money has been lost.
Then the natural question is that what is the probability that the gambler
will end up with N dollars.

At first we’d like to use probability theory to solve this problem. Then
we will introduce our experimental mathematics approach and highlight the
advantage of our methodology. If p = 0 or p = 1, then it is trivial. Let’s begin
with the fair game, i.e., p = 1

2
. Define X(t) to be the random variable of the

amount of dollars the gambler possesses after t rounds of games, assuming
the gambling is ongoing. Then X(t) is a martingale because by conditional
probability

E[X(t + 1)] =
1

2
(E[X(t)]− 1) +

1

2
(E[X(t)] + 1).

Then by the property of martingale, at the stopping time T we have

E[X(T )] = X(0) = i,

which leads to
i = P (N)×N + P (0)× 0.

Hence when it is a fair game, the probability that the gambler walks out of
the casino with N dollars is i

N
. But in reality, the games in casino are usually
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unfair. So for general 0 < p < 1 and for any initial state 0 ≤ i ≤ N , let Pi

be the probability that the gambler’s fortune will reach N instead of 0. By
conditional probabitlity we have

Pi = pPi+1 + qPi−1

with the boundary condition P0 = 0 and P1 = 1. Then

Pi+1 − Pi =
q

p
(Pi − Pi−1) =

q2

p2
(Pi−1 − Pi−2) = · · · = qi

pi
(P1 − P0).

By successively expressing Pi as a formula of Pi, we have

Pi =
k=i−1∑
k=0

(
q

p
)kP1.

If q
p

= 1, i.e. p = 1
2
, we can see that PN = NP1 and Pi = i/N , which is

liner. This result is consistent with the previous one obtained with martingale
argument.

When q
p
6= 1, by sum of geometric series, we have

PN =
1− (q/p)N

1− q/p
P1.

Then

P1 =
1− q/p

1− (q/p)N

and

Pi =
1− (q/p)i

1− (q/p)N
.

Another random variable we are interested in is the duration, which is the
number of rounds of games played until the gambler has N dollars or lose all
money. When p = 1

2
, X(t)2 − t is a martingale because

E[X(t + 1)2 − (t + 1)] =
1

2
(X(t)− 1)2 +

1

2
(X(t) + 1)2 − (t + 1) = X(t)2 − t.
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Consider the stopping time T , and shift each the number of each state by −i
for convenience, we have

E(X(T )2 − T ] = PN(N − i)2 + P0i
2 − T = X(0)2 − 0.

Since we shift each state, X(0) = 0, hence the right hand side is 0.

T =
i

N
(N − i)2 +

N − i

N
i2 = i(N − i).

However, when p 6= 1/2, X(t)2− t is no longer a martingale and the problem
becomes much more complicated. By using ExpDuration(N, p) procedure
in GamblersRuin.txt, we can immediately get the expected duration for
numerical N and symbolic p for each state 1 ≤ i ≤ N − 1. For example,
ExpDuration(5, p) returns

[
2 pt3 + 2 pt2 − pt + 1

pt4 − 2 pt3 + 4 pt2 − 3 pt + 1
,− pt3 − 4 pt2 + 2 pt − 2

pt4 − 2 pt3 + 4 pt2 − 3 pt + 1
,

pt3 + pt2 − 3 pt + 3

pt4 − 2 pt3 + 4 pt2 − 3 pt + 1
,− 2 pt3 − 8 pt2 + 9 pt − 4

pt4 − 2 pt3 + 4 pt2 − 3 pt + 1
].

To get the closed-form formula for symbolic N and p, we just need to call
ExpDurationCF(N, i, p), which uses recurrence relation and boundary con-
dition to find the explicit formula. We have the following theorem.

Theorem 1. The expected duration of a Gambler’s Ruin problem with the
initial state i dollars, exit condition N dollars and probability p 6= 1

2
to win

each game is

1

2 p− 1

((
−p− 1

p

)i

N −
(
−p− 1

p

)N

i−N + i

)((
−p− 1

p

)N

− 1

)−1

Note that when p goes to 1
2
, the above formula goes to i(N − i). But we can

reach much further than expectation. How about the probability generating
function of the random variable T , the number of duration? At first we can
use the procedure PGF(N, p, t) to explore for numerical N and sympolic
p. t here is the symbol for the generating function. For instance, PGF(5, p)

returns

[
t (p4t3 − 2 p3t2 + 4 p2t2 − 2 pt2 − p + 1)

p4t4 − 2 p3t4 + p2t4 + 3 p2t2 − 3 pt2 + 1
,
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(p4t2 − 3 p3t2 + p3t + 3 p2t2 − pt2 + p2 − 2 p + 1) t2

p4t4 − 2 p3t4 + p2t4 + 3 p2t2 − 3 pt2 + 1
,

t2 (p4t2 − p3t2 − p3t + 3 p2t + p2 − 3 pt + t)

p4t4 − 2 p3t4 + p2t4 + 3 p2t2 − 3 pt2 + 1
,

t (p4t3 − 4 p3t3 + 2 p3t2 + 6 p2t3 − 2 p2t2 − 4 pt3 + t3 + p)

p4t4 − 2 p3t4 + p2t4 + 3 p2t2 − 3 pt2 + 1
].

For more general situation, we obtain the following theorem by using the
procedure PGFcf.

Theorem 2. The probability generating function of the random variable T ,
the duration of Gambler’s Ruin is

Since we can easily get the probability generating function for any given
numerical N and i, it will be much easier to get the variance and higher
moments of T , which might be extremely difficult for human approach or
probabilistic argument.

As an example, when N = 10 and i = 5, from PGF(10, p, t)[5] we obtain
the probability generating function

F :=
(5 p4 − 10 p3 + 10 p2 − 5 p + 1) t5

5 p4t4 − 10 p3t4 + 5 p2t4 + 5 p2t2 − 5 pt2 + 1
.

Then by StatAnal(F, t, K) we can easily find out the scaled moment about
the mean (for m-th moment where m > 2, the first two being expectation
and variance). So we have the following theorems.

Theorem 3. The expectation of the random variable T , the duration of Gam-
bler’s Ruin when N = 10 and i = 5 is

5
p4 − 2 p3 + 4 p2 − 3 p + 1

5 p4 − 10 p3 + 10 p2 − 5 p + 1
.
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Theorem 4. The variance of the random variable T , the duration of Gam-
bler’s Ruin when N = 10 and i = 5 is

−100 p6 + 300 p5 − 380 p4 + 260 p3 − 100 p2 + 20 p

25 p8 − 100 p7 + 200 p6 − 250 p5 + 210 p4 − 120 p3 + 45 p2 − 10 p + 1

Theorem 5. The skewness of the random variable T , the duration of Gam-
bler’s Ruin when N = 10 and i = 5 is

Theorem 6. The kurtosis of the random variable T , the duration of Gam-
bler’s Ruin when N = 10 and i = 5 is

Theorem 7. The fifth scaled moment about the mean of the random variable
T , the duration of Gambler’s Ruin when N = 10 and i = 5 is

As long as there are sufficient time and computing resources, we can continue
this process to find as high moment as we want. The aforementioned example
fully demonstrates the advantage and power of our experimental mathematics
approach as no or little humen research has been conducted on the higher
moments of the duration of Gambler’s Ruin.
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Additionally, if we fix i and let N goes to infinity and consider the any fixed
higher moment, we may consider this as a generating function and hence
possibly we can get a finite closed formula which stores ”infinite information”.
For the experimental mathematics approach to discrete probability problems,
its methodology and beyond, we refer interested readers to [2], [3], [4], [5],
[7], [8], [9] and [10]. In the remainder of this article, we consider various
generalization of the classic Gambler’s Ruin problem.

3 2D Gambler’s Ruin

3.1 The Rule of 2D Gambler’s Ruin

After the thorough 1D Gambler’s Ruin problem, we explore and run a number
of numeric and symbolic tests for a generalization of the Gambler’s Ruin
problem to two dimensions. In the 2D Gambler’s Ruin game, there are
two simultaneous non-interacting instances of Gambler’s Ruin being played
(referred to from hereon out as the ‘vertical game’ and the ‘horizontal game’),
and there are four possible ending states: winning both games, winning the
vertical game and losing the horizontal game, winning the horizontal game
and losing the vertical game, or losing both games. There are two possible
ways of modelling this game. Suppose the player has probability p of winning
$1 in the vertical game, and probability q of winning $1 in the horizontal
game. In 2D Gambler’s Ruin Type 1, every round, the player will either gain
or lose a dollar in each game with the associated respective probabilities: so
if the player has bank [$i, $j], the four possibilities in the next round are
[$i + 1, $j + 1], [$i + 1, $j − 1], [$i − 1, $j + 1], and [$i − 1, $j − 1]; unless
the vertical or horizontal game has already been won or lost, and then only
the other game will be played. In 2D Gambler’s Ruin Type 2, we have a
third probability g, which is the probability of playing the vertical game.
The player first uses g to determine which game they are playing, then plays
either the vertical or the horizontal game with the associated probability:
so if the player has bank [$i, $j], the four possibilities in the next round are
[$i + 1, $j], [$i − 1, $j], [$i, $j + 1], and [$i, $j − 1]; unless the vertical or
horizontal game has already been won or lost, and then only the other game
will be played.

