• VN(A,x,y): inputs a matrix A , m by n say, where player Row has m different strategies and player Column has n different strategies and the payoffs are A[m][n] and -A[m][n], respectively. Outputs the expected gain for Row (alias minus expected gain for Column) if they play a mixed strategy x and y

  • VN2(A,x,y): the payoffs for 2 by 2 matrix and strategies [x,1-x], [y,1-y]

  • RP(n): a random point in [0,1]^n

  • RD(n): a random distance between 2 points in the n-dim unit cube

  • RD(n): a radom distance in n-dimensions

  • RD(n): the average of the distances between two random points in [0,1]^n done N times MC:=proc(n,N) local i: add(RD(n),i=1..N)/N: end: #RC3(): the exact value of the 3-dim Robbins constant RC3:=proc() local x,y,z: int(int(int( sqrt(x^2+y^2+z^2)*(1-x)*(1-y)*(1-z)*8,x=0..1),y=0..1),z=0..1); end: #RC3e(): The excact value of the Robbins constant (due to David Robbins) RC3e:=proc() 1/105*(4+17*sqrt(2)-6*sqrt(3)+21*log(1+sqrt(2))+42*log(2+sqrt(3))-7*Pi) end: #RC2(): the exact value of the 2-dim Robbins constant RC2:=proc() local x,y: int(int( sqrt(x^2+y^2)*(1-x)*(1-y)*4,x=0..1),y=0..1); end: #RC44(): the exact value of the 4-dim Robbins constant RC4:=proc() local x,y,z,w: int(int(int(int( sqrt(x^2+y^2+z^2+w^2)*(1-x)*(1-y)*(1-z)*(1-w)*16,x=0..1),y=0..1),z=0..1),w=0..1); end: