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INTRODUCTION

MAPLE V® isa very powerful interactive com-
puter algebra system. It is used by students, edu-
cators, mathematicians, scientists, and engineers
for doing numerical and symbolic computation.
MAPLE V has many strengths: (1) it can do exact
integer computation, (2) it can do numerical com-
putation to any (well almost) number of specified
digits, (3) it can do symbolic computation, (4) it
comes with many built-in functions and packages
for doing a wide variety of mathematical tasks, (5)

it has facilities for doing 2- and 3-dimensional plot-

ting and animation, (6) it has a worksheet-based
interface, (7) it has facilities for making technical
documents, and (8) MAPLE V is a simple program-
ming language which means the user can easily
write his/her own functions and packages.

The purpose of this book is to help you get
started using the main features of MAPLE V (Re-
lease 4), the latest version of Maple. It is not an
exhaustive manual. The reader should consult the
MAPLE V reference books when the need arises.
It is best to use this book while at the computer
trying out commands, following examples, and ex-

® Maple is a registered trademark of Waterloo Maple
Inc., 450 Phillip Street, Ontario, Canada N2L 5J2,
1-800-267-6583, (519) 747-2373, Fax: (519) 747-5284,
Email: info.web@maplesoft.com,

Website: http://www.maplesoft.com.

perimenting as you read. This book should be a
sufficient resource for students taking a class that
uses MAPLE V.

MAPLE V itself has built-in help facilities.
Help can be found either through the interactive
Help menu or by using the ? command. For in-
stance, a very short introduction to MAPLE V can
be found by typing ?intro.

The table of contents is organized mainly ac-
cording to mathematical topics starting with using
MAPLE V as a calculator, then doing high school
algebra, calculus, and progressing to more sophis-
ticated mathematics and programming. An im-
portant goal of this book is to show you how to
write simple MAPLE V programs (or procedures).
When this goal is achieved, the reader should ap-
preciate the power of MAPLE V.

In Chapter 1 there is a brief introduction to
the new MAPLE V interface. The reader anxious
to know more about MAPLE V'’s new document
creating facilities can find detailed information in
Chapter 10.

MAPLE V is available on Windows, Macln-
tosh, and UNIX platforms. The author would like
to thank Waterloo Maple Inc. for permission to
include pictures of the maple icons and buttons.

Frank Garvan (frank@math.ufl.edu)
Department of Mathematics, University of Florida,
Gainesville, FL 32611-8105
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1. GETTING STARTED

1.1 Starting a MAPLE V session
In most systems a MAPLE V session is started

by double clicking on the MAPLE V logo &

Double clicking on the New User’s Tour icon
gives you a brief introduction to MAPLE V and its
worksheet environment. In the X Windows ver-
sion, MAPLE V is started by entering the com-
mand xmaple. In the text (tty) version, the Maple
logo appears followed by the > prompt.

In most versions a window with menus will
appear. At the top are the menus File, Edit, View,
Format, Options, and Help. Beneath are two rows
of buttons. The first row of buttons is called the
tool bar and contains 19 buttons:

Create a new worksheet.
Open an existing worksheet.
Save the active worksheet.

Print the active worksheet.

Cut the selection to the clipboard.

-

Copy the selection to the clipboard.

Paste the clipboard contents into the cur-
rent worksheet.




Undo the last deletion.

Insert maple commands.

Insert text.

Insert a new maple'input region after the

Cursor.
Convert the selected subsection into a sec-

tion.

Convert the selection into a subsection.
Interrupt the current computation.

Set magnifcation to 100%.

Set magnifcation to 150%.

Set magnifcation to 200%.

Display non-printing characters.

Resize the active window to fill the avail-
able space.

The next row is called the context bar and contains
four buttons:

Toggle the expression display between
mathematical and maple notation.

Toggle the expression display between in-
ert text and executable maple command.

Auto-correct the expression for syntax.

Execute the current expression.

The > prompt will be in the worksheet window.
Don’t worry about the buttons too much at this

stage.

1.2  Basic syntax

In MAPLE V the prompt is the symbol >.
MAPLE V commands are entered to the right of
the prompt. Each command ends with either “:”
or 7. If the colon is used, the command is ex-
ecuted but the output is not printed. When the
semi-colon is used, the output is printed. Try typ-
ing 105/26: followed by a return (or enter).

> 105/25:

Observe that the output was not printed. Now
type 105/25;

> 105/25;
21/5
Try these
> 105/25-1/5;
4
% ||+1/5;
21/5
> "||;
4




Observe that MAPLE V uses exact arithmetic. The
double quote character " refers to the previous re-
sult. The two double quotes "" refers to the result
before the previous result. It is possible to refer
back 3 lines using """, but one cannot refer back

any further. s

One of the most common mistakes is to omit
the semi-colon or colon:

> 105/26

Warning, incomplete statement or missing
semicolon

> 105/25;

syntax error, unexpected number

Don't panic! MAPLE V has interpreted this
to mean 105/25 105/25 hence the syntax error.
MAPLE V also gave a warning about the missing
semi-colon! If you forget the semi-colon, simply
type it on the next line.

> 105/25
b S
21/5
See section 1.3 for a method for editing mistakes.
Results can be assigned to variables using the

colon-equals “:=".

S
7 i=21/5

4

> G:= -1/5;
G:=-1/5

> g
21/6+4g¢

> #0bserve that Maple is case sensitive.
=, A%G;
4

Note that comment lines begin with #.

1.3  Editing mistakes

MAPLE V has built-in editing facilities. On
most platforms, lines of input can be edited us-
ing the arrow keys and the mouse. Cutting and
pasting is also possible with the mouse. In the
Windows version, you can select input by high-
lighting with the mouse, then you can copy, cut,
and paste by using control-c, z, and v as usual. In
the command-line (or tty) version, MAPLE V has
two built-in editors: emacs and vi. Use the help
command 7editing for more information.

> 105/286
> 105/25:
syntax error, unexpected number

Just click the mouse after 105/25, enter a semi-
colon, and press enter.

> 105/25;
21/5




The vi editor can be invoked using the Esc key.

1.4 Help

In MAPLE V (Release 4) there is a fabulous
interactive help facility. Click on Help and select
Full Text Search ... A little window should ap-
pear. In the Words box, type floating point
then click on Search. A search is then made of the
interactive help manual. A list of topics should
appear in the Matching Topics box. Select evalf
with the mouse, then click on Apply. A help win-
dow should appear with information on the evalf
command.

If you know the name of a command, then you
can select Topic Search ... in the Help window.
Help can also be accessed directly from the work-

sheet. Try
> 7evalf

The evalf help window should appear. In the
tty version, this information will appear below the
cursor.

Now try selecting Balloon Help in the Help
menu. Next move the cursor onto a button and a
little bubble should appear giving a brief descrip-
tion. Keep this option until you are familiar with
the buttons and menus.

The command ?index provides a list of cat-
egories: expression, function, misc., etc. For in-
stance, ?index[function] gives a list of MAPLE

6

V’s standard library functions. For more informa-
t1on on navigating through the worksheet environ-
ment, see ?worksheet [how to].

1.5 Quitting MAPLE Vv

If you are done with your MAPLE V session
click on f The Save As window should appear.
In the File Name box type chi.mws and click on
OK. Your worksheet has now been saved. To quit
maple, go to the File menu and select Exit. Later

you can re-open your worksheet by clicking on e

In the tty version, the easiest way to quit a
Maple session is to use quit.

> quit
2. MAPLE V AS A CALCULATOR

2.1 Exact arithmetic and basic functions

As we noted in Section 1.2, MAPLE V does
ex_act arithmetic. Also, MAPLE V does integer
arithmetic to infinite precision. Try the following
examples:
> 2/3 + 3/5;

19

15
> W= 11)15:

9

15




s 12%90;
3833759992447475122176

The basic arithmetic operations in MAPLE V are

+ addition

- subtraction

* multiplication
Aor #* exponentiation
/ division

MAPLE V also has the basic mathematical func-
tions (and much more) that are available on a scr-
entific calculator.

abs(x) absolute value |z]

sqrt(x) square root /T

n! factorial

sin(x) sine

cos(x)  cosine

tan(x) tan

sec(x)  secant

csc(x) cosecant

cot(x) cotangent

log(x) natural logarithm
also 1n(x)

exp(x) exponential function e

sinh(x) hyperbolic sine

cosh(x) hyperbolic cosine

tanh(x) hyperbolic tan

T

MAPLE V has many other built-in mathemati-
cal functions. For instance, it has the inverse
trig functions (arcsin, arcces, etc.), the Bessel
functions (Bessell), the Riemann zeta function
(Zeta), the gamma function (GAMMA), and the com-
plete and incomplete elliptic integrals (E11lipticE).
For a complete listing, see 7index[functions].

2.2 Floating-point arithmetic

MAPLE V can do floating-point calculation to
any required precision. This is done using evalf.

> tan(Pi/5);

5-2v5
> evalf(");
0.7265425273

Notice that evalf found tan(x/5) to 10 decimal
places which is the default. Also, note that in
MAPLE V, 7 is represented by Pi. There are two
ways to change the default and increase the num-
ber of decimal places.

> E := exp(1): evalf(E,20);

2.7182818284590452354




> Digits := 30;
Digits := 30
> evalf(E);

2.71828182845904523536028747135

Here E is the mathematical constant e, which we
have represented in MAPLE V by exp(1). We
found e to 20 digits using evalf (E,20). The other
method is to use the global variable Digits (whose
default value is 10). After assigning Digits :=
30, we found e correct to 30 digits simply by call-
ing evalf (E). We reset the default and calculated

sin(7/6).
> Digits := 10:
> evalf(sin(Pi/6));

0.5000000000
> convert(",rational);
1/2
Notice that after we found the decimal approxima-
tion, we were able to convert it into an exact ra-

tional using convert(",rational). The convert
function is used to convert expressions from one
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type to another. More on the convert function is
to be found in Section 4.6. The interested reader
can find more using ?convert. Below is a table of
MAPLE V’s built-in mathematical constants.

Catalan Catalan’s constant
(about .9159655942)

gamma Euler’s constant

(about 0.5772156649)
I complex number i  (i? = —1)
Pi 7 (about 3.141592654)

3. HIGH SCHOOL ALGEBRA
3.1 Polynomials and rational functions

3.1.1 Factoring a polynomial

MAPLE V can do high school algebra. It can
manipulate polynomials and rational functions of
one or more variables quite easily.

> p o= x"2+5%x+6;
p=z+52+6
> factor(p);
(x+3)(z+2)
> bi=1-q% -q"8 - q"9 + q"15 + q*16

11




+ QM7 - q"24;

bi=l—g' =g =" + 4 + " + g7 — ¢

> factor(b);
@+ )@+ D)@ +a+ )+ + 1) +1)
@+ +d' +é+d +a+1)(g-1)°

To factor a polynomial or rational function we use
factor. We let p = ® + 5z + 6 and found the
factorization using factor(p). This could have

easily been done by hand. Factoring b=1—¢" —
qa = 119 o (1'1"> + q16 + q” - qz‘1 is not so easy, but
child’s play for MAPLE V.

3.1.2 Expanding an expression

To expand a polynomial use expand. The com-
mand combine is also useful for expanding certain
expressions.

> p = (x42)*(x+3);
pi=(z+2)(z+3)
> expand(");
z? + 5z 46
> (1-q"8)*(1-q"7)*(1-q"6);

(1-4¢(1-4")(1-¢"

12

>  expand(");
l—qT—qs—q9+q15+q1“+q”-q24
> sqrt(x+2)*sqrt (x+3);
VZ+2vz+3
> expand(");
(z+2)%(z + 3)1/2
> combine(");

VZ2+5z+6

Notice ;vg were not able to expand the expression
(z +2)'%(z + 3)/2 with expand and had to use
combine instead. -

3.1.3  Collecting like terms

The collect function is useful when looking
at a polynomial in more than one variable.

> (x+y+1)*(x-y+1)*(x-y-1);
E+y+)(z-y+1)(z-y-1)

> p := expand(");

p:=m3—z2y+12-2xy~a:—-yzx+y3+yz—y—l

13




> collect(p,x);
3 2
3—|-(14'y):a:2-|—(-1 —y2 —-Zy)r—y-l-f—y +y

We letp = (:c+y+1)(a:—y+1)(m—y—1)

_y+at—2zy—z—yr+yP +y -y - L
We used collect(p,x) to write p as a polynomial
in z with coefficients that were polynomials in the
remaining variable y. Similarly, try collect(p,y)
to get p as a polynomial in y.

3.1.4 Simplifying an expression
The first thing you should try when presented
with a complicated expression is simplify.

> 3%4" (1/2)+5;

3V4+5
>  simplify(");
11
- )
72
w WALl
Vr?
> simplify(");
csgn(z
14

Notice we were able to simplify 3v/4 + 5 to 11. Of
course, the value of (z?)'/? depends on the sign of
x. Here csgn is a function that returns 1 if = is
positive and —1 otherwise. If we know that z > 0,

we can use assume to do further simplification (z™
replaces ).

> yi=((x-2)"2)"(1/2);

yi=+(z—-2)

> assume(x>2);
> simplify(y);

3.1.5 Simplifying radicals

To simplify expressions using radicals, we can
use simplify and radsimp. First, we remove the
assumption on x

This restores z to its original status. See Section
3.1.9.

> y :=x"3 + 3*xx"2 + 3%x + 1;
yi=2°+32>+ 3z + 1

15




> simplify(y”"(1/3));
(1 +2)%)?

> radsimp(y"(1/3));

l+z
> assume(x>-1);
simplify(y" (1/3));
1427

assume (x<~1);

> simplify(y"(1/3));
=12 + 1)1 4 13

B e hgv

Notice that simplify recognized y as a cube but
failed to simplify y'/®. The command radsimp, on
the other hand, was able to simplify y'/* to 1+ z.
If assumptions are given for z, then simplify is
able to simplify the radical further. However, it
should be noted that the value of the cube root
depends on these assumptions so care needs to be

taken.
A cute MAPLE V command is rationalize.
However, before using it, we must first use readlib

16

tf) read it into memory. Most of MAPLE V's fune-
t.fons. are automatically loaded when a maple ses-
sion is started. Other functions in various packages
(?ee Chapter 11) are read in using with. In ad%ii-—
It:on,_there are some functions that are only read
In using readlib.

> readlib(rationalize):

> 1/(1+sqrt(2));

1
V2+1

> rationalize(");

V21
> (1-2‘(2/3))/(1+2‘(1/3)J;

1-2%/2
14 21/3

> rationalize(") ;
-213 41

2 ¥:i=2z/(1 + sqrt(x));




> rationalize(y);

z(-1+ /x)
-14z
Notice that rationalize does a great job ration-
alizing a denominator not only for expressions in-
volving square roots but for more complicated rad-
icals as well. It can also handle symbolic expres-

sions.

3.1.6 Simplifying rational functions

To simplify a rational function (i.e., a function
that can be written as a quotient of two polyno-
mials) we use the command normal. This has the
effect of cancelling any common factors between
numerator and denominator. First we restore ¥
and y’s variable status.
> yi=ly’s z:='z2":
S ar= (x-y-z)*(x+y+z);

a::(z—y—z)(z+y+z);

S b :=(xP2-2sxey-2exrzey 24232z’ 2)
* (X" 2-x*y+x*z-y*2) ;

bi= (zg—2:cy—2zz+y2+2yz+22)($2—Iy'i'“‘y")
> c:=a/b: normal(c);

B (z+y+2)
(5:2—ya:+:cz—yz)(—m+y+z)

18

> simplify(c);

(z4+y+2)
(xg—y$+$z—yz)(—z+y+z)

> factor(c);

- (z+y+2)
(z-y)(z+2)(-z+y+2)

Observe that normal and simplify had the same
effect on the rational function ¢. We use normal
for rational functions if we can do without the
more expensive simplify. Also, we could have
used factor to simplify ¢ and get it into a nice
fol:m. It should be noted that normal is able to do
this siqlplica.tion without factoring, which is more
expensive.

Somfe useful functions for manipulating ration-
al functions are: numer, denom, rem, and quo. We
let ¢ be as above.

> numer(c);
—(~z+y+2)(z+y+2)
> denom(c);
2
(e — 2oy — 222 +y" + 29z +2°) (2" — oy + 22 - y2)
> Tacter(");

(~z+y+ 2 (z-y)(z+2)

19




The functions numer and denom select the numer-
ator and denominator, respectively, oi: a rational
function. After factorizing the denominator of ¢,
we see that there was simplification because of the

common factor (—Z + ¥ + 2)- .
The functions quo and rem give t.he quotient
and remainder upon polynomial division.

S ai= 2#x"3+x"2412;
a:=25+2° +12
> b:=x"2 - 4;
b=z —4
> q:= quo(a,b,x);
g=2s+1
> 1 := rem(a,b,x);
r:=16+ 8z
> expand( a - (b*q + r) );
0

The command quo(a,b,x) gives the c.motient q
when a is divided by b as polynomials in z. The

20

command rem(a,b,x) gives the remainder r so
that

a=bq+r,

and the degree of r (as a polynomial in z) is less
then the degree of b.

3.1.7 Coeflicients of a polynomial

In Section 3.1.3 the collect command was in-
troduced to view polynomials. Two other useful
functions are coeff and degree. Let p be as be-
fore.

> pi= (xty+l)*(x-y+1)*(x-y-1):
> q := expand("):
> coeff(q,x,2);

=g+
> coeff(p,x,2);
0
> degree(q,x);
3

The command coeff(q,x,2) found the coeffi-
cient of z* in the polynomial g. The command
degree(q,x) gave the degree of q as a polynomial
in z. Observe also that when coeff was applied
to the unexpanded form p, an “incorrect” value of
0 was returned. Be careful.
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3.1.8  Substituting into an expression
We may substitute into an expression using
the command subs.

> p = (x+y+z)(x-y+z)gx—y—z);
pi=(z+ytz)lz-y+2)(z-y—=2)
> subs(x=1,p);
L+y+2)1-y+2)1-y-2)

To substitute = = 1 into p, we used the command
subs(x=1,p). Try substituting z =1 and y = 2
into p using the command subs(x=1,y=2,p).

3.1.9 Restoring variable status

In the last section we saw how subs is used to
do substitution. There is another way to do this.
We let p be as Section 3.1.8.

> P;
> x:=1: y:=2:
> Pp;
B4+ 2)(-14+2)(-1-2)

We are able to do the subsitution by assigning  :=
1 and y := 2. However, now p has changed. There
is a way to restore x and y’s variable status.
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> X gm dgdis ¥ oi=y:
> Pi

@+y+2)(z-y+2)(z—y-2)
The assignments x := ’x’ andy := ’y? restored

z and y to their variable status. It is neat that p
was also restored to its original status.

3.2 Equations

3.2.1  Left- and right-hand sides

To assign a value to a variable we use :=. The
symbol = has a different meaning and is reserved
for equations.

> eqn := x"2 - x = 1;
eqn:=z’—g=1
> R := solve(eqn,x);
R:=1/2v5+1/2, 1/2-1/252
> simplify(R[1]*R[2]);
~1/4(V5+1) (V5 - 1)

> expand(");




We assigned to equation z? — z = 1 the name

egn. We solved the equation for z by typing
solve(eqgn,x). We named the list of solutions R.
The two solutions were R[1] and R[2]. In this way
we can manipulate the solutions. Observe that we
computed the product of the roots to be —1 as
expected.
The left and right sides of an equation can be
manipulated using 1hs and rhs.
> eqgn;
P?-z=1
> 1lhs(eqn);
32 - :

> subs(x=R[1],1hs(eqn));
(1/2+1/2V5)* - 1/2V5-1/2

> expand(");
1

The command lhs(eqn) gave us the left side of
the equation. Then we were able to substitute
t = R[1] (the first root) into the left side of the
equation, which simplified to 1 (as expected) using
expand.

3.2.2 Finding exact solutions

MAPLE V has the capability for solving sys-
tems of equations.
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> eqnl:= x"3ta*x=14; eqn2 := a’2-x=7;

eqnl :=z° +az = 14

eqn2:=a’-z="7
> solve({eqni,eqn2},{x,a});

{a=3,2=12},

{a =Root0f(_Z° +3.2* - 12.2° - 35.2° + 42.2
+119), z = Root02(.2" 4 3.2* — 12.2°
-35.2 +42.Z +119)> - 7}

The syntax for solving systems of equations is
solve(S,X) where S is a set of equations and X is
the required set of variables. Observe that MAPLE
V was able to find the solution z = 2, ¢ = 3. It
also found that a = z, £ = 22 — 7 are solutions
where z is any root of the following polynomial
equation:

Z¥ 432" —132° 357 4 427 4119 = .

As in the previous section, we may manipulate so-
lutions. We select the first set of solutions and
substitute them into the first equation.

> ")




> subs(",eqni);

14=14

3.2.3 Finding approximate solutions

In the last section we came upon the following
quintic

2L g2t — 197° — 352 4437 +-110 =10

Although naturally enough MAPLE V is unable to
find an exact explicit solution, it is able to find
approximate solutions using fsolve.

> polyegn := Z"5+3%2"4-12#2"3-35%2"2
+42%Z+119=0:
> al := fsolve(polyeqn,Z);
al := —3.136896207
> xlos 3001
rl := 2.840117813
> subs({x=x1,a=al},{eqni,eqn2});

{14.00000003 = 14, 7.0000000000 = 7}

We used the command fsolve(polyeqn,Z) to find
the approximate solution Z = —3.136896207. This
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implied that a = —3.136896207 and = = a® - 7 =
2.840117813 are approximate solutions to our sys-
tem of equations in the previous section. We were
able to check this using subs.

3.2.4 Assigning solutions

Once an equation or system of equations has
been solved, we can use assign to assign a particu-
lar solution to the variable(s). We use the example
given in Section 3.2.2.

> solve({x"3+a*x=14,2"2-x=7},{a,x}):
¥ "
{a=32="12}

> assign(");
> a; x;

3.3 Fun with integers

3.3.1 Complete integer factorization

The command ifactor gives the prime factor-
ization of an integer.

> 2M(2"B)+1;

4294967297
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> ifactor(");
(641) (6700417)
> ifactor (500326623506'{6211775?9) :

(3)% (1) (31)* (67) (139) (320057) (481577)

3.3.2 Quotient and remainder

The integer analogs of quo and rem, the func-
tions for finding the quotient and the remainder
in polynomial division, are the functions iquo and
irem. They work in the same way.

>, y= 28 b := 5;

a:= 23
b:=256

> q := iquo(a,b); r := irem(a,b);

|
NS

> b#*q+tr;
23
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We observe that if ¢ = iquo(a,b) and r =
irem(a,b), then

a=bg+r,

where 0 < r < b if a and b are positive.

Two related functions are floor and frac.
floor(x) gives the greatest integer less than or
equal to z and frac(x) gives the fractional part
of z. Try

x := 22/7;
floor(x);
frac(x);
floor(-x);
frac(-x);

VVVVYV

3.3.3 Gecd and lem

The greatest common divisor and the lowest
common multiple of a set of numbers can be found
using gcd and lcm.

> gecd(28743,552805) ;

11
> ifactor(28743); ifactor(552805);
(3) (11) (13) (67)

(5) (11) (19) (23)°
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> 1lem(21,35,99);
3465

We find that the gcd of 28743 and 552805 is 11.
This can also be seen from: the prime factoriza-
tions. The lem of 21, 35 and 99 is 3465.

3.3.4 Primes

The i-th prime can be computed with
ithprime. The function isprime tests whether a
given integer is prime or composite.

> ithprime(100);
541

> isprime(2"101-1);

false

> 7+3™10 + 10;
413353

> isprime(");
lrue

We found that the 100th prime is 541, that 2'°1—1
is composite, and that 7 - 3% + 10 = 413353 is
prime.
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3.3.5 Integer solutions

In Sections 3.2.1 and 3.2.2 we saw how to solve
equations in MAPLE V using solve. The integer
analog of solve is isolve. We use this function
if we are only interested in integer solutions. We
use the example from Section 3.2.2. Remember to
restore variable status to = and a first.

> x='x’: a='a’:

> eqni:= x"3+a*x=14: eqn2 := a"2-x=T:

> isolve({eqnil,eqn2},{x,a});
{i=38,2=2)

This time we found the unique integer solution a =
3, z = 2 to the given system of equations.

4, DATA TYPES

4.1 Sequences
In MAPLE V sequences take the form

exprl, expr2, exprl, ..., exprn.
> X am 12,85
#3=1,2,3
> y := 4,5,6;

y:=4,5,6;
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> XY .
1,2,3,4,5,6

We observe that in MAPLE V, x,y concatenates
the two sequences z and y. There are two impor-
tant functions used to construct sequences: seq
and the repetition operator $.

> f:=f):  geq(f(i), i=1..8);

F(1), £(2), £(3), f(4), £(5), £(6)
> seq(i”2, i=1..5);

1,4,9,16,25
> ixim Ry
> x$4; .
5, 0 |
In general, seq(f£(i), i=1..n) produces the se- |
quence
f(1), £(2), .., f(n)

and x$n produces a sequence of length n

LBy ite i

The op function can be used to create sequences.

> bi='h¥: cimigr:
> L = a+b+2%c+3#d;

L:=a+b+2c+3d
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¥ opl");
a, b, 2¢, 3d

op(expr) produces a sequence whose elements are
the operands in expr.

> nops(L);

> op(3,L);
2c

nops(expr) gives the length of the sequence
op(expr) and op(j,expr) gives the j-th term in
the sequence op(expr).

If s is a sequence, then the j-th term of the
sequence is s[j].

> 8 =1, 8, 27, 64, 125
s:=1, 8, 27, 64, 125

> 8[3];
27

4.2 Sets

We have already seen the set data type in Sec-
tion 3.2.2 when solving systems of equations. In
MAPLE V, a set takes the form

{ezprl, expr2, expry, ..., exprn}.
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In other words, a set has the form {S} where S
is a sequence. A set is a set in the mathematical
sense — order is not important.

>y t='y: {x,¥.2.5};
{z,y, z}
Observe that {z,y,z,y} = {z,y,2}. MAPLE V

can perform the usual set operations: union, in-
tersection, and difference.

> a:= {1,2,3,4}; b := {2,4,6,8};

a:={1,2,3,4}
b:= {2, 4, 6, 8}

> a umion b;
{1,2,3,4,6, 8}
> a intersect b;
{2, 4}

> a minus b;

{1, 3}

We can also determine whether a given expression
is an element of a set using the function member.
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> member(2,a);

true
> member(5,a);

false
> al3);

3

So member (x,A) returns the value true if  is an
element of A and false otherwise. Also, the j-th
element of the set A is A[j].

4.3 Lists
In MAPLE V, a list takes the form

[exprl, expr2, exprd, ..., exprn].

Here order is important.

S pemtgd: prmthl:
> L1 := [x,y,z,5); L2 := [a,b,c];

Ll = w3, %9
L2 :=[a, b, (]

> L := [op(L1),0p(L2)];
L= le ¥. %Y a, b'! C]
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We observe that the lists L1 and L2 can be con-
catenated by the command [op(L1),0p(L2)] and
that L[j] gives the j-th item.in the list L. Lists
can be created from sequences:

> s := seq( i/(i+1), i=1..6);
s :=1/2, 2/3, 3/4, 4/5, 5/6, 6/7
> M := [8];
M :=(1/2, 2/3, 3/4, 4/5, 5/6, 6/7]
> M[2..5];
[2/3, 3/4, 4/5, 5/6]

So, M[i..j] gives the i-th through j-th elements
of the list M.

4.4 Tables

In MAPLE V, a table is an array of expres-
sions whose indexing set i8 not necessarily a set of
integers. Sounds bizarre? — let’s look at some ex-
amples. Tables are created by the table function.
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> T := table([a,b]);

T := table(]
=g
2=

)
> T031;
b

So, if L is a list, then table(L) converts L into a
table. The j-th element of this table T" is given by
T3], Ty

> 8§ := table([(1)=A, (3)=B+C, (5)=A%B*C]);
> A3

> 8

> op(8);

For the table S, the indexing set is {1,3,5} and
thus does not necessarily have to be a set of con-
secutive integers. See 7table for more bizarre ex-
amples. In your session you should have found
that § did not return the table, but that op(S)
did.

4.5 Arrays

In MAPLE V, an array is a special kind of a
table. It most resembles a matrix. Let's look at
some examples.
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> A o= arvay{l..2:1..3.0 1)
A :=array(1..2,1..3)
> op(A);
[?1,1 71,2 ?1',3]
7290 722 Taga
= B 4= array(1..2,1..2.1..2,C 1);
B := array(1..2,1..2,1..2)

> op(B);

array(1..2,1..2,1..2, [
(L) =%

)

We see that the array A corresponds to a 2 x 3
matrix. The array B corresponds to 2 x 2 x 2
matrix or, if you like, a table with indexing set

{(1,1,1), (1,1,2), ..., (2,2,2)}.
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We can insert entries into an array by using the
subscripts (or indices).

> Ci:=array(1..2,1..2):
> C[,1):=1: ¢[1,2]:=2: ¢C[2,1]:=3;

cl2,2]:=7:
1 2
3 7

> op(0);
An alternative method is given below.

> F:=array(1..2,1..3,[[1,2,3],05,9,711);
[12 3
Py 3 3]

4.6 Data conversions

The function type checks the data type of an
object.

> X = {1,2,8]:
> 5 = 1,2,3:
> B o= [1.2,8]:
> T := table([1,2:3]):
> M := array(1..3,[1,2,3]):
> type(L,list);
true
39




W

> type(T,set);

false

The function convert can be used to convert from
one data type to the other.

> convert(A,list);

(1,2, 3}
> convert(L,set);

{1, 2, 3}

Try using the function whattype. See ?whattype
for help.

5 CALCcuLUs

5.1 Defining functions
To enter the function f(z) = 2% - 3z +5, type

> fi=x -> x"2 - 3%x + 5;
fi=z—2°-3z+5

The arrow symbol is entered by typing the minus

key — immediately followed by the greater than

key >. We compute f(2).
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Thus, in MAPLE V the syntax for creating a func-
tion f(z) is £ := x -> expr, where expr is some
expression involving z. Functions in more than
one variable are defined in the same way.

> g = (x,y) -> x*xy/(1+x"2+y"2);

i

9==(I,y)—*1—+—25-_|_—y2

We defined the function

= Ty
g(z!y) - 1+1‘2+y2.
Try simplifying g(sint, cost)
> g(sin(t),cos(t));
> simplify(");
To convert an expression into a function, we
use the unapply function.

> q := 2°5+3%2"4-12+2"3-35+2"2
+42%Z+119:

> h := unapply(q,Z);

hi=Z 20432 - 19 -2+ 007+ 119

In Sections 3.2 and 3.3 we came across the quin-
tic polynomial g above. Here ¢ is an expression

41




ET . - ]

involving Z. To convert g into the function h(Z),
we used the command unapply(q,Z). Now we are
free to play with the function h.

> H :=x -> evalf( h(z), 4):
H := z — evalf( h(z), 4)
> X := [seq(evalf(-4+i/10,4),i=0..10)];

X :=[-4., —3.900, -3.800, —3.700, —3.600,
— 3.500, —3.400, —3.300, —3.200, —3.100, —3.]

> Y := map(H,X);

Y :=[-97., —73.7, —54.5, —39.0, —26.6, —17.1,
=104, <5.1,=14,.7, 8]

The function H(x) computes h(z) to 4 digits.
Then we used seq and map to produce the lists
X and Y which give a table of z and y values for
the function y = h(z).

5.2 Composition of functions

In MAPLE V, @ is the function composition
operator. If f and g are functions, then the com-
position of f and g, fog(z) = f(g(z)), is given by
(feg) (x).

> (sin@cos) (x) ;-

sin(cos(z));
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> f smog = x0Es
o5 I ke =) agrt (d=x)
> (feog) (x);

l1-=z

V1-22
@@ gives repeated composition so that (£@@2) (x)

gives f(f(z)) and (£@@3) (x) gives f(f(f(z))). For
certain functions known to MAPLE V, £e@(-1) (x)
gives the inverse function f~'(z).

> (gef) (x);

5.3 Summation and product
In MAPLE V, the syntax for the sum

D S =F()+F@) +--- + f(n)

=1
is Sum(£(i),i=1..n) and sum(£f(i),i=1..n).

= oqwm RPN
> Sum(f(i),i=1..n);

y @)

> Sum(i”2,i=1..10);

10
Iy

i=1
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> sum(i®2,i=1..10);

385

Notice that the difference between sum and Sum is
that in sum, the sum is evaluated, but that in Sum,
it is not. It is recommended that one get into the
habit of using Sum to first check for typos and then
use value to evaluate the sum. In our previous
session we found

10
Zi2=1+4+9+---+100=385.

=1
This time we will use Sum and value.
> Sum(i®2,i=1..10);
10
2.7
f=]

> value(");
385

> sum(i®2,i=1..n);
1/3(n+1)°*-1/2(n+1)* +1/6n+1/6

4

> factor(");
1/6n(n+1)(2n+1)

Notice that MAPLE V knows certain summation
formulas such as

n

Zf = én(n +1)(2n +1).

i=1

In MAPLE V, the syntax for the product

[[f6) =1 1@ fm)

i=1

is Product (£(i),i=1..n).

> b wm TR o e Yghy
> Product(f(i),i=1..n);
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> value(");
(1-9(-¢)1-g)1-g")(1-¢°)

> expand(");

~q0"+¢" +¢° ¢ ¢’ —¢" +d"+¢° +¢° —¢" —¢+1

As with sum and Sum, for product, the product
is evaluated, but with Product, it is not. Note
that we could've evaluated the product ]_[f: 1=q"
using product (1-q*i,i=1..5).