We will use an M×N matrix to represent a vertical game with win condition
$M−1 and a horizontal win condition $N−1, and position [i, j] in the matrix
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represents having $i − 1 in the vertical game and $j − 1 in the horizontal
game. Note that this means that in all analysis of the 2D Gambler’s Ruin
game, the $0 states are included.

As will become immediately apparent, the probabilities of winning the Type
1 game and Type 2 game from any given starting position are the same; the
Gambler’s Ruin Type 2 game has horizontal and vertical probabilities as the
Type 1 game has, it just takes two moves to get to positions where the Type
1 game would only take one move to get to. Therefore, the difference lies
in the fact that the expected duration of the Type 2 game is longer so long
as the starting position is not in an edge row or column. The probability g
of playing the vertical or horizontal game affects the most likely path that
the gambler takes to their end node, but does not affect the probability of
ending in each various node or the expected duration of the game.

The next subsection gives examples and density plots for small square ending
conditions, large square ending conditions, and large narrow ending condi-
tions at various balanced or unbalanced probabilities. Here we will see the
effects of g on the path taken. And then we use patterns noted in our nu-
merical study to calculate the symbolic probability of winning a game from
a symbolic starting position.

3.2 Numerical Gambler’s Ruin Games

In this section, we look at the probability of ending in each node for various
numerically banked games with numeric or symbolic probabilities, their ex-
pected duration, and look at probability densities of paths from an internal
starting point. As Game Type 1 and Game Type 2 have the same prob-
abilities of ending in each node, they will not be both calculated for node
probabilities.

We will present this section almost entirely in graphs, as the probability
matrices very quickly become unweildy for displaying in a paper. However,
we give an example here of an equal win condition of $3 for both games and
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symbolic p, q:

P (1, 1) =


1 − q−1

q2−q+1
q2−2 q+1
q2−q+1

0

− p−1
p2−p+1

pq−p−q+1
p2q2−p2q−pq2+p2+pq+q2−p−q+1

−pq2−2 pq−q2+p+2 q−1
(q2−q+1)(p2−p+1)

0

p2−2 p+1
p2−p+1

− p2q−p2−2 pq+2 p+q−1
p2q2−p2q−pq2+p2+pq+q2−p−q+1

(pq−p−q+1)2

p2q2−p2q−pq2+p2+pq+q2−p−q+1
0

0 0 0 0



P (M, 1) =



0 0 0 0

p2

p2−p+1
− (q−1)p2

(q2−q+1)(p2−p+1)
p2(q−1)2

p2q2−p2q−pq2+p2+pq+q2−p−q+1
0

p
p2−p+1

− p(q−1)
p2q2−p2q−pq2+p2+pq+q2−p−q+1

(q2−2 q+1)p
p2q2−p2q−pq2+p2+pq+q2−p−q+1

0

1 − q−1
q2−q+1

q2−2 q+1
q2−q+1

0



P (1, N) =


0 q2

q2−q+1
q

q2−q+1
1

0 − (p−1)q2

(q2−q+1)(p2−p+1)
− q(p−1)

p2q2−p2q−pq2+p2+pq+q2−p−q+1
− p−1

p2−p+1

0 q2(p−1)2

p2q2−p2q−pq2+p2+pq+q2−p−q+1

(p2−2 p+1)q
p2q2−p2q−pq2+p2+pq+q2−p−q+1

p2−2 p+1
p2−p+1

0 0 0 0



P (M,N) =


0 0 0 0

0 p2q2

p2q2−p2q−pq2+p2+pq+q2−p−q+1
p2q

p2q2−p2q−pq2+p2+pq+q2−p−q+1
p2

p2−p+1

0 pq2

(q2−q+1)(p2−p+1)
pq

p2q2−p2q−pq2+p2+pq+q2−p−q+1
p

p2−p+1

0 q2

q2−q+1
q

q2−q+1
1


The procedures in our Maple package GamblersRuin.txt will automatically
produce these matrices with numeric entries along with the figures shown in
the following subsections.

3.2.1 Small Square Matrix

We first wish to examine a small square matrix, representing a total vertical
and horizontal bank of $4.
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First, we see the probability of landing in each node from each starting point
for different p, q:

Figure 1: p=1/2, q=1/2
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Figure 2: p=1/2, q=2/3
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Figure 3: p=1/8, q=2/3

Next we see the expected duration of Game Type 1, Game Type 2, and
their differences from each starting point for different p, q. Note that the
density plot function will always scale the largest value to white, and smallest
values to black, so the difference matrix of Game 2 ED-Game 1ED is also
given.
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Figure 4: p=1/2, q=1/2

Figure 5: p=1/2, q=2/3
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Figure 6: p=1/8, q=2/3

D(p = 1/2, q = 1/2) =



0 0 0 0 0

0 5/3 2 5/3 0

0 2 8/3 2 0

0 5/3 2 5/3 0

0 0 0 0 0



D(p = 1/2, q = 2/3) =



0 0 0 0 0

0 13
7

27
14

10
7

0

0 16
7

18
7

23
14

0

0 13
7

27
14

10
7

0

0 0 0 0 0



D(p = 1/8, q = 2/3) =



0 0 0 0 0

0 77
65

6/5 71
65

0

0 19
10

144
65

29
20

0

0 149
65

12
5

107
65

0

0 0 0 0 0
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Finally, we can trace the path at from starting point [2, 3], here only using
p = 1/2, q = 1/2 for Game Type 1 and Game Type 2 with g = 1/2, g =
4/5.

Figure 7: Type 1 Game path, p=1/2, q=1/2
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Figure 8: Type 2 Game path, p=1/2, q=1/2, g=1/2
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Figure 9: Type 2 Game path, p=1/2, q=1/2, g=4/5

3.3 Large Square Matrix

For the 20× 20 matrix representing an equal bank of $19 for each game, we
will look at probabilities for ending in each node for p = 1/2, q = 2/3:
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Figure 10: p=1/2, q=2/3

And the expected durations and their differences. Here the matrix is large
and unweildy enough that we will not report it.
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Figure 11: p=1/2, q=2/3

3.3.1 Large Narrow Matrix

For the 20 × 5 matrix representing a bank of $19 for the vertical game and
$4 for the horizontal game, we will look at probabilities for ending in each
node for p = 1/2, q = 2/3:



20

Figure 12: p=1/2, q=2/3

And the expected durations and their differences:
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Figure 13: p=1/2, q=2/3

3.4 Symbolic Gambler’s Ruin Games

From testing (and as matches the intuition that the two games are indepen-
dent), it is immediately evident that the probability matrix of winning both
games is the outer product of the probability vector of winning the vertical
game with the probability vector of winning the horizontal game. This makes
the symbolic probability incredibly simple to calculate: we simply calculate
separately the symbolic probability V of winning a vertical game of length
M with starting bank $m, and H of winning the horizontal game of length
N with starting bank $n, then the probability of winning both is V H, of
winning the vertical but losing the horizontal is V (1−H), etc. As such, we
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can fully symbolically calculate the probability of ending in each node:

P (1, 1) =

((
1−p
p

)M
−
(

1−p
p

)m)((
1−q
q

)N
−
(

1−q
q

)n)
((

1−p
p

)M
− 1

)((
1−q
q

)N
− 1

) (3.1)

P (M, 1) =

(
1−

(
1−p
p

)m)((
1−q
q

)n
−
(

1−q
q

)N)
((

1−p
p

)M
− 1

)((
1−q
q

)N
− 1

) (3.2)

P (1, N) =

((
1−p
p

)M
−
(

1−p
p

)m)((
1−q
q

)n
− 1
)

((
1−p
p

)M
− 1

)((
1−q
q

)N
− 1

) (3.3)

P (M,N) =

((
1−p
p

)m
− 1
)((

1−q
q

)n
− 1
)

((
1−p
p

)M
− 1

)((
1−q
q

)N
− 1

) (3.4)

The expected duration does not nearly map as easily from the 1D to the
2D case. Techniques for solving a multivariate recursion relationship seem
to always default to finding the multivariate probability generating function,
in which having symbolic boundary conditions and being limited to Maple’s
single variable rsolve make the problem non-trivial. The boundary row and
columns do share the expected values for the 1D game, so clearly the setup
should take advantage of the fact that the boundary probability generating
function is already calculable in Section 2.

4 High-Dimensional Gambler’s Ruin

In this section, we experiment with generalizing Gambler’s Ruin for higher
dimensions. We begin with the formulation, and then give some results.

4.1 Formulation

The original formulation of Gambler’s ruin has a single player A starting
with a capital of n units of currency. A repeatedly plays a game by flipping
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a coin and either earning 1 unit of currency with probability p or loses 1
unit of currency with probability 1 − p. The game stops when either A
wins by gaining N units of currency or loses by having 0 units of currency
at the end. We can re-formulate this 1-dimensional game equivalently by
treating A as a single point on an interval, whose starting position is n and
moves left with probability p or right with probability 1 − p. The analysis
for probability of winning when starting with n units of currency as well
as expected duration of the game has been analyzed comprehensively []. A
natural extension is: Can we analyze what happens when a single player
can choose from different games? Formally, let player A start with a capital
of nk units of currency for the k-th subgame. A repeatedly plays a game
by choosing a subgame and flips a coin, earning 1 unit of currency with
probability pk or loses 1 unit of currency with probability 1− pk. A “wins”
the k-th subgame when A earns Nk units of currency for that particular
sub-game. We focus primarily on what happens when k = 3. There are
three vectors: the starting capital for each subgame n = {n1, n2, n3}, the
goal capital for each subgame N = {N1, N2, N3}, and the probability vector
for winning 1 unit of currency for each subgame p = {p1, p2, p3}.

There are a couple of concerns:

• What constitutes a “win” or “loss” for the whole game for A?

• How would A go about choosing a subgame to play?

To answer the first question, consider that A could “win” the whole game
either by winning 1 of the games, or by winning every game. We subsequently
consider both policies of winning. To answer the second question, suppose
A has not won any of the subgames, i.e. the current capital for the k-th
subgame is not 0 or Nk. Then, A could randomly choose by picking any of
the 3 subgames to play. However, if A has won at least one subgame, say the
k-th subgame, then A would not want to risk their current position in the k-
th subgame by gambling again. In this case, A would only randomly choose a
subgame from S = {1, 2, 3}−{k}, where each subgame is equally likely to be
chosen. Likewise, if A had 0 units of currency for a particular subgame, then
A could not choose to play that subgame; A can only randomly choose from
the other subgames to play. Therefore, how A chooses a subgame depends
on the current configuration of A’s capital.
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4.2 “Win All Games” Policy

If we consider A to “win” only if A wins every subgame, then the only winning
configuration of capital for A is (N1, N2, N3). The configuration of capital
that makes A lose is (0, 0, 0). Every other configuration of capital (C1, C2, C3)
with 0 ≤ Ci ≤ Ni is valid and can move to another configuration of capital.
How the configuration moves depends on how A chooses the subgame. In this
case, if A wins at least one of the subgames (or if A has zero capital for that
particular subgame), then A should not play that subgame anymore.

• Consider the case (C1, C2, C3) such that 0 < Ci < Ni. Then, the
movements to other configurations of capital can be characterized as
follows: (C1, C2, C3) → (C1 + 1, C2, C3) with probability 1

3
p1 if the

first subgame was chosen (with probability 1/3). (C1, C2, C3)→ (C1−
1, C2, C3) with probability 1

3
(1 − p1) if the first subgame was chosen.

Similar definitions hold if second or third subgame was chosen.

• Consider the case where one of the Ci’s is either 0 or Ni. Without loss
of generality, let C1 be either 0 or N1. Then, A can only choose between
two subgames, since the first subgame should not be played (or cannot
be played for the case of 0) anymore. So, (C1, C2, C3)→ (C1, C2+1, C3)
with probability 1

2
p2 if the second subgame was chosen (with probability

1/2). (C1, C2, C3) → (C1, C2 − 1, C3) with probability 1
2
(1 − p2) if the

second subgame was chosen. Similar definitions hold if third subgame
was chosen.

• Consider the case where two Ci’s are either 0 or Ni. Without loss
of generality, suppose C1 be neither 0 nor N1. Then, (C1, C2, C3) →
(C1 + 1, C2, C3) with probability p1. (C1, C2, C3) → (C1 − 1, C2, C3)
with probability (1− p1).

Now, we analyze the probability of winning such a scenario given a starting
capital of (n1, n2, n3) and where (p1, p2, p3) = (p, q, r). The recurrence rela-
tion for the probability of winning for a particular configuration of capital
P (i, j, k) can be given as follows, where Ui represents the boundary value,
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i.e. either Ui = 0 or Ui = Ni:

P (i, j, k) =
1

3
(pP (i + 1, j, k) + (1− p)P (i− 1, j, k))

+
1

3
(qP (i, j + 1, k) + (1− q)P (i, j − 1, k))

+
1

3
(rP (i, j, k + 1) + (1− r)P (i, j, k − 1))

P (i, j, U3) =
1

2
(pP (i + 1, j, U3) + (1− p)P (i− 1, j, U3))

+
1

2
(qP (i, j + 1, U3) + (1− q)P (i, j − 1, U3))

P (i, U2, k) =
1

2
(pP (i + 1, U2, k) + (1− p)P (i− 1, U2, k))

+
1

2
(rP (i, U2, k + 1) + (1− r)P (i, U2, k − 1))

P (U1, j, k) =
1

2
(qP (U1, j + 1, k) + (1− q)P (U1, j − 1, k))

+
1

2
(rP (U1, j, k + 1) + (1− r)P (U1, j, k − 1))

P (i, U2, U3) = (pP (i + 1, U2, U3) + (1− p)P (i− 1, U2, U3))

P (U1, j, U3) = (qP (U1, j + 1, U3) + (1− q)P (U1, j − 1, U3))

P (U1, U2, k) = (rP (U1, U2, k + 1) + (1− r)P (U1, U2, k − 1))

P (0, 0, 0) = 0, P (N1, N2, N3) = 1

For the case where (n1, n2, n3) = (4, 4, 4), and (p1, p2, p3) = (.5, .5, .5), here
are some values for the probability of winning:

P (1, 2, 3) = 0.09375

P (2, 2, 3) = 0.1875

P (2, 3, 3) = 0.28125

Now, we analyze the expected duration E for such a scenario given a starting
capital of (n1, n2, n3) and where (p1, p2, p3) = (p, q, r). The recurrence rela-
tion E(i, j, k) for the expected duration with current capital (i, j, k) is given
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as follows, again where either Ui = 0 or Ui = Ni:

E(i, j, k) =
1

3
(pE(i + 1, j, k) + (1− p)E(i− 1, j, k))

+
1

3
(qE(i, j + 1, k) + (1− q)E(i, j − 1, k))

+
1

3
(rE(i, j, k + 1) + (1− r)E(i, j, k − 1)) + 1

E(i, j, U3) =
1

2
(pE(i + 1, j, U3) + (1− p)E(i− 1, j, U3))

+
1

2
(qE(i, j + 1, U3) + (1− q)E(i, j − 1, U3)) + 1

E(i, U2, k) =
1

2
(pE(i + 1, U2, k) + (1− p)E(i− 1, U2, k))

+
1

2
(rE(i, U2, k + 1) + (1− r)E(i, U2, k − 1)) + 1

E(U1, j, k) =
1

2
(qE(U1, j + 1, k) + (1− q)E(U1, j − 1, k))

+
1

2
(rE(U1, j, k + 1) + (1− r)E(U1, j, k − 1)) + 1

E(i, U2, U3) = (pE(i + 1, U2, U3) + (1− p)E(i− 1, U2, U3)) + 1

E(U1, j, U3) = (qE(U1, j + 1, U3) + (1− q)E(U1, j − 1, U3)) + 1

E(U1, U2, k) = (rE(U1, U2, k + 1) + (1− r)E(U1, U2, k − 1)) + 1

E(0, 0, 0) = 0, E(N1, N2, N3) = 0

For the case where (n1, n2, n3) = (4, 4, 4), and (p1, p2, p3) = (.5, .5, .5), here
are some values for the probability of winning:

E(1, 2, 3) = 10

E(2, 2, 3) = 11

E(2, 3, 3) = 10

The Maple code for these programs are given as GWinProbAll, and GExp-
DurAll. There is also a maple code for providing the probability generating
function for the expected duration, given as GPGFExpDurAll. For all three
maple programs, the probabilities can either be given as a number, or a
symbol.
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4.3 “Win One Game” Policy

In this case, we consider A to “win” if A wins one of the subgames. The
configuration of capital that makes A lose is (0, 0, 0). However, now the
configuration of capital that makes A win is any triple containing either
N1, N2, or N3. Every other configuration of capital (C1, C2, C3) with 0 ≤
Ci < Ni is valid and can move to another configuration of capital. How the
configuration moves depends on how A chooses the subgame, similar to the
“win all games” policy, except now there is more restriction, since winning
at least one subgame means A exits the whole game.

• Consider the case (C1, C2, C3) such that 0 < Ci < Ni. Then, the
movements to other configurations of capital can be characterized as
follows: (C1, C2, C3) → (C1 + 1, C2, C3) with probability 1

3
p1 if the

first subgame was chosen (with probability 1/3). (C1, C2, C3)→ (C1−
1, C2, C3) with probability 1

3
(1 − p1) if the first subgame was chosen.

Similar definitions hold if second or third subgame was chosen.

• Consider the case where one or two of the Ci’s is 0. Then, A can only
choose either two or one subgame, respectively. The update is similar
to “win all games” policy.

• Consider the case where one or two of the Ci’s are Ni. In this case, A
has already won, so there is no need to move to another configuration
of capital. Instead, A would want to exit.

Now, we analyze the probability of winning in the “win one game” policy
given a starting capital of (n1, n2, n3) and where (p1, p2, p3) = (p, q, r). If any
configuration includes any of Ni, then the probability of winning is 1 since A
has already won the game. This is reflected in the new recurrence relation,
and it makes A’s game much easier to play. The recurrence relation for the
probability of winning for a particular configuration of capital P (i, j, k) can
be given as follows:
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P (i, j, k) =
1

3
(pP (i + 1, j, k) + (1− p)P (i− 1, j, k))

+
1

3
(qP (i, j + 1, k) + (1− q)P (i, j − 1, k))

+
1

3
(rP (i, j, k + 1) + (1− r)P (i, j, k − 1))

P (i, j, 0) =
1

2
(pP (i + 1, j, 0) + (1− p)P (i− 1, j, 0))

+
1

2
(qP (i, j + 1, 0) + (1− q)P (i, j − 1, 0))

P (i, j, N3) = 1

P (i, 0, k) =
1

2
(pP (i + 1, 0, k) + (1− p)P (i− 1, 0, k))

+
1

2
(rP (i, 0, k + 1) + (1− r)P (i, 0, k − 1))

P (i, N2, k) = 1

P (0, j, k) =
1

2
(qP (0, j + 1, k) + (1− q)P (0, j − 1, k))

+
1

2
(rP (0, j, k + 1) + (1− r)P (0, j, k − 1))

P (N1, j, k) = 1

P (i, 0, 0) = (pP (i + 1, 0, 0) + (1− p)P (i− 1, 0, 0))

P (i, N2, N3) = 1

P (0, j, 0) = (qP (0, j + 1, 0) + (1− q)P (0, j − 1, 0))

P (N1, j, N3) = 1

P (0, 0, k) = (rP (0, 0, k + 1) + (1− r)P (0, 0, k − 1))

P (N1, N2, k) = 1

P (0, 0, 0) = 0, P (N1, N2, N3) = 1

For the case where (n1, n2, n3) = (4, 4, 4), and (p1, p2, p3) = (.5, .5, .5), here
are some values for the probability of winning:

P (1, 2, 3) = 0.90625

P (2, 2, 3) = 0.9375

P (2, 3, 3) = 0.96875
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Now, we analyze the expected duration E for such a scenario given a starting
capital of (n1, n2, n3) and where (p1, p2, p3) = (p, q, r). The recurrence rela-
tion E(i, j, k) for the expected duration with current capital (i, j, k) is given
as follows:

E(i, j, k) =
1

3
(pE(i + 1, j, k) + (1− p)E(i− 1, j, k))

+
1

3
(qE(i, j + 1, k) + (1− q)E(i, j − 1, k))

+
1

3
(rE(i, j, k + 1) + (1− r)E(i, j, k − 1)) + 1

E(i, j, 0) =
1

2
(pE(i + 1, j, 0) + (1− p)E(i− 1, j, 0))

+
1

2
(qE(i, j + 1, 0) + (1− q)E(i, j − 1, 0)) + 1

E(i, j, N3) = 0

E(i, 0, k) =
1

2
(pE(i + 1, 0, k) + (1− p)E(i− 1, 0, k))

+
1

2
(rE(i, 0, k + 1) + (1− r)E(i, 0, k − 1)) + 1

E(i, N2, k) = 0

E(0, j, k) =
1

2
(qE(0, j + 1, k) + (1− q)E(0, j − 1, k))

+
1

2
(rE(0, j, k + 1) + (1− r)E(0, j, k − 1)) + 1

E(N1, j, k) = 0

E(i, 0, 0) = (pE(i + 1, 0, 0) + (1− p)E(i− 1, 0, 0)) + 1

E(i, N2, N3) = 0

E(0, j, 0) = (qE(0, j + 1, 0) + (1− q)E(0, j − 1, 0)) + 1

E(N1, j, N3) = 0

E(0, 0, k) = (rE(0, 0, k + 1) + (1− r)E(0, 0, k − 1)) + 1

E(N1, N2, k) = 0

E(0, 0, 0) = 0, E(N1, N2, N3) = 0

For the case where (n1, n2, n3) = (4, 4, 4), and (p1, p2, p3) = (.5, .5, .5), here
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are some values for the probability of winning:

E(1, 2, 3) = 5.5593

E(2, 2, 3) = 5.4526

E(2, 3, 3) = 3.9932

The Maple code for these programs are given as GWinProbOne, and GExp-
DurOne. There is also a maple code for providing the probability generating
function for the expected duration, given as GPGFExpDurOne. For all three
maple programs, the probabilities can either be given as a number, or a sym-
bol.

4.4 Extensions

A first extension would be to get symbolic results for symbolic N1, N2, ...etc.
It is clear that if player A follows the “win one game” policy, then not only
is A’s chances of winning much higher, but A should also need to play fewer
subgames to win. However, one extension could be figuring out what happens
with “win any two games” policy. How close would the probability of winning
be to “win one game” policy? Lastly, I would like to explore whether or not
there is a reduction from k subgames to any v < k subgames. If there is,
then generalizing Gambler’s Ruin in this way to k subgames can be done
with v subgames.

