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 A MOTIVATED ACCOUNT OF AN ELEMENTARY PROOF
 OF THE PRIME NUMBER THEOREM

 NORMAN LEVINSON, Massachusetts Institute of Technology

 1. Introduction. One of the most striking results of mathematics is the
 prime number theorem first conjectured, independently, by Gauss and Legendre
 prior to 1800 and proved, independently, by Hadamard and de la Vallee Poussin
 in 1896. Among the many great mathematicians of the 19th century who did
 not succeed in proving the theorem were Chebychef and Riemann, both of
 whom obtained important partial results. Riemann indicated that the prime
 number theorem was related to the behavior of the zeta function in the complex
 plane and found many properties of this function which has since borne his
 name. Riemann's ideas were exploited and augmented in the proofs of Hada-
 mard and de la Vallee Poussin.

 In 1949, P. Erdos and A. Selberg, using a formula previously proved by Sel-
 berg in an elementary way, jointly succeeded in giving several elementary proofs
 of the prime number theorem, [3]. While elementary, neither these proofs, nor
 another one of Selberg [6], are simple.

 With the tremendous proliferation of mathematics, many mathematicians
 no longer study number theory. Therefore it seems worthwhile to give a self-
 contained and motivated account of an elementary proof of the prime number
 theorem.

 The prime numbers (2, 3, 5, 7, 11, 13, ) were known to ancient man and
 in Euclid there is a proof that they are infinite in number. The number of primes
 not exceeding x is called 7r(x) and can be represented by

 (1 . 1)(x) = E 1

 where the symbol p runs over the sequence of primes in increasing order. The
 simplest form of Legendre's conjecture was

 zr(x)
 (1.2) lim = 1.

 x x/logx

 Gauss' conjecture has turned out to be more profound and was that ir(x), for
 large x, is close to f2 dt/log t. He arrived at this by observing from a tabulation of
 prime numbers that the primes seemed to have an asymptotic density which at
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 226 THE PRIME NUMBER THEOREM [March

 x was 1/log x. Because of this, for some purposes a better way to find the asymp-
 totic behavior of the primes is to weight each p with log p. This is done in the
 function

 (1.3) 6(x) log p

 Actually it turns out to be even more convenient to use not 0(x) but a closely re-
 lated function i(x) as will be seen.

 The account that follows begins with the factorization of an integer into the

 product of powers of primes and proceeds with motivated proofs of the relevant
 discoveries of the 19th century in sections 2 and 3. This approach is continued in
 section 4 to prove Selberg's formula, and finally in section 5 where an exposition
 of proof of Selberg [6] is given as simplified by Wright [4], [9], and further sim-
 plified by the author [5].

 The elementary proof of the prime number theorem has been extended to
 give elementary proofs of sharper forms of the theorem with a remainder by

 Breusch [2], Bombieri [1], Wirsing [8] and others. I am indebted to George B.
 Thomas for a critical reading of the manuscript.

 2. The Chebychef identity and its inversion. Our starting point is that a
 positive integer can be factored into a product of powers of distinct primes. Thus

 a positive integer

 kl 2 lOn (2.1) nf == P1P2 . km.p
 where the pj, 1 <j ! m, are distinct primes and each kj is a positive integer. Be-
 cause addition is simpler than multiplication a more useful form of (2.1) is

 (2.2) log n = ki log pi + k2 log p2 + * * + km log pm.

 The utility of this formula is very much enhanced by the use of the von lMan-
 goldt symbol A(n), introduced in 1895, which is defined by

 (2.3) A(n) = log p for n = pi,

 where p is a prime number and j is a positive integer, and A(n) 0 otherwise.
 Thus A(n) 0 only if n is a power of a prime.

 The symbol iln will be used to denote a sum on j where j runs through all of
 the positive divisors of the positive integer n. With this notation it will be shown
 that (2.2) can be written as

 (2.4) logn = A(j).
 fin

 To prove (2.4) note that because of (2.1) and the definition of A(j), the only non-

 zero terms that can appear on the right side of (2.4) are log pi, log P2, * * log
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 1969] THE PRIME NUMBER THEOREM 227

 pm. Moreover log Pi appears for j Pi, for jpl, = p , and for j-pki Thus log
 Pi appears exactly k, times; similarly log P2 appears k2 times, etc., which shows
 that (2.4) is a consequence of (2.2). The formula (2.4) is an extremely powerful
 variant of (2.1) and incorporates the properties of prime numbers which are
 needed here. The transformation of (2.2) into the form (2.4) is not obvious and
 historically came relatively late.

 The formula (2.4) can be written in the equivalent form

 (2.5) log n = E A(j),
 ij=n

 where i and j are positive integers each of which takes on all possible values
 satisfying ij = n, so that indeed j runs through all positive divisors of n (as does
 i also).