A common problem with sum and product is
the following.

> JamQs
=2
> sum(i®3,i=1..5);
Error, (in sum) summation variable

previously assigned, second argument
evaluates to, 2=1 .. 6§

The problem occurred in sum since ¢ had already
been assigned the value 2. There are two ways
around this problem. One way is to restore the
variable status of 1 by typing i := ’i’. The sec-
ond way is to replace i by ’i’ in the sum.

> sum(’i’”3,’i’=1..6);

2235
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5.4 Limits

Naturally, there are two forms of the MAPLE
V limit function: Limit and limit. These are
analogous to sum and Sum, etc.

The syntax for computing the limit of f(z)
as T —+ a is Limit (f(x), x=a); value("). The
Limit command displays the limit so that it can
be checked for typos and then the value command
computes the limit. To compute the limit

i 2 —4
z—2 T — 2

we type
> Limit((x"2-4)/(x-2),x=2); value(");

Thus, we see that

2 —

lim Z -~ =4

z+2 T —2
which can be verified easily with paper and pencil.
Alternatively, we could’ve found the limit in one
step by typing limit((x"2-4)/(x-2),x=2).

Left and right limits can also be calculated as

well as limits where z approaches infinity. Try
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"> Limit(f,x=3,right); value(");
> Limit(f,x=infinity); value(");

5.5 Differentiation

MAPLE V can easily find the derivatives of
functions of one or several variables. The syntax
for differentiating f(z) is diff (£(x),x).

> £ := sqrt(i - x*2);
> difteitx);

> g =2z => z"2%xexp(z) + sin(log(z)):
> diff(g(x),x);

1
2ze" +2°e" + _____COS(;](:I:))

The second derivative is given by typing
diff(f(x),x,x). For the n-th derivative, use

diff(f(x),x$n). Use MAPLE V to show that

d® tanz

s = 136 tan® z + 240 tan*z

+ 120 tan® z + 16.
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In MAPLE V, partial derivatives are computed. us-
ing diff.

> z := exp(xxy) (1+sqrt (x"2+3+y"2-x));

z:=e"7 (I -+ \/m-_:c)
> difflz,x);

eV (2z-1)
222 +3y2 -z

> normal(diff(z,x,y)-diff(z,y,x));

ye™ (1+ z'-’+3y"‘-m) +

0

3%z

9z .
Bydz 18

The syntax for 57 is diff(z,x) and for
diff(z,x,y). For

z=¢"¥ (1+ z2+3y2—z)

we found that

9z _  ay 2 2
a:“:—ye (1+ z* 43y —:x:)
" e (2z-1) ,
2\/z243y* -z
and
8z _ 8
dydz ~ Oxdz’
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MAPLE V also has the differential operator D.
If f is a differentiable function of one variable, then
Df is the derivative f'. We calculate g'(z) for our
function g above.

> g =2 - z"\ﬁ*axp(z) ] Sln(z);

[

g:=2z — 2°e® +sin(z)
> D(g);

z = 2ze* + 2°€* + cos(2)

5.6 Extrema

MAPLE V is able to find the minimum and
maximum values of certain functions of one or sev-
eral variables with zero or more constraints. There
are three possible approaches: (1) using the built-
in functions maximize and minimize, (2) using the
miscellaneous library function extrema, and (3)
using the simpler package (for linear functions).
Here we will describe (1) and (2). See ?simplex
for (3).

The functions maximize and minimize can find
the maximum and minimum values of a function
of one or several variables. There is also an op-
tion for restricting some of the variables to certain
intervals. It is advised that this facility be used
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with care and only with algebraic functions — not
the transcendental functions such as exp, sin, cos
etc.

We can find the maximum value of the func-
tion f(z) by typing maximize(£f(x)). The com-
mand maximize(f(x), {x},{x=a..b}) gives the
maximum of the function with z restricted to the
interval [a, b]. '

> maximize(sin(x)+cos(x));

V2

> maximize(x"2-5#x+1,{x},{x=0..3});
1

> maximize(sin(x),{x},{x=0..1});
B

We found that the maximum value of sinz + cos 2
is v2. For 0 < z < 3, the maximum value of
z? - 5z + 1 was found to be 1. However, MAPLE
V incorrectly computed the maximum of sin z (for
0 <z < 1) to be 1. The function sin z is increasing
on [0,1] so the actual maximum value is sin1
0.841. We hope this bug will be fixed.

To find the minimum value of a function, use
the command minimize whose syntax is analogous
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> readlib(extrema):

- to that of maximize. MAPLE V can also handle
> 1= 2#x"2 + y + yh2;

functions of more than one variable.

> minimize(x"2+y"2,{x,y}); f=224y+ y?
@ = > gi=x"2+y"2 -1,

> minimize(x"2+y"2,x); g =2 +¢y% -1
y? ‘ > extrema(f,{g},{x,y},’s’);

We found the minimum value of z° + 3 to be 0. {0, 9/4}

The function minimize(x"2 + y"2,x) found the

minimum value of the function z2 + 42, considered > s;

as a function of z with y fixed.

The second method involves using the misc {{r=0,y=1}, {z=0,y= -1}},
library function extrema, so we must first load =1/2.2 = 1/9R 2
the desired function with readlib(extrema). The {ty L (AREOLOILZ" = 3H
function extrema is able to find the minimum |

> si g
and maximum values of algebraic functions of one winplityianbsisia 0,
or several variables, subject to 0 or more con- 0

straints. It returns a set of possible maximum
and minimum values, with the option of returning
a possible set of points where these values oceur.
The syntax for the function is extrema(f, {gl,g2,

. ,gn},{x1,x2, ... ,xm},’s’). Here, f is the
function. The constraints are g =0, g2 = 0,...,
gn = 0. z1,Z2,...,Z, are the variables and s is
the unevaluated variable for holding the set of pos-
sible points where the extrema occur.

> simplify(subs(s[2],£));
2
> simplify(subs(s[3],f));
9/4
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By using the command extrema(f,{g},{x,y}.,
’s’), we found that the extreme values of f(z,y)
= 22% +y+y? (subject to the constraint z° +y* =
1) are 0 and 9/4. The set of possible points
where the extrema occured was assigned to the
variable s. Using simplify and subs, we sub-
stituted each set of points into f. In this way,
we found that the minimum value 0 occurs at
z = 0,y = —1 and the maximum value 9/4 oc-
curs at z = +/3/2,y = 1/2.

5.7 Integration

If f is an expression involving z, then the syn-
tax for finding the integral f: flz)dz is
int (f,x=a..b). For the indefinite integral we use
int(f,x). There are also the unevaluated forms
Int(f,x=a..b) and Int(f,x).

> Int(x"2/sqrt(1-x"3),x);

[
— il
V1-2z%
> value(");

—2/34/1 - 23

> Int(1/x/sqrt(x"2 - 1),x=1..2/sqrt(3));
2/V3

1
— —dz
L xw/ﬂt—l
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> value(");
1

bl ]

. 6
MAPLE V easily found that

z? 2
/—————.I-___za_d.r‘—‘—-g I—Ia

and

2/v3
/ 1 d T
1 sVEE—1 " 6

MAPLE V can do improper integrals and multiple
Integrals in the obvious way. Try finding

oo
g
fre’dr
0

by typing int (r+exp(-r"2),r=0
Try evaluating the double integral

/fy sin(2z + 3y*) dz dy

by first integrating with res
respect to y.

Jn Ii: MAPLE V does not kno
inite integral, try evalf.

-.infinity).

pect to z and then with

w the value of a def-

> Int(sqrt(1+x"6),x=0..1)

.
»

1
/ 1+ 26dz
0
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> value(");

1
f V1+z8dz
0

> evalf(");
1.064088379

Although MAPLE V was unable to evaluate the
integral, it was able to find the approximation

1
/ vV 1+ z% dz ~ 1.064088379.
0

5.7.1 Techniques of integration
MAPLE V knows some standard techniques of

integration. These are in the student package and
are loaded with the command with(student).

5.7.1.1 Substitution

In MAPLE V, to do integration by substitu-
tion, we use the changevar command. The syn-
tax is changevar (f (u)=h(x) , integral,u) where in-
tegral is an integral in the variable z, f(u) = h(z)
is the substitution, and w is the new variable in
the integral.
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> with(student) :
> Int(x"4/sqrt(1-x" 10),x);

/ .
——d
Vi—gio "

> G := value(");

G:= / o
. ‘—\/].___‘_'——del“
> G2:=changevar (u=x"5,G,u)
1/5 arcsin(u)

> subs(u=x"5,G2);

1/5 arcsin(z”)
> dift(",x);

5!.‘4

s

fxlthough MAPLE V was unable to evaluate the
mtegr.al at first, we were able to help it alon

by using changevar and the substitution 4 = :rsg
MAPLE. V was then able to evaluate the new int :
gral. We substituted u = 25 to obtain d

4
T
f T =g =i (),
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We then checked our answer using diff. Try eval-
uating the integral

7
r
——dr
_/ VI -1
using the substitution u = z®.

5.7.1.2 Integration by parts

To do integration by parts, we use the com-
mand intparts. The syntax is intparts(integral,
x) where z is the variable of integration in the in-

tegral.

> Int(x*cos(3*x),x);

/z cos dzdz

> intparts(",x);
1/3z sin(3z) — f 1/3 sin(3z) dz
> wvalue(");

1/3z sin(3z) + 1/9 cos(3z)

Thus MAPLE V has helped us by providing the
working to evaluate the integral by parts:

/z cos3zdz =1/3z sin3:1:—f1/3 sin 3z dz

=1/3z sin3z + 1/9 cos 3z.
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5.7.1.3  Partial fractions

4 The cpl:ﬂmand for finding the partial fraction
ecomp.os:tlon of a rational function ratfunc (in

j:le variable ) is convert (ratfune,parfrac, x)
§ an exampl it

. Plé, We use MAPLE V to find the inte-

f434+913+12z2+93+4
x,

(E+1)(z2+z+1)?

> rat := (4*x”4+9*x"3+12*x"2+9tx+4)
/(x + 1)/(x"2 + x + 1)%9.
> convert(rat,parfrac o2

2 1+ 2z 1
zZ+1 224241 (1:2+1-+1)2

> int(",x);

2h(@+1) +In(e? +241)+ 1 2241
322441

4
+ 9 \/Ea.rctan (%(23; +1) ./3‘)

5.8  Taylor and series expansions

. The c?mmand to find the first n terms of the
aylor Series expansion for f(z) about the point
T = ¢ Is taylor(f(x),x=c,n). We compute the
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first five terms of the Taylor series expansion of
y=(1-z)""? about z = 0.

> y = 1/sqrt(1-x);

> taylor(y,x=0,5);

1 39 6 3, 36 4 5 !
Y4 sE+ gl & @+ g8 +0 (2%

To find a specific coefficient in a Taylor series ex-
pansion, use coeff.

> J := product(1-x*’i’,?i’=1..50):
> taylor(J"3,x=0,20);

1 -3z +52° — 72% + 9z — 112"® + 0(z*")
> coeff(",x,15);
—-11

To convert a series into a polynomial, try
convert(series, polynom). Also, see 7series.

5.9 Solving differential equations

To solve the differential equation de involving
y = f(z) we use the command dsolve(de,y).
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> L=t g = f(x);

y:= f(z)
> dy := diff(y,x);

2 f(a)

> ddy := diff(",x);

dﬂ
2 (@)

> dso]sve(ddy+5*dy+6*y = sin(x)*exp(-3*x)
1Y/

1 1
— _3 1 =
5 cos(z)e™™* — = sin(z)e ™% 4 c1e7% 4 gge-22

We found that the general solutio i
: n to th .
ential equation nes

v+ 5y + 6y = sinze 3%
is
y= ‘%CUS( ) -3z 1 : -3z -3
g Cos(z)e - S sin(z)e ™ +e1e T 4 gpem e,

where ¢; and ¢, are any constants.
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Systems of differential equations can be solved
in an analogous fashion. To solve the initial value
problem

y+2' =€, y(0)=8/9
y —3z=uz, z(0) = 10/9,
try
> gi='g’: y:i=f(x): z:=g(x):
> del := diff(y,x) + diff(z,x) = exp(x);
> de2 := diff(y,x) - 3%z = x;
> dsolve({del,de2,f(0)=8/9,g(0)=10/9},

{y.2zP;
To find series solutions, use the option
type=series. Type 7dsolve to get more infor-
mation and examples.

5.10 Asymptotic expansions

To find the first n terms of the asymptotic ex-
pansion of the function f(2) we use the command
asympt(f (z),z, n). For example, below we find
the first few terms of the asymptotic expansion of
the psi-function (which is the logarithmic deriva-
tive of the gamma function).

> z:='z': asympt(Psi(z),z,3);

1 L 1
g~ 5=+ o =)
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6. GRAPHICS

MAPLE V can plot functions of one variable,
planar curves, functions of two variables, and sur-
faces in three dimensions. It can also handle para-
metric plots and animations. The two main plot-
ting functions are plot and plot3d.

1

Figure 6.1 Maple plot of Y =sinz.

6.1 2-dimensional plotting

. T‘he syptax for plotting an expression (or func-
tion) in & is plot (£(x),x=a..b). For example, to
plot sin(z) for —27 < z < 27, we type
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> plot(sin(x),x=-2+Pi..2*Pi);

The resulting plot appears in Figure 6.1.

Observe that in MAPLE V (Release 4) the plot
actually appears in the current document. Now
try clicking on the plot. A rectangular box, con-
taining the plot, should appear. There should
also be little black squares in the corners. Try
holding the left mouse button down to resize the
plot. Notice also that the menu bar and the con-
text bar have changed. The Insert, Format and
Options menus have been replaced by the Style,
Axes, Projection, and Animation menus. The con-
text bar has changed completely. There should be
a small window containing a pair of coordinates
and nine new buttons. Try clicking on each but-
ton to see its effect.

Displays the coordin-
ates of the point under
the tracker (i.e., the
point clicked).

[[05191,0.4939] |

Render the plot using the usual line style.

Render the plot using the usual point
style.

Render the plot using the polygon patch
with gridlines style.

Render the plot using the polygon patch
style.
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Draw the plot axes as an enclosed box.
Draw the plot axes as an exterior frame.
Draw the plot axes in traditional form.

Suppress the drawing of plot axes.

Use the same scale on both axes.

6.1.1 Restricting domain and range

Try the plot command plot(sec(x),x=-Pi..
2#Pi). Notice the “spikes” at z = —7/2, 7/2 and
37/2 in your maple plot. These correspond to sin-
gularities of sec(z). We restrict the range to get a
more reasonable plot.

> plot(sec(x),x=-Pi..2%Pi,y=-5..5);

The resulting plot appears in Figure 6.2.

So, to plot y = f(z), where a < z < b, and
¢ <y £d, in MAPLE V we use the command
plot(f(x),x=a..b,y=c..d).

6.1.2 Parametric plots
To plot the curve parametrized by
= f(t), y=g(t),

we use the command plot ([£(t),g(t),t=a..b]).
The ellipse

fora <t <b,

z’ +4y* =1,
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can be parametrized as

z=cos(t), y= %sin(t}, where 0 < ¢ < 2.

Try
> plot([cos(t),1/2+sin(t),t=0..2+Pil);
This should give you the desired plot.

Figure 6.2 Maple plot of y = secz.
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6.1.8 Muliiple plots
To plot the two functions

y=+vz, y=3log(z),

try
> plot([sqrt(x),3*log(x)],x=0..400);

The resulting plot is given in Figure 6.3. Each
curve is plotted with a different color. Observe
that our plot does not seem to illustrate the ex-
pected behaviour of the log function near z = 0.
To get a more accurate plot, we can use the
numpoints option. Try

> plot([sqrt(x),3*log(x)],x=0..400,
numpoints=1000) ;

An alternative method for doing multiple plots is
to use the display function in the plots package.
Try

> with(plots):

> pl:=plot(sqrt(x),x=0..400):
> p2:=plot(3*log(x),x=0..400):
> display(pl,p2);

When defining p1 and p2, use a colon unless you
want to see all the points maple uses to plot the
functions. To see all the functions in the plots
package, type

> with(plots);
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Figure 6.3 Maple plot of y = /Z and y = 3log z.

6.1.4 Polar plots

To plot p.olar curves we use the polarplot
function in the plots package. Use the command
polarplot (£(t), t=a..b) to plot the polar curve
r=:F(8). Tty

> with(plots):
> polarplot(cos(5+t),t=0..2+Pi);
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B

= meeas

Figure 6.4 Maple plot of the polar curve r = cos 50.

When you try this the first time you will no-
tice the scale on the z-axis is different to that on
the y-axis. To make the scales the same, hold the
first mouse button on Projection and release on

Constrained; or, better still, click on

6.1.5 Plotting implicit functions

In Section 6.1.2 we used a paramterization
to plot the curve z* + 4y> = 1. Alternatively,
we can plot implicitly defined functions using the
implicitplot command in the plots package. Try

> with(plots):
> implicitplot(x”2+4*y"2=1,x=-1,.1,
y=-1/2..1/2);
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This should agree with what we obtained before.

6.1.6 Plotting points
In MAPLE V, we plot the points

(Ilayl)s (IQ\yE): "'.! (Iﬂ!yﬂ)

~ with the command plot([lx1,y1],[x2,y2],
oo o CXRyIMI ). Ty

> L := [[0,0],01,1],[2,3],(3,2],[4,-2]]):
> plot(L);

The resulting plot is given in Figure 6.5. Notice
that MAPLE V (by default) has drawn lines be-
tween the points. To plot the points and nothing
but the points, try

> plot(L, style=point);

The points correspond to plus-signs.

6.1.7 Title and text in a plot

To put a title above a plot, we use the option
title. Try

> pl:=plot([sqrt(x),3*log(x)],x=0..400,
title=‘The Square Root and
log functions‘):

> display(p1);

To add text to a plot, we use the texplot and
display functions in the plots package. Try
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> p2:=textplot([[360,16, ‘y=3log(x)‘],
(130,10, ‘y=sqrt (x)‘11):
> display(pl,p2);

te;tplot([xl,yi,string]) creates a plot with
string positioned at (z;,y;)

-14

Figure 6.5 Maple plot of some data points.

6.1.8  Plotting options

. The plotting options are given after the func-
tion and ranges in the plot command. See
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plot[options] for a complete listing. Options in-
clude

axes frame, bozed, normal, or none
discont for plotting a discontinuous function
font Try font=[HELVETICA,12].

labelfont font for labels on the axes

linestyle dashed pattern for lines

numpoints number of plotting points
resolution horizontal display resolution
scaling Use constrained for equal scale.
style Use point for points.

symbol symbol for point style
thickness line thickness

title title for the plot

titlefont font for the title

xtickmarks number of z-axis scale marks

6.1.9  Saving and printing a plot

There are several ways to save a plot. Any
plot that is part of a worksheet will be saved when
the worksheet is saved. See Sections 9.2 and 9.3.
The plotsetup function can be used to save a plot
as a file suitable for other drivers. This is done
by specifying the plotdevice variable. Common
settings for plotdevice are

Ps encapsulated Postscript file
jreg  24-bit color JPEG file
hpgl  HP GL file
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Here is an example.

> plotsetup(ps, plotoutput=‘plot.ps‘,
plotoptions=‘portrait, noborder‘);

> plot(sin(x),x=-2#Pi..2*Pi);

> interface(plotdevice=inline);

In this session, a plot of y = sin(z) was written
to the Postscript file plot.ps, in portrait style with
no surrounding border. The interface function
was used so that any future plot will be within
the worksheet. Otherwise, if plotsetup is not
changed, any future plot will overwrite the file
plot.ps.

A plot may be printed as part of the worksheet
using the menu. Alternatively, it can be saved
as a file and printed using a graphics driver. For
example, try
> plotsetup(hpgl, plotoutput=‘plot.hp‘,

plotoptions=‘laserjet‘);
when printing a plot with a HP Laserjet printer.

For more information, use the help commands
?plotsetup, 7plot[devicel.

6.2 3-dimensional plotting

The syntax for plotting an expression (or func-
tion) in two variables (say z, y) is plot3d (£ (x,y),
x=a..b,y=c..d). For example, to plot the func-
tion z = e~ +¥ -1 gor 9 < 2,y < 2, we use
the command
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> plot3d(exp(-(x"2 + yh2-1)"2), x=-2..2,

y=-2..2);

; (x4t -1)?
Figure 6.6 A plot of the function z =€ ;
Observe (as before with 9-dimensional plotting)
that the plot appears in the worksheet. Now try
clicking on the plot. Notice the appearance of t:.he
Style, Colour, Axes, Projection, and Animation
;mnus. The context bar has also changed. There
should be a pair of small windows la.be].lefi 1 and ¢,
each containing the number 45. This pair of num-
bers refer to a point in spherical coordinates and
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correspond to the orientation of the plot. There
should also be thirteen new buttons. Try clicking
on each button to see its effect.

Specifies orientation.

Render the plot using the polygon patch
style with gridlines.

Render the plot using the polygon patch
style.

Render the plot using the polygon patch
and contour style.

Render the plot using the hidden line re-
moval style.

Render the plot using the contour style.
Render the plot using the wireframe style.
Render the plot using the point style.
Draw the plot axes as an enclosed box.
Draw the plot axes as an exterior frame.
Draw the plot axes in traditional form.
Suppress the drawing of plot axes.

Use the same scale on each axis.

Redraw the plot.
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Now, hold the first mouse button down on the plot.
A cube should appear. Drag the mouse so that the
cube rotates to the desired position. Notice that
the value of (¥, #) has changed. Double click on

the cube or click on | R to redraw the plot. Below

is a plot obtained by clicking on h 1
selecting (J, ¢) = (22, 67).

Figure 6.7 A Maple plot with boxed axes.

Now, try clicking to see some hidden detail
of the plot. You might use the grid option to
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increase the number of contours plotted. Try

> plot3d(exp(-(x"2 + y*2)"2), x=-2..2,
y=-2..2,grid=[50,50]);

Don’t forget to either double click or click on |

6.2.1 Parametric plots
To plot the surface parametrized by

sz(u,l.'), y:g(u'rv)! z:h(u,v),
where a < u < b, ¢ € » < d; use the command

plot3d([f(u,v), g(u,v), h(u,v)], u=a..b, v=c
..d). For example, the hyperboloid

Bt — P =1,

may be parametrized by

z=y1+u?cost, y=+/1+u?sint, z=u,

where —oco <u <coand 0 <t < 2r. Try

> plot3d([sqrt(1+u”2)*cos(t),sqrt(1+u”2)
*sin(t),u], u=-1..1, t=0..2#Pi);

A plot with (9, ¢) = (45, 60) is given in Figure 6.8.
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Figure 6.8 Maple plot of an hyperboloid.

6.2.2 Multiple plots
To plot the two functions

- e_zz_yﬂ,
z=z+y+1,
try
78

> plot3d({exp(-x"2-y"2),x+y+1},x=-2..2,
y=-1..1);

with (¥,¢) = (120,45). As with 2-dimensional
plotting, multiple 3-dimensional plots can be pro-
duced using the display function in the plots pack-
age. Try

> with(plots):

> pl:=plot3d(exp(-x"2-y"2),x=-2..2,
y=-1..1):

> p2:=plot3d(x+y+1,x=-2..2,y=-1..1):

> display(pi,p2);

6.2.3 Space curves
To plot the space curve

T = f(ﬂ: = g(t)v 2 = h(t),

where ¢ < t < b, we use the spacecurve
function in the plots package. The command
is spacecurve([f(t),g(t),h(t)],t=a..b). We
plot the helix

z =cost, y=sint, z=1I.

Try

> with(plots):
> spacecurve([cos(t),sin(t),t],t=0..4%Pi,
numpoints=200) ;
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Figure 6.9 Maple plot of a helix.

6.2.4 Contour plots

The graph of a function of two wvariables
may be visualized with a 2-dimensional contour
plot. To produce contour plots, we use the func-
tions contourplot and contourplot3d in the plots
package. Contourplot3d “paints” the contour plot
on the corresponding surface. Try

> with(plots):
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> contourplot (exp(-(x"2+y"2-1)"2),
x=-(1.3)..(1.8), y=-(1.3)..(1.3),
filled=true, coloring=[blue,red]);

> contourplot3d(exp(-(x"2+y"2-1)"2),
x=-(1.3)..(1.3), y=-(1.3)..(1.3),
filled=true, coloring=[blue,red]);

’

Figure 6.10 Maple plot of a hyperbolic paraboloid.

6.2.5 Plotting surfaces defined implicitly

To plot the surface defined implicitly by the
equation

flz,,2) = ¢,
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use the command implictplot3d(f(x,y,z)=c,
x=a..b,y=d..e,z=g..h) in the plots package. For
example, to plot the hyperbolic paraboloid

try

> with(plots):

> implicitplot3d(y*2 - x"2 = z, x=-2..2,
y=-2..2, z=-4. .4);

The resulting plot is given in Figure 6.10.

In Section 6.2.1 we obtained a plot of the sur-
face
i + y:a - 1

by using a parametrization. This time, try

> implicitplot3d(x"2 + y"2 - z"2 = 1,
x=-1..1, y=-1..1, z=-1..1);

> implicitplot3d(x"2 + y*2 - 2"2 = 1,
x=-2..2, y=-2..2, z=-1..1);

Notice how care must be taken in choosing the
range for each variable.