5 Gambler’s Ruin on Periodic Graph

5.1 Ring Graph with Numerical Parameters

From our Maple package, we have plenty of results for gambler’s ruin on single
path graph. There, if you currently have i dollars, then with probability p
next round you would have i+1 dollars and with probability 1-p next time you
would have i−1 dollars. The absorbing state is just the two ends, 0 dollar and
N dollars. Now, consider a cycle graph with N vertices v0, v1, v2, . . . , vN−1. If
we play the similar game here, which means on state vi, you have probability
p to arrive vi+1 or v0 if i+1 = N and probability 1−p to arrive vi−1 , also the
game ends for state v0. Then nothing changes, because we still move around
from 0 to N.
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However, things become different if we can move farther to get across ab-
sorbing points. For convenience, we use ZN to label our states or vertices.
Here is the idea. You win j dollars with probability p[j]. On the graph, it
means on state vi, you arrive vi+j with probability p[j]. Also, you leave if you
arrive v0. This game is both interesting and realistic. For example, if you
have some casino tokens, and you can either gamble with them or exchange
10 tokens with cash. Then, you do not want to leave if you do not have exact
10k token, because 5 tokens are useless to exchange for anything unless you
keep gambling.

For coding, this is just a special case for random walk on a complete graph.
Just give a transition matrix A such that A[i][j] is the probability of going
from i to j. Then by using the solve function in Maple, with respect of
starting point, we can give the probability of wining, the expectation of
duration and probability generating functions for the duration. The code is
attached.

For example, if N = 6 and we have probability 1/4 to move ±1,±2, then the
matrix A is


0 1/4 1/4 0 1/4 1/4

1/4 0 1/4 1/4 0 1/4
1/4 1/4 0 1/4 1/4 0
0 1/4 1/4 0 1/4 1/4

1/4 0 1/4 1/4 0 1/4
1/4 1/4 0 1/4 1/4 0


Using the whole transition matrix can always solve random walk on any
graphs. However, the shortage of this code is we have to give a specific tran-
sition matrix A. Then we can only use numerical N instead symbolic N .

5.2 Ring Graph with Symbolic parameters

For symbolic N , here is an interesting problem that we can experiment with
coding. Again, we are working on a cycle with ZN labeling. If we start at
n, for each round, you get +2 with probability p1, get +1 with probability
p2, get −1 with probability p3 and get −2 with probability p4. The goal is



32

arriving at exactly 0. Of course, p1 + p2 + p3 + p4 = 1. Here is the problem,
what is the expectation of the duration of this game.

By generalization of the code for gambler’s ruin, we can give the closed form
of this expectation. ExpDurationR(N,n,p1,p2,p3,p4) means the expecta-
tion of duration, with symbolic inputs N, n. Then we can plug in different
parameters to find patterns. For example, we let N = 40, and n goes from 0
to 40, then we can give the line chart with three probability sets.

• Data Set A: p1 = 1
4
, p2 = 1

4
, p3 = 1

4
, p4 = 1

4

• Data Set B: p1 = 1
6
, p2 = 1

3
, p3 = 1

3
, p4 = 1

6

• Data Set C: p1 = 1
3
, p2 = 1

6
, p3 = 1

6
, p4 = 1

3

Figure 14: ExpDurationR with N=40

From the data above, we can find relation between expectation of duration
and probability sets. To clarify this, we can let N = 40, n = 20. Then use
the probability.

• Data Set i: p1 = i
80
, p2 = 40−i

80
, p3 = 40−i

80
, p4 = i

80

The surprising right end of figure above is really interesting. Also, if we just
focus on this situation, it gives the following beautiful figure.

5.3 Torus Graph

A natural generalization of ring graphs is torus lattice. The game here is
similar with above. Consider a torus lattice with CM vertically times CN
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Figure 15: Relation between i and ExpDurationR(40,20,Data Set i)

Figure 16: ExpDurationR(40,i,19/40, 1/40, 1/40, 19/40)

horizontally. For each step it has probability p to go right, probability q
to go up, probability r to go left, probability s to go down. Also, we may
have set of winning sites and set of losing sites. Then, we are interested in
probability of winning, expectation of duration and probability generating
function of duration.

For symbolic inputs of M , N and initial position, the previous idea of giving
closed form of result does not work here. However, we can still use the
numerical parameters to give probability of winning, expectation of duration
and probability generating function of duration.
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The functions ProbWinningTR, ExpDurationTR and PGFTR work for questions
above. The (i, j) entry is the result if we start at (i,j) position. If we plot an
example ExpDurationTR(20, 20, 1/4, 1/4, 1/4, 1/4, [[1, 1]], [[10, 10]]). We
can get

Figure 17: ExpDurationTR(20, 20, 1/4, 1/4, 1/4, 1/4, [[1, 1]], [[10, 10]])

and ProbWinningTR(20, 20, 1/4, 1/4, 1/4, 1/4, [[1, 1]], [[10, 10]]).

The idea here can also work on toroidal rectangle and higher dimensional
lattice. But the key point is the same: give the transition matrix accord-
ing to the problem, then use the solve function to solve the equation from
transition.
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Figure 18: ProbWinningTR(20, 20, 1/4, 1/4, 1/4, 1/4, [[1, 1]], [[10, 10]])
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