 The number of primes up to x, 7r(x), is closely related to the sum

 (2.6) A(x) = A(j).
 jSz

 From the definition of AUj),

 V(x) = E log p + E log p + E log p + * * * 0(X) + 0(xl12) + 0(x1/8) +
 p:Sw p2;j p3--;

 The function f(x), expressed in the latter form, was already known to Cheby-
 chef, who gave a simple proof that the prime ntumber theorem (1.2) is equivalent
 to

 (2.7) lim ( 1.
 _X -+0 x

 This proof will be given in Lemma 3.4 and (2.7) will be proved in Section 5.

 (Roughly speaking, Vt(x) acts like 7r(x) log x for large x because {1(x) counts each
 p ?x with weight log p, (2.3), and because log p is close to log x for "most" of
 the p ?x. True, 4fr(x) also counts log p again for p <x112, for p !xl/', etc., but these
 last are very sparse as will be seen later in the proof.)

 To use (2.5) to get information about {(x), (2.5) is summiied on n?x to get
 Encx log n -EAEij A(j), so that if one defines

 (2.8) T(x) = E log n,
 ns

 then

 (2.9) T(x) = EA(j).

 Because the logarithm is a smooth function, T(x) can be readily appraised for
 large x, and this will be done in (3.4).
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 228 THE PRIME NUMBER THEOREM [March

 The double sum in (2.9) is taken over those lattice points in the positive

 quadrant of the (i, j) plane which lie on or below the hyperbola ij =x. If the
 double sum (2.9) is treated as a repeated sum, summing first on j

 T(x) = X , A?j) = E0(x/i).
 i$g j;gxli i;g

 This identity was discovered by Chebychef (1850) and will be rewritten as

 (2.10) T(x) = ,+(xln).
 n?z

 The Chebychef identity (2.10) is really a transform relationship. It suggests
 that given a function F(x), defined for x> 1, one defines a related function
 G(x) for x>1 by

 (2.11) G(x) = , F(x/n) = F(x) + F(x/2) + F(x/3) + * F(x/[x]),

 where as usual [x] is the largest integer not exceeding x. G(x) may be regarded
 as a transform of F(x). G is seen to be a linear homogeneous function of F. Trans-
 form relationships are among the most powerful tools of the mathematician
 and this one is no exception.

 Since T(x) is a comparatively simple function, it is of interest to try to in-
 vert the relationship (2.10) to express +1(x) in terms of T, or in the more general
 notation, to try to invert (2.11) to find F in terms of G. To solve for F in terms of
 G, a first modest step would be to eliminate F(x/2) from the right side of (2.11).
 This is easily done by writing (2.11) with x replaced by x/2 to get

 G( =F 2 +4 F 4) + 6+-
 Subtracting the above from (2.11) would eliminate F(x/2). This process can be
 extended at once by writing (2.11) with x replaced by x/2, then by x/3, etc., to
 get

 G(x) =F(x) +F (2 )+F( 3 )+F( 4 )+( 5 )+( 6 )

 (2.12) G()= F() +F ( )

 G( )F ( F ) +

 (4 )(4)
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 1969] THE PRIME NUMBER THEOREM 229

 Gx F(- +@
 (2.12) F~

 G F- = +

 If one uses the equations in sequence one can first eliminate F(x/2), then
 F(x/3), then F(x/4), etc., from the right. For example up to G(x/6) one gets

 F(x) = G(x) - G(~ - G ()- G ()+ G ()+~
 (2 ) (3 ) (5 ) (6)

 This suggests, and indeed, because of the diagonal form of the right side of
 (2.12), actually proves that (2.11) can be inverted by a formula of the type

 (2.13) F(x)= E (k)G(
 legm k

 where the ,(k) remain to be specified, (Mobius, 1832). To determine the j(k)

 note that by (2.11) G(x/k)= Ej6,1kF(x/jk) which in (2.13) gives

 F(x) = E u(k) , F(x/jk) = E /(k)F(x/jk).
 kgx jzl/k jkgx

 If this double sum i's summed first on the lattice points on the hyperbolas jk = n

 and then for n, 1 < n < x,

 (2.14) F(x) = ZF(x/n) E Z(k).
 n;gx jk=n

 The equation (2.14) becomes an identity if ,u(1) =1 and, replacing jk = n by
 ki n, if

 (2.15) A s(k) = O, n > 2.
 lin

 Setting n=2, 3, 4, etc. successively determines the pt(k) uniquely. To find the
 ,x;(k) explicitly try the case n = p to get k =1 and k = p which gives ,u(1) +,u'(p) = 0
 and hence j(p) =-1. The case n= P1P2 gives

 u(1) + Ah(pl) + A(P2) + A(PIP2) = 0

 and hence g(P1P2) = 1. Similarly it is easily found that

 (Plp2p3) =-1, p(p2) = 0, 4p3) = 0, A.. (p2 P2) = 0

 This suggests that
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 230 THE PRIME NUMBER THEOREM [March

 (2.16) g(n) = (- 1)m, n = P1P2 ... pm,

 where pl, p2, * I Pm are all distinct primes and

 (2.17) A.(n) = 0 if p2j n,

 where as usual p is a prime. The function IA(n) is known as the Mobius function.
 It will now be proved that if ui(n) is defined as in (2.16) and (2.17) above, then

 (2.15) is indeed valid. We recall that the solution of (2.15) was unique. Because
 of (2.17) for n-= ppk ... p.-

 E AU)= A (),
 j l n i I P1P2 - -Pm

 so only the right side need be treated to prove (2.15). If m = 1, (2.15) is true

 since ,u(1)=)1 and ;z(p) -1. If m 2 2

 (2.18) E 14]) = E (&(k) + u(kpm)).
 ilp .. P M k *p ... J p m P-1

 But from (2.16) if k in (2.18) is the product of r primes

 i.(kpm) (1)r+1 = A 1(k).

 Hence each term on the right of (2.18) is zero and so (2.15) is proved. Moreover
 by (2.16) and (2.17)

 (2.19) 1,(n)I <1
 (which is the only use we shall make of the material which begins after (2.15)
 and ends with (2.19)).

 Applying the Mobius inversion formula (2.13) to Chebychef's identity (2.10)
 gives the inversion formula

 (2.20) At'(x) -j(k)T

 Using the definitions of V/ and T this can be written as

 EA(n)= 1L(k) E logj = , u(k) logj j (k) logj
 n?x kSx jsxlk jk;gx njx jk-n

 - E /(k) log n/k.
 nsgz kIn

 Used for x=1, 2, 3, * the above proves that

 (2.21) A(n) = E /(k) log n/k, n : 1,
 kin

 which is the inversion formula for (2.4). The referee observes that one could
 also show (2.21) directly using (2.4) and (2.15).
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 19691 THE PRIME NUMBER THEOREM 231

 3. Some elementary results. Although those results concerning prime

 numbers that follow were all discovered in the 19th century, some were not
 found until as much as 70 years after the prime number theorem was first con-
 jectured by Legendre and Gauss.

 It will be convenient to use the following well-known lemma in which, as

 usual, [x] is the largest integer not exceeding x.

 LEMMA 3.1. Let f(t) have a continuous derivative, f'(t), for t _ 1. Let c", n 1,
 be constants and let C(u) =-E., c.. Then

 (3.1) Cnf(n) = f(x)C(x)- ff(t)C(t)dt
 n;sx

 and

 (3.2) 2f(n) = f(t)dt + (t -[t])f'(t)dt +f(l) - (x - [x])f(x).

 Proof. C(n) - C(n -1) xc and C(u) C([u ]) since C(u) is a step function.
 Thus if [x]-N,

 E Cff,f(n) (C(n) - C(n - 1))f(n)
 n6x n6x

 E z C(n)(f(n)-f(n + 1)) + C(x)f(N)
 n 5z-1

 rn+l

 C (n) I f'(t)dt + C(x)f(N)
 ngx-1 l

 r N
 = C(t)f'(t)dt + C(x)f(N).

 Since C(t) is constant on N < t <x,

 fC(t)f'(t)dt = C(x) (f(x) - f(N)).

 Adding this to the previous equation and transposing the integral on the left side
 to the right proves (3.1).

 In case C",= (3.1) becomes

 S f(n) = [x]f(x) - f '(t) [I]dt

 = [X]f(x) - f '(t)tdt + f(ftQ() - [t])dt.

 Integrating the first integral on the right by parts proves (3.2).
 It will be convenient to use the following notation. Suppose f(x) is bounded
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 232 THE PRIME NUMBER THEOREM [March

 for finite x and that there is a constant K and a g(x) such that for large x

 If(x)I <Kg(x);
 then this will be denoted by

 (3.3) f(x) = O(g(x))

 and, where convenient, f(x) will be replaced by the right side above.
 Applying (3.2) to f(t) = log t and using 0 t- [t] < 1 gives

 (3.4) T(x) = x log x-x + O(log x),

 which is a weak form of Stirling's formula.

 LEMMA 3.2. (Chebychef 1850). For large x

 (3.5) P(x) < !X.

 Proof. Using Chebychef's identity (2.10)

 T(x) - 2T(x/2) = y6(x) - qt(x/2) + V,b(x/3) - 4/(x/4) +* > VI(x) -(x/2)

 because %t(x/(2n -1)) -iV(x/2n) > 0 since A/ is monotone nondecreasing. Using
 (3.4), +1'(x) -+f1(x/2) <x log 2+K log x, x> 2, for some constant K. Applying the
 above with x replaced by x/2',

 (3.6) ( - log 2 + K log x

 so long as x/21> 2 which implies j <log x/log 2. Recalling that VI+(t) =00, t<2, and
 adding (3.6) for 0 <j<log x/log 2,

 1 1 ~ ) log X
 Vt(x) x log 2 (1 + 2 + 22 + - + K log x \222 ~~~~~log 2

 = 2x log 2 + K log2 x/log 2.

 Since log 2 <.7 this proves (3.5).

 LEMMA 3.3. (Proved 1874 by Mertens in a slightly different form.)

 A(n)
 (3.7) = log x + O(1).

 nx fn

 Proof. In the double sum (2.9), sum first on i and then on j, (the opposite of
 what was done in the derivation of (2.10)), to get

 T(x) = A(j) E 1 = A(j)
 (3.8) j'X i:g"1j i:$ J

 A(j) -X A(j) (4- [4]) jX A (j) x
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 1969] THE PRIME NUMBER THEOREM 233

 Moreover

 (3.9) A i( * [*]) - A A(j) = VI (x) = O(x)
 by (3.5). Using this and (3.4) in (3.8) proves (3.7).

 LEMMA 3.4.

 /x log log x\
 (3.10) V/(x) = 7r(x) log x + 0 1 - l

 log x

 so that (2.7) is equivalent to the prime number theorem.

 Proof. From its definition (2.6) and from (2.3),

 (3.11) 4t'(x) = Elogp+ E logp+ E logp+*.,
 p-gx p-gx 112 p6xI/3

 where the sums p <x'/i above are not zero only if xI/i >2 or if j<log x/log 2.

 Hence P()<F 0 log x E lgP Hence y6J(x)?_ zlogp + Y S logp.
 p;gx g P + log 2 pJs1/2

 From the definition (1.1) of 7r(x) this gives

 \&6(x) ? log x 7r(x) + l 2 (x/2) logx/2.
 log 2

 Since 7r(y) < y, the above gives

 x112 log2 x
 (3.12) V/(x) < log x r(X) + 2 log X

 2 log 2

 By (3.11)

 s6(x) > logp _ log( 2) E
 x/jog2X<pgx logxx/1og2x<pgx

 -log (lo2 X) (X) (g2

 Since 'r (y) < y, this gives

 iJ>(x) x

 logx - 2 log log x log2 X

 or

 log x x
 'T(x) log x < O(x) +

 logx - 2 log log x log x
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 234 THE PRIME NUMBER THEOREM [March

 2 log logx x

 log x - 2 log log x log x

 Using (3.5) and 2 log log x < (log x)/4 for large x,

 4xloglogx x
 (3.13) 7r(x) log x ? AI(x) + + -

 log x log x

 which with (3.12) proves the lemma.

 It will be useful later to apply (3.2) to f(t) t1/.

 LEMMA 3.5.

 (3.14) 1/n = log x + 'y + 0(1/x),
 ncx

 where y is a constant (Euler's constant).

 Proof. Applying (3.2) to f(t) = -/t

 1 x -[XI] -111]
 E -=log x- + 1 dl d.

 If

 (3.15) z-y -f [ dt,
 12

 then EnSg 1/n = log x+'y+H, where

 yf= t[tIl dt- _ x[x] = +
 00 t2[t x [Xx

 since 0_ t- [t] < 1, which proves (3.14).
 REMARK. From (3.15), 0 <,y < 1.

 4. Selberg's elementary inequality. The Mobius inversion formula (2.20)
 which expresses il in terms of T will now be used in an attempt to find how {f(x)
 behaves for large x. The computation will be simplified if it is possible to find a
 simple F(x), say };(x), with a transform C(x) which is close to T(x). In that case
 subtract the Mobius inversion formula for I (2.13), from that for it:

 (4.1) IP (x)- i(x) =/(k) (T(k (k)
 if the right side could be shown to be small, then +/(x) would be close to

 If it were proved that +P(x)/x-1, then +/'(x) would be close to x for large x.
 This suggests one try P(x) = Fo(x) =x. Hence Go(x) = ? Fo(x/n) =x Jnx n%-l
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 1969] THE PRIME NUMBER THEOREM 235

 which by (3.14) becomes Go(x) =x log x+7x+0(1). This is not close enough
 to T(x) as given by (3.4). As a refinement let P (x) F1(x) =x-C where C is a
 constant. (There are many choices other than C that would work here.) Then

 Gl(x) =Ix --C E1 log x + x + 0(1)-C[x]

 =x log x- (C- y)x + 0(1).

 Hence if C-=1 +'y then by (3.4)

 (4.2) T(x) - GI(x) = 0(log x)

 which is comparatively small. Using (4.1) with I xx- C

 (4.3) {(x) - x + C = E /t(k) (T(-) G-

 Even if the right side of (4.2) were in the stronger form 0(1) (which is false),

 the fact that (by (2.19)) | ,u(k) I _ 1 would imply only that the right side of (4.3) is
 O(x). Thus the inversion formula (4.3) gives, not the prime number theorem, but
 at most the much weaker result

 (4.4) +1 (x) = 0(x),

 (already proved more simply in Lemma 3.2). Actually (4.3) does give (4.4) as
 the following cr4ude argument shows.

 Since the logarithm grows more slowly than any positive algebraic power,
 log x = 0(x112). Thus, for example, (4.2) implies the much weaker result

 (4.5) T(x) -Gl(x) 0(x112).

 Using this and I IA(k) | < 1, there is a constant K such that the right side of (4.3) is
 dominated by

 Kx112 E k- 12 < Kx12 (1 + E f:U-1I2dU)
 (4.6)k5 k5 k-

 . Kxl12 1 + r-1/2du) 0(x)

 which does in fact prove (4.4).
 Thus the Mobius inversion of Chebychef's formula yields only the crude re-

 sult (4.4), and herein lies the reason for the long delay in the discovery of an
 elementary proof of the prime number theorem.

 Note that the crude result (4.5) serves just as well as the much more refined
 (4.2) in appraising the right side of (4.3). This suggests the following idea.

 In the MV1obius inversion formula

 (4.7) F(x) = , p (k) G
 kb52 k

This content downloaded from 128.6.218.72 on Sun, 04 Feb 2018 18:34:20 UTC
All use subject to http://about.jstor.org/terms



 236 THE PRIME NUMBER THEOREM [March

 (where for us F=I-x+C and G= T-G1), we can increase the terms in the sum
 on the right side somewhat since doing so will not change the crude appraisal
 0(x), (4.6), for this side. On the other hand, a judicious increase of the terms on
 the right side might possibly replace F(x) (and hence +f(x)) on the left side by
 some growing function multiplied by F(x), which would then make the appraisal
 O(x) for the right side useful.

 A little experimentation shows that the simplest case to compute explicitly
 is where the right side of (4.7) is replaced by

 (4.8) J(x) = A(k) log - G

 This must now be computed in terms of F. From the definition of G,

 J(x) = Eut(k) log- F(-)
 kgx k j:x/k\ k

 = L g(k) log- F-)= = F (-) (k) log- jk5x k jk nx\x njk-n k

 =F, F (-) ,u(k) log--
 n:5x n kln k

 Using log x/k =log x/n+log n/k

 l\ x
 (x) = F -) log- E (k) + E F E 4(k) log-

 n:5x n n kln ns5 n In k

 By (2.15) and (2.21) this becomes J(x) = F(x) log x+ E F(x/n)A(n). With
 (4.8) this gives

 (4.9) F(x) log x + F ( A)(n) = E,u(k) log-G
 n:5x n ks:5x k k

 and this is the Tatuzawa-Iseki identity [7] which leads easily to the inequality of
 Atle Selberg. Indeed by (4.2)

 log x(T(x) - Gl(x)) = 0(log2 x) = 0(x1"2)

 and hence as already shown in (4.6)

 E 8(k) log T - )G= 0(x).

 Thus (4.9) with F(x) =+I(x) -x+C becomes

 (4.10) (It(x) - x) log x + EA( (-)--)A(n) = O(x),
 n: X
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 1969] THE PRIME NUMBER THEOREM 237

 where use is made of (4.4) to incorporate C+(x) together with C log x in O(x).
 (4.10) is a form of the famous inequality of Atle Selberg [6].

 Because of Lemma 3.3, (4.10) can be written as

 (4.11) {/(x) log x + E A(n)if(x/n) = 2c log x + O(x).
 n;gx

 With Cn=A(n), (3.1) and (3.5) yield

 (4.12) E A(n) log n = A(x) log x - dt = I(x) log x + O(x).

 Also

 (4.13) A(j) -I = A(j) E A(k) = E A(j)A(k).
 jSx \.J/ jgx kscxJj jk ,x

 Thus if

 (4.14) A2(n) = A(n) log n + E A(j)A(k),
 jk=n

 then (4.12) and (4.13) in (4.11) yield Eg;,A2(n) =2x log x+O(x) as an equiva-
 lent to (4.11). By (3.4) n log n=x log x+0(x). Combining the above two
 inequalities,

 (4.15) Q(n) (A2(k) - 2logk) = 0(n), is > 2, and Q(1) = 0.
 ksn

 S. Proof of the prime number theorem. If R(x) ={V(x) -x, x _ 2, and R(x) = O,
 x<2, then (4.10) becomes

 (5.1) R(x) log x + E A(n)R(x/n) = O(x),

 where the summation is self terminating since R(x/n) = 0 for n >x/2. The goal
 (2.7) takes the form

 R(x)
 (5.2) limr = 0.

 Z-+co X

 The derivation of (5.2) from (5.1) is complicated because the weights A(n) in the
 weighted sum in (5.1) depend on the location of the prime numbers which is just
 what we are trying to find. Because of this complication no easy derivation of
 (5.2) from (5.1) has been found.

 The proof that follows uses several smoothing operations on (5.1) to get a
 more tractable inequality. Most of these smoothings involve a loss of informa-
 tion, and the objective is to smooth for tractability but not to degrade (5.1)
 completely.
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 First R(x) will be replaced by the smoother

 (5.3) S (y) = (x)& y >: ;2

 S(y) = 0, y <2. Fortunately it is easy to show, as will be done later, that (5.2) is
 implied if we can prove

 (5.4) lim S(y)= 0.
 Y &m Y

 LEMMA 5.1. 7There exists a constant c such that

 (5.5) IS(Y)I ?CY 2
 and

 (5.6) 1 S(y2) - S(y1) C Cj Yl - Y21

 Moreover a consequence of (5.1) is

 (5.7) S(y) log y + E A(j)S(-) = 0(y).

 Proof. From (3.5), -xi(x) - x5 12x for large x. Hence

 (5.8) R(x) I 1
 z -*+co X

 and, since I R(x) I is bounded for finite x, there must exist a constant c such that

 (5.9) | R (x) I !-- cx, x >! 2.
 By (5.3) S'(y) =R(y)/y except at y pi where R(y) is discontinuous. By (5.9)
 then

 (5.10) S'(y) < c, y z PI

 Hence, first for the case where the interval Yi <Y <Y2 contains no pi, (5.6) is true.
 However since S(y) is continuous, the fact that the magnitude of a sum is less
 than or equal to the sum of the magnitudes, allows (5.6) to be extended for all
 y, and Y2. The condition (5.6) is known as a Lipschitz condition. The result (5.5)
 follows from (5.6) with y, 2.

 Since |al - I b|l S I a-b, (5.6) yields

 (5.11) IS(y2)I - IS(Y1)H C cIy2-yl .

 To prove (5.7), divide (5.1) by x and integrate to get

 (5.12) -log x dx + A(n)f R () = 0(y).
 2 XI2 n x
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 Integrating the first term by parts

 _v R(x) 8 s(X)
 I R(x) log x dx= logyS(y) - dx log y S(y) + O(y)
 x2 X S 2 X

 by (5.5). Also if =x/n

 v ( X ) dx f8/n R(t) ( yS
 n .r 2

 These in (5.12) prove (5.7).
 To make the weighted sum in (5.7) more tractable, the density of the set of

 points where S(y/j) actually appears in the sum will be increased by iterating

 (5.7).

 LEMMA 5.2. With A2 (n)-A (n) + A (i)A (j) as in (4.14) and K1 a constan t

 (5.13) log2 yI S(y) i < E A2(M) I S(y/m) + k Iy log y.
 Proof. Replace y in (5.7) by y/k, multiply by A(k), and sum for k 5y to get

 A(k)S Yk log k + A(k) A(j)S(i-k) = k(Y) E k

 Setting jk = m in the second sum and summing on m, and setting log y/k
 =log y -log k in the first sum and replacing this latter k by m,

 log y ,2 A(k)S ( - Y) S (-) {A(n) logi - A(j)A(k)} O(y log y)
 k: M.y m jk=,m

 where (3.7) is used to get the right side. The first sum above is now replaced by
 use of (5.7) to give

 S(y) log2 y =- A {(m) log - A(j)A(k) + O(y log y).
 m ~~~~~~jk=ni

 Replacing all terms in the sum on the right by their magnitude gives (5.13).
 The inequality (4.15) suggests that on the average A2(m) acts like 2 log m.

 A weighted sum with weights 2 log m is quite tractable and this suggests modi-

 fying (5.13) by replacing A2(m) by 2 log in.

 LEMMA 5.3. There is a constant K2 such that

 (5.14) 1og2 yX S(y) I < 2 ? I S(y/n) I login + K2ylogy.
 Proof.

 (5.15) , |S(y/nm) A2(m) = 2 S |(y/n) I logim + J(y)
 mz.I
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 where, since by (4.15), A2(m)-2 log m=Q(m)-Q(m-1),

 J(y) = E (Q(m) - Q(M - 1)) I S(y/m) I
 WSW

 -E Q(m I S(y/m) - Q(m I S(y/(n + 1))

 - E Q(m)( I S(y/m) I - I S(y/(m + 1)) I)

 since S(y) =0, y <2. Using (4.15) and (5.11) there is a constant K3 such that

 J(y) < K3 E xn(Y _
 2:!m< m m+ 1

 1 r /dv
 -K3y < K3y -= K3y log y.

 2<m<y m + 1 .1 v

 This and (5.15) now prove that (5.14) is a consequence of (5.13).
 There is a further simplification in replacing the sum in (5.14) by an integral.

 LEMMA 5.4. There is a constant K4 such that

 (5.16) log2yIS(y) ? 2f IS(y/u)I logudu+K4ylogy.

 Proof. Since log u is increasing

 > +l
 log mI S(y/m) | < f log uI S(y/n) du.

 m

 On the right use / S(y/m) I 1 S(y/u) | + I S(y/m) - S(y/u) to get

 log m I S(y/m) I < log u I S(y/u) I du + Jm

 (5.17) m. m+1

 Jm = .Jm log u S(y/n) - S(y/u) I du.

 Using (5.6)

 / Y \ +l r cy log (n + 1)
 J. < c --}I log u du _ m + 1/Jm (d + 1)

 Since log (m+ 1) ?m, the above in (5.17) gives

 log mS()| log u S dy + cy
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 Using this in (5.14) now gives (5.16) with K4=K2+c.
 The inequality (5.16) assumes a simpler form with an exponential change of

 variable. Replace u by v = log y/u. Also let x = log y. Then (5.16) becomes

 f x-log 2

 (5.18) x S(ex) | ? 2 I S(es) I (x - v)e(T)dv + K4xex.

 If

 (5.19) W(x) e-xS(ex)

 then (5.18) becomes

 2 rz K4
 (5 20) W(x)I - 2 (x - v) I W(v) I dv +-

 x2o x

 This inequality contains valuable information since it says in effect that W(x) |

 is dominated by a weighted average of I WI. This has as a consequence the fol-
 lowing lemma. (Note that y below is not Euler's constant.)

 LEMMA 5.5. Let

 (5.21) a = limsup I W(X) I1 = lim sup-J I W(t) Ijd;
 X--+ 00 X~~~-4+00 X o

 then a < 1 and

 (5.22) a < 'Y.

 REMARK. Recalling (5.4) and (5.19), our goal now is a = 0.

 Proof. That a < 1 follows from (5.19) and the fact that (5.8) and (5.3) imply
 that

 (5.23) limsup I S(y) I ? 1.
 !I-+O 00

 The key result 7 !a will be proved by use of (5.20) and this is the only use that is
 made of Lemmas 5.2, 5.3 and 5.4. Note that (5.20) can be written as

 (5.24) | W(x) I = u dus f W(v) I dv) +K
 x 2 a u x

 as can be verified by inverting the order of integration. But

 2 r
 udu ==1

 x2J

 and hence the integral on the right of (5.24) is simply a weighted average of

 (1/u)fou I W(v)Idv=(1/u)fo e-v S(ev)I dv<c by (5.5). Hence for any fixed xi
 and x>x1,
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 1() + u du (+ I W(v) I dv)

 (5.25)

 < Ju du?+ - u du - IW(v)j dv)

 Given E >0, for sufficiently large x1,

 1 ru

 W(v) I dv < oy + e u >'xi

 from the definition of y. Hence (5.25) gives

 2 2
 cxl

 I(X) <-+ (+ 1
 x2 x

 Thus for large x, (5.24) yields
 2

 < y c cxl K4 14(x) 1 _ K x2 x

 Letting x-+oo, a <'y+e, and since this is true for all e> 0 it implies (5.22).
 Two more facts are required about W to prove that a =0.

 LEMMA 5.5. If k = 2c then

 (5.26) W(x2) -W(xl)I < k| x2 -XIl|
 and hence

 (5.27) W(x2) - W(xi) k x2 -

 Proof. Since W(x) = e-xS(ex),

 I W'(x) < e-x I S(ex) + I S'(e-) x 7jlog p.

 Hence by (5.5) and (5.10), I W'(x)j < 2c-k for x j log p. This leads to (5.26)
 just as (5.10) led to (5.6).

 LEMMA 5.7. If W(v) O0 for V1 <V <V2, then there exists a number M such that

 (5.28) f | W(v) I dv < M, W(v) ? O, vI < v < v2.
 V1

 Proof. From (3.1) letting cn =A(n) and f (n) = 1 /n (3.7) implies

 f( dt-= log x + 0(1),

 or since R(t) -i(t) t,
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 (5.29) R(t) di = 0().

 But

 I -(y) C dy Y R(t) C= R(t)/( dy\
 2 dy= di 1k 2y dt 2Y2 YS 2 t Y2

 dt - -dt. t2 !

 Using (5.29) and (5.9), f '(S(y)/y2)dy =O(l), or letting y= e", x = et,

 f1og2 W(u)du = 0(1).

 Writing this for v =v1 and v =v2 and subtracting, the resulting integral is bounded
 and hence there is a constant M such that

 V2?M
 | (W(u)du | < M.

