#OK to post homework #Jingze Li(RUID:195000313),04/14/19 #############READ ME########### #the homework 21 consists of 4 parts, corresponding to 1 to 4 problems of hw21. # a pdf file is attached for the 4th part ploting. ################ Help:=proc() print(`EvalFCdiffk(L,x,x0,k),CountTerm2(N),CountCoeff2(N),CountTerm3(N),CountCoeff3(N),EvalNR2(L,c1, c2, x0,y0),WeightRand(N,K)`): end: ####### 1 ########## #EvalFCdiffk(L,x,x0,k): inputs a functional chain L, variable x, and number or symbol x0 #outputs the k th derivative of EvalFC(L,x,y) w.r.t y and y=x0 # EvalFCdiffk:=proc(L,x,x0,k) local i,Ld,M,L0: L0:=EvalFC(L,x,x0): Ld:=[seq(diff(L[i],[x$k]),i=1..nops(L))]: M:=[subs(x=x0,Ld[1])]: for i from 2 to nops(L) do M:=[op(M), subs(x=L0[i-1] ,Ld[i]) ]: od: convert(M,`*`): end: ########### 2 ################ CountTerm2 :=proc(N) local f,g,i: [seq(nops(convert(diff(f(g(x)),x$i),list)),i=1..N)]: end: # the list of the number of terms in df(g(x))dx is not in the OEIS. # I think it make little sense since when we take different f and g specificly, the number of terms in df(g(x))dx varies. e.g. f = x*exp(x) give two terms when taking derivative. CountCoeff2 :=proc(N) local f,g,i: [seq(SumCoeff(diff(f(g(x)),x$i)),i=1..N)]: end: # the list of the sum of coefficients in df(g(x))dx is in the OEIS # Bell or exponential numbers: number of ways to partition a set of n labeled elements. ############# 3 ################ CountTerm3 :=proc(N) local f,g,i: [seq(nops(convert(diff(f(g(h(x))),x$i),list)),i=1..N)]: end: # similar to 2 , no result for the sequence of term number in OEIS CountCoeff3 :=proc(N) local f,g,i: [seq(SumCoeff(diff(f(g(h(x))),x$i)),i=1..N)]: end: # it is in OEIS: a way to interpret is number of 3-level labeled rooted trees with n leaves ########### 4 ############# EvalNR2:=proc(L,c1, c2, x0,y0) local x,y,i,A,B: x:=x0; y:=y0: for i from 1 to nops(L) do A :=L[i][1]: B :=L[i][2]: x := max(A[1][1]*x+A[1][2]*y+B[1][1],0): y := max(A[2][1]*x+A[2][2]*y+B[1][2],0): od: max(c1*x+c2*y,0): end: # WeightRand(N,K) output a list of random weight matrix WeightRand:=proc(N,K) local i,A,B: A:= [seq(RandMat(2,2,K),i=1..N)]: B:= [seq(RandMat(1,2,K),i=1..N)]: [seq([A[i],B[i]],i=1..N)]: end: # I plot some functions with different random weight matrix and different number of layers in the pdf file attached. ######### from c20.txt and c21.txt ####### #C20.txt,April 8, 2019 Help:=proc(): print(`BT(n) ,NuLeaves(T) , RandMat(m1,m2,K) `): print(`RandMatList(P,K) , EvalBT(L,T), PriceM(P,T) `): end: with(linalg): #Lemma: The cost (in multiplication operations) of multiplying an mxn matrix by an nxp matrix #is mnp #Cor. The cost of A=[m1xm2], B=[m2xm3] C=[m3xm4] #the cost of (AB)C=m1m2m3+ m1m3m4 #The cost of A(BC)=m2m3m4+ m1m2m4 #A1, A2, ..., An, [m1,m2,m3, ..., m[n+1]] #input a positive integer n #returns the set of all binary trees with exactly n leaves BT:=proc(n) local S,a,b,i: option remember: if n<=0 then return {}: fi: if n=1 then return {[]}: fi: S:={}: #to get a tree on n leaves, you can join any two trees whose numbers of leaves sum to n for i from 1 to n-1 do for a in BT(i) do for b in BT(n-i) do S:=S union {[a,b]}: od: od: od: return S: end: #NuLeaves(T): the number of leaves in the binary tree T NuLeaves:=proc(T) option remember: if T=[] then RETURN(1): else NuLeaves(T[1])+NuLeaves(T[2]): fi: end: #RandMat(m1,m2,K): a random m1 by m2 matrix with entries from -K to K #given as a list of lists RandMat:=proc(m1,m2,K) local ra,i,j: ra:=rand(-K..K): [seq( [seq( ra(), j=1..m2)],i=1..m1)]: end: #RandMatList(P,K): given a list of positive integers P of length n+1 #and a pos. integer K outputs a list of n compatible matrices ready to #be multiplied RandMatList:=proc(P,K) local n,i: n:=nops(P)-1: [seq(RandMat(P[i],P[i+1],K),i=1..n)]: end: #EvalBT(inputs a list L of matrices and a binary tree with the number of leaves equal to #the length of L, outputs the matrix product L[1]...L[n] suggested by the tree EvalBT:=proc(L,T) local n,P,i,P1,k,A,B: option remember: n:=nops(L): if NuLeaves(T)<>n then RETURN(FAIL): fi: P:=[seq([nops(L[i]),nops(L[i][1])],i=1..n)]: for i from 1 to n-1 do if P[i][2]<>P[i+1][1] then ERROR(L[i], `is not compatible with`, L[i+1] ): fi: od: #P1:=[seq(P[i][1],i=1..n-1),P[n][1],P[n][2]]: if n=1 then RETURN(L[1]): fi: #k:=number of leaves of the left tree of the root k:=NuLeaves(T[1]): A:=EvalBT( [op(1..k,L)] , T[1]): B:=EvalBT([op(k+1...n ,L)] ,T[2]): convert(multiply(A,B),list): end: #PriceM(P,T): inputs a profile of lenght n+1 and a binary tree with n leaves #outputs the number of multiplications PriceM:=proc(P,T) local n,k: n:=NuLeaves(T): if n=1 then RETURN(0): fi: if n=2 then RETURN(P[1]*P[2]*P[3]): fi: k:=NuLeaves(T[1]): PriceM([op(1..k+1,P)],T[1])+PriceM([op(k+1..n+1,P)],T[2])+ P[1]*P[k+1]*P[n+1]: end: ##### c21.txt ######### #C21.txt, April 11, 2019, Functional chains (and networks) Help:=proc(): print(` EvalFC1(L,x,0), EvalFC(L,x,x0) , RP(d,K,x) , RC(d,K,n,x) `): print(`EvalFCdiff(L,x,x0), SumCoeff(A) `): end: #y=a*x+b #Data-Set [x1,y1], ..., [xn,yn] L(a,b):-=Sum(a*xi+b-yi)^2,i=1..n); #diff(L,a)=0, diff(L,b)=0 a*x_{n+1}+b # [x1,..., xm; y]: Loss(a1, ..., am,a0):=Sum((a1*x1+...+am*xm+a0-y)^2 , data points in the set) #[m1,m2,m3, ..., mk] m1xm2 +m2xm3+.... #CNN #functional chain x->f1(x)->f2(f1(x)) #Def: A functional chain is a list of expressions [f1, ..., fn] in x #EvalFC1(L,x,x0): inputs L=[f1,..., fn] expressions in x and a number (or symbol) x0 #outputs f1(f2(...fn(x0))))) EvalFC1:=proc(L,x,x0) local i,L1: if nops(L)=1 then RETURN(subs(x=x0,L[1])): fi: L1:=[op(1..nops(L)-1,L)]: expand(subs( x=EvalFC1(L1,x,x0),L[nops(L)])): end: #RP(d,K,x): a random polynomial of degree d in x with coeff. between -K and K RP:=proc(d,K,x) local ra,i: ra:=rand(-K..K): add(ra()*x^i,i=0..d): end: #RC(d,K,n,x): a random functional chain of length n RC:=proc(d,K,n,x) local i: [seq(RP(d,K,x),i=1..n)]: end: #f(g(x))'= f'(g(x))*g'(x) #f1(f2(f3(x))'=f1'(f2(f3(x))*f2'(f3(x))*f3'(x) #(fk(f(k-1)(f(k-2)))'= fk'(f(k-1)....) [(f(k-1)(f(k-2)....) f1'(x0)] #x0->f1(x0)->f2(f1(x0)->.... fn(f_{n-1}(x)) ... #EvalFC(L,x,x0): inputs L=[f1,..., fn] expressions in x and a number (or symbol) x0 #outputs [f1(x0),f2(f1(x0)), f3(f2(f1(x0)), ..., fn(....)]: EvalFC:=proc(L,x,x0) local i,L1: if nops(L)=1 then RETURN([subs(x=x0,L[1])]): fi: L1:=[op(1..nops(L)-1,L)]: L1:=EvalFC(L1,x,x0): [op(L1),subs(x=L1[nops(L1)] , L[nops(L)])]: end: #EvalFCdiff(L,x,x0): inputs a functional chain L, variable x, and number or symbol x0 #outputs the derivative of EvalFC(L,x,y) w.r.t y and y=x0 # EvalFCdiff:=proc(L,x,x0) local i,Ld,M,L0: L0:=EvalFC(L,x,x0): Ld:=[seq(diff(L[i],x),i=1..nops(L))]: M:=[subs(x=x0,Ld[1])]: for i from 2 to nops(L) do M:=[op(M), subs(x=L0[i-1] ,Ld[i]) ]: od: convert(M,`*`): end: #SumCoeff(A): the sum of the coefficient in a + expressin SumCoeff:=proc(A) local su,i, lauren: su:=0: if not type(A,`+`) then RETURN(FAIL): fi: for i from 1 to nops(A) do lauren:=op(1,op(i,A)): if type(lauren,integer) then su:=su+lauren: else su:=su+1: fi: od: su: end: