#hw9.txt, 2/23/14, Anthony Zaleski with(PolynomialTools): Help:=proc() print(`ApplyUmbra(P,x,U,m),PnG(n,x,U,m),GuessCoeff(n,i,U,m)`): print(`GuessRF(L,n),Pn(n,x)`): end: ##########Problem 1: Evaluating linear functionals given action on basis########## #ApplyUmbra(P,x,U,m) plugs the polynomial P(x) #into the linear functional sending x^m -> U(m). ApplyUmbra:=proc(P,x,U,m) local L,i: L:=CoefficientList(P,x): add(L[i]*subs(m=i-1,U),i=1..nops(L)): end: ##########Problem 2: Generalizing Pn for arbitrary functionals########## #PnG(n,x,U,m) finds the unique monic poly P(x) #of degree n s.t. U(P*x^i)=0 for i=0..n-1. PnG:=proc(n,x,U,m) local P,i,a,eq,var: P:=add(a[i]*x^i,i=0..n-1)+x^n: eq:={seq(ApplyUmbra(P*x^i,x,U,m),i=0..n-1)}: var:={seq(a[i],i=0..n-1)}: sort(subs(solve(eq,var),P)): end: #It's easy to check Pn(n,x)=PnG(n,x,1/(m+1),m) for n=1..10. ##########Problem 3: GuessCoeff(n,i,U,m)########## #GuessCoeff(n,i,U,m) inputs a discrete variable n, #a non-negative integer i, an expression U #(describing an umbra) in m, and a variable name m, #and guesses a rational function in n for the #coefficient of x^(n-i) (for n>=i) in PnG(n,x,U,m). GuessCoeff:=proc(n,i,U,m) local N,L,nn,x,Exp: N:=30: L:=[0$N]: for nn from i to i+N-1 do L[nn-i+1]:=coeff(PnG(nn,x,U,m),x,nn-i): od: Exp:=GuessRF(L,x): # note x=1 corresponds to n=i subs(x=n-i+1,Exp): end: #Here is GuessCoeff in action! Beware, for VERY long expressions follow! (* for i from 0 to 7 do GuessCoeff(n,i,1/(m+1),m); print(`_______________________`); od; 1 _______________________ -(1/2)*n _______________________ ((n-1)^3+(n-1)^2)/(8*n-4) _______________________ ((n-2)^4+3*(n-2)^3+2*(n-2)^2)/(-48*n+24) _______________________ ((n-3)^6+7*(n-3)^5+17*(n-3)^4+17*(n-3)^3+6*(n-3)^2)/(384*(n-3)^2+1536*n-3168) _______________________ ((n-4)^7+11*(n-4)^6+45*(n-4)^5+85*(n-4)^4+74*(n-4)^3+24*(n-4)^2)/(-3840*(n-4)^2-23040*n+58560) _______________________ ((n-5)^9+18*(n-5)^8+132*(n-5)^7+510*(n-5)^6+1119*(n-5)^5+1392*(n-5)^4+908*(n-5)^3+240*(n-5)^2)/(46080*(n-5)^3+483840*(n-5)^2+1647360*n-6422400) _______________________ ((n-6)^10+24*(n-6)^9+240*(n-6)^8+1302*(n-6)^7+4179*(n-6)^6+8106*(n-6)^5+9260*(n-6)^4+5688*(n-6)^3+1440*(n-6)^2)/(-645120*(n-6)^3-8709120*(n-6)^2-38545920*n+175392000) _______ for i from 0 to 7 do GuessCoeff(n,i,1/(m+3),m); print(`_______________________`); od; 1 _______________________ (n^2+2*n)/(-2*n-2) _______________________ ((n-1)^3+4*(n-1)^2+3*n-3)/(8*n+4) _______________________ ((n-2)^4+7*(n-2)^3+14*(n-2)^2+8*n-16)/(-48*n-24) _______________________ ((n-3)^6+13*(n-3)^5+63*(n-3)^4+143*(n-3)^3+152*(n-3)^2+60*n-180)/(384*(n-3)^2+2304*n-3552) _______________________ ((n-4)^7+18*(n-4)^6+127*(n-4)^5+450*(n-4)^4+844*(n-4)^3+792*(n-4)^2+288*n-1152)/(-3840*(n-4)^2-30720*n+62400) _______________________ ((n-5)^9+27*(n-5)^8+306*(n-5)^7+1902*(n-5)^6+7089*(n-5)^5+16203*(n-5)^4+22124*(n-5)^3+16428*(n-5)^2+5040*n-25200)/(46080*(n-5)^3+622080*(n-5)^2+2753280*n-9774720) _______________________ ((n-6)^10+34*(n-6)^9+494*(n-6)^8+4024*(n-6)^7+20237*(n-6)^6+65086*(n-6)^5+133636*(n-6)^4+168456*(n-6)^3+117792*(n-6)^2+34560*n-207360)/(-645120*(n-6)^3-10644480*(n-6)^2-57899520*n+243613440) _______________________ *) #Note: Using U=m! took too long. ###########Relevant Old Functions########## #Pn(n,x): the unique momic polynomial of x of degree n #such that int(Pn(n,x)*x^i,x=0..1)=0 for i=0..n-1 Pn:=proc(n,x) local eq,var,i,P,a: option remember: P:=x^n+add(a[i]*x^i,i=0..n-1): var:={seq(a[i],i=0..n-1)}: eq:={ seq( int(P*x^i,x=0..1)=0, i=0..n-1)}: sort(subs(solve(eq,var),P)): end: #GuessRF1(L,d,n): inputs a list of numbers (or expressions) #L, a non-neg. integer d, and a (discrete) variable name #n and tries to guess a rational function of n of degree #d, such that L[i]-R(i)=0 for all i from 1 to nops(L) GuessRF1:=proc(L,d,n) local R,a,b,i,j,eq,var: if nops(L)<=2*d+6 then print(`Make list bigger`): RETURN(FAIL): fi: R:=(n^d+add(a[i]*n^i,i=0..d-1))/add(b[j]*n^j,j=0..d): var:={seq(a[i],i=0..d-1), seq(b[j],j=0..d)}: eq:={seq( numer(L[i]-subs(n=i,R)) =0,i=1..2*d+6)}: var:=solve(eq,var): if var=NULL then RETURN(FAIL): fi: R:=subs(var , R): if {seq( numer(L[i]-subs(n=i,R)),i=1..nops(L))}<>{0} then print(`It worked up to`, 2*d+6, `terms, but that's life `): FAIL: else R: fi: end: #GuessRF(L,n): inputs a list of numbers (or expressions) #L, and a (discrete) variable name #n and tries to guess a rational function of n of degree #<=(nops(L)-6)/2 such that L[i]-R(i)=0 for all i from 1 to nops(L) GuessRF:=proc(L,n) local d, katie: for d from 0 to (nops(L)-6)/2 do katie:=GuessRF1(L,d,n): if katie<>FAIL then RETURN(katie): fi: od: FAIL: end: ###########End of old stuff###########