 But if W(u)7AO, v1<u<v2, this can be written as (5.28). Since M can be in-
 creased if convenient it can be assumed Mk > 1.

 LEMMA 5.8. A function W(x) subject to the three conditions (5.22), (5.27) and
 (5.28) must in fact have a=0.

 Proof. Choose 3 > a. Then from the definition of a there exists an xp, such that

 (5.30) IW(x)I x 2 .

 If W(x) O for all large x it follows from (5.28) that y = 0 and hence that a = 0.
 Suppose then that W(x) has arbitrarily large zeros. Let a and b be successive
 zeros of W(x) for x>x x.

 CASE 1. b-a>2M/I. By (5.28), since W(x)00, a<x<b,
 ,b

 f IW(x) MM<1(b-a)j. a

 (Hence the average of I WI on (a, b) is less than 2fl.)
 CASE 2. b-a< 23/k. In this case it follows from (5.27) that if the graph of

 | W(x) I rises as rapidly as possible going right from x = a and left from x = b, it
 cannot lie above a triangle with altitude k(b -a)/2 5B and hence

 b

 IW(x) I dx :5 ;-(b -a)|8.

 CASE 3. 23/k <b-a < 2M/l. Reasoning as in Case 2 for a distance p/k from
 each endpoint and using (5.30) otherwise,
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 Jb|W(x) I < A+ (b- a-_2)

 (5.31) =(b-a): ( <1(b a)/3#( 2Mk)
 \ k(b- a)/

 a2

 < (b-a): (1-2Mk

 Since Mk > 1 and since a _ 1, (5.31) is valid in Cases 1 and 2 also. If xl is the first

 zero of W(x) to the right of x, and x the largest zero to the left of y, then (5.31)
 and (5.28) imply that

 y xi ~~~~~~~~~~a2
 fb |W(x) I dx I < W(x) I dx + (-xi)3 (1- ) + M

 o ~~~~~2Mk

 Dividing by y and noting that x _ y,

 1 1 -1 a2 M
 - IW(x) I dx <_-X |W(x) |dx + ,(1-2-Mk -

 Letting y--oo, 7y /<(1 -a2/2Mk), and since 7y >a,

 13( - , 2Mk)

 Since this holds for all 3> oc it must hold for 3 =o. Hence a3 < 0, and since oz > 0,
 this implies oz = 0. Since W(x) = e-zS(ex), this implies that I S(y) I /y->O as y-+oo .
 Hence if given E >0, if y is large enough,

 I S(y) I <f2y.

 Thus S(y(1 +E))-S(y) _ 1 e (y(1 +E) +y) <2y, or

 r y(1+E) R(u)
 J du < 62y.

 Since R(u) =i/(u) -u and ,6 is nondecreasing,

 +P(Y) Y(1+E) p v(1+E)
 J du- du?e2y.

 y(l + e) v

 Hence VI(y)/y < (1 +e)2. Similarly S(y) -S(y(1 -e)) -e2y for large enough y
 leads to 41(y)/y _ (1 -.)2. Since e is arbitrary this proves (2.7).

 Supported in part by the Office of Naval Research and by the National Science Foundation,
 NSF GP 7477.
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 AN INTRODUCTION TO HESTENES TERNARY RINGS

 M. F. SMILEY, State University of New York at Albany

 Dedicated to Marian and Harry

 Introduction. Spectral theory for rectangular matrices goes back to the

 general reciprocal of E. H. Moore [9] and has been studied in some detail by
 Penrose [I0], M. R. Hestenes [2] and Lanczos [7]. In two papers [3, 4] Hestenes
 has cast this theory in the framework of a theory of a ternary operation based
 on the observation that if A, B and C are complex m by n matrices, then so is
 AB*C. The purpose of this brief expository note is to indicate the possibility
 that Hestenes's idea extends to structure theory in the spirit of N. Jacobson

 [5, 6]. R. A. Stephenson [12] has already verified the rudiments of this exten-
 sion. Nonetheless, many interesting questions remain.

 We begin with a quick derivation of Moore's general reciprocal since this is
 the generic idea on which our algebra depends. In order to present an extension
 of the Chevalley-Jacobson Density Theorem (which we obtained jointly with

 R. A. Stephenson), we have taken the liberty of presenting Jacobson's original
 proof [5]. A well-tempered proof due to Tate [Artin, 1 ] is available. One should
 also mention Jacobson's proof in [6] which is based on a theorem very close to
 our extended version even though it involves only ordinary rings.

 1. E. H. Moore's general inverse. Let A be an m by n complex matrix of rank

 r. Because Ax = 0 if and only if A *Ax = 0, A *A is an n by n nonnegative hermi-

 tian matrix of rank r. Let xl, * * *, x. be an orthonormal set of eigenvectors for
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