6.2.6 Title and text in a plot

A title or text may be inserted in a 3-dimens-
ional plot in the same way it was done in Section
6.1.7 for 2-dimensional plots. Try
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> with(plots):

> pl:=plot3d(exp(-(x"2+y"2-1)"2),x=-2.,

2,y=-2..2, font=[TIMES,ROMAN,12],titlefont

=[HELVETICA,BOLD,10], title=‘The surface

z=exp(-(x"2+y"2-1)"2)“):

> p2:=textplot3d([0,1.1,1, ‘Circular
Rim‘], align=RIGHT,color=BLUE):

> display(pl,p2);

6.2.7 3-dimensional plotting options

The options axes, font, labels, labelfont,
linestyle, numpoints, scaling, symbol,
thickness, title, titlefont, and view should
work like they did for 2-dimensional plotting (see
Section 6.1.8). Other options are ambientlight,
color, contours, coords, gridstyle, light,
lightmodel, orientation, projection, shading,
and style. See ?plot3d[options] for more infor-
mation.

6.3 Animation

MAPLE V is capable of animating 2- and 3-
dimensional plots. The two animation functions
are animate and animate3d. These are in the plots
package. For fixed t we consider the function

1
14zt

filz) =
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We may examine the behaviour of this function as

t changes using animate. Try,

> with(plots):

> animate(1/(1+x+t),x=0..10,t=0..1,
frames=10); ;

A plot of fo(z) = 1 should appear in the work-
sheet. Now click on the plot. A new context bar
should appear containing a window for coordinates
and nine new buttons similiar to those on a cas-
sette tape player. Try clicking on each button to
see its effect.

ey

Stop the animation.
Play the animation.

Move to the next frame.

Set the animation direction to be back-
ward.

Set the animation direction to be forward.
Decrease the speed of the animation.
Increase the speed of the animation.

Set animation to run in single-cycle mode.

Set animation to run in continuous-cycle
mode.

to play the animation. The

Now click on
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separate frames in the animation. To view each

frame, click on - Iry setting frame=50, Now
try

> animate([Pi/2%sin(t*(u+1)) ,5in(2%t)
*sin(Pi/2#sin(t*u+t)),t=-24pPi. .2%Pi],
u=0..1,frames=20 »numpoints=200,
color=blue);

The 3-dimensional animation command s
animate3d. The surface

T =y =g,
may be parametrized by
Z=rcost, y=rsint, z=12cos2t

Try animating a rotation of this surface

> with(plots):

> animate3d([r*cos(t+a),r#sin(t+a),r"2
*cos(2%t)],r=0. . 1,t=0..2%Pi, a=0, ks
fra.mes=10,style=patch,tit1e="l‘he
Rotating Saddlef);

A little adjusting creates a Flying Pizza

> animate3d([r*cos(t+a),r*sin(t+a),r"2
*cos(2*t)+sin(a)],r=0..1,t=0. L2%Pq
a=0, .2*Pi,irames=10,style=pa.1:ch.
title=‘The Flying Pizza‘);
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Try clicking on
motion.

7. LINEAR ALGEBRA

MAPLE V can do symbolic and floating point
matrix computations. The linear algebra functions
are contained in the linalg package. Try

> 7linalg

to see a list of these functions.

7.1  Vectors, arrays, and matrices

Matrices and vectors are data types defined
within the linalg package. It is necessary to
load the linalg package before creating matrices
and vectors. In MAPLE V a matrix is a two-
dimensional array. It would be a good idea to
reread Section 4.5 on arrays. We give some ex-
amples on creating vectors and matrices.

> with(linalg):

> v:=vector([1,2,3]);
vi=[1,2,3]

> A:=matrix(2,3,[a,b,c,d,e,f]);
& b &
[d e _f]
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= X3
v
> A;
A
> print{v);
(1,2,3]
> print(d);

& b &

d & .f
We used the vector and matrix functions in the
linalg package to define the 3-dimensional vector
v and the 2 x 3 matrix A. Notice that typing
v or A did not cause the vector or matrix to be

displayed. We displayed them using the print
command. Also, try

> op(A);
> eval(Ad);

It is possible to enter a matrix interactively using
the entermatrix command.

> with(linalg):
> B := matrix(2,2);

Bu=arrvay(i..2,1..2,[])
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> entermatrix(B);

enter element 1,1 > 12;
enter element 1,2 > 13;
enter element 2,1 > 14;
enter element 2,2 > 15;

12 13
14 15

Note that the semi-colon must still be used when
entering matrix elements.

A fun way to create matrices is to use a
function f(z,y) of two variables. The function
matrix(m,n,f) produces the m x n matrix whose

(i, )-th entry is £(i,5). Try

> £ o= (1,3) -» xM(i*]);
> A := matrix(4,4,f);
> factor(det(A));

.
]

7.2 Matrix operations

MAPLE V can do the usual matrix operations
of addition, multiplication, scalar multiplication,
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inverse, transpose, and trace.

Matrix Mathematical MAPLE v

operation notation notation

Addition A+ B A+B

Subtraction A-B A-B

Scalar cA c*A
multiplication

Matrix AB A ¥&* Bor
multiplication multiply(A,B)

Matrix power A" A*n

Inverse A AN (-1) or 1/

- or inverse(A)
Transpose AT transpose (A)
Trace tr A trace(A)

Look at the following example:

> with(linalg):
> Ar=matrix(2,2,[1,2,3,4]):
> Bi=matrix(2,2,[-2,3,-5,1]):
> A+B;

A+ B
> evalm(");

o

Notice that we had to use the function evalm to
display the matrix A + B. Now try the following:
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multiply(A,B);
evalm(Ak*B-2#C) ;

> with(linalg):

> A:=matrix(2,3,[1,2,3,4,5,61);
> B:=matrix(3,2,[2,4,-7,3,5,1]1);
> C:=matrix(2,2,[1,-2,-3,4]);

> AB*B; '

> aevalm(");

>

>

Now check your results with pencil and paper. You
should have found that

1 a7
AB - 2C =
9 29

-

7.3 Elementary row operations

MAPLE V can perform all the elementary row
and column operations.

Elementary row Operational MAPLE V
operation notation notation

Swap two rows R; +— R; swaprow(A:i, i)

Multiply a row R; — c¢R; mulrow(A,i,c)
by constant

Add a multiple R; —
of onerow to cRi+ R;
another

addrow(A,i,j,c)
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Let
2 i i3 -3

A= (5 5 13 -7
31 7 -1

Try the following elementary row operations to re-
duce A to row echelon form.

> with(linalg):
> A:=matrix(3,4, I1;358: 35513-731
Tam11193

Al:=addrow(A,1,2,-5);
A2:=addrow(A1,1,3,-3);
A3:=mulrow(A2,3,-1/2);
A4:=swaprow(A3,2,3);
AS:=mulrow(A4,3,-1/2);

WXV N

The last matrix should be

1 13 -3
A5=1011 1 |,
0 01 —4

which is in row echelon form. In this next section

we will see how to check this result using Gaussian
elimination.

In MAPLE V the elementary columns opera-
tions are done in a similar fashion. This time the
functions are swapcol, mulcol, and addcol.
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7.4 Gaussian elimination

MAPLE V can do Gaussian and Gauss-Jordan
elimination. The relevant functions are gausselim
and gaussjord. In the previous section we reduced
a matrix to echelon form using elementary row op-
erations. Check our result using gausselim and
gaussjord.

> with(linalg):

> A:=matrix(3,4,[1,1,3,-3,5,5,13,-7,3,1,
Ti=112)3

> gausselim(A);

> pgaussjord(A);

7.5 Inverses and determinants

To find the inverse of a matrix and its deter-
minant, we use the functions inverse and det.

> with(linalg):
> A:=matrix(3,3,[(i,1,3,5,5,13,3,1,7]):
> det(A);

—4

> B:=inverse(A);

We first found that det(A) = —4 # 0 so that A is
invertible; then found that

=11
2

* g ) [

| [
o |
M| I

5
2

Now check your answer:

> evalm(B&*A);

7.6 Row space, column space, nullspace
Let

1 4 —-10 3 -3
A=110 41 -102 30 -31
-9 =19 &6 27 10

We can use MAPLE V to find the rank of A and
to find bases for the row space, column space, and
null space. The relevant MAPLE V functions are
rank, rowspace, colspace, and nullspace.

> with(linalg):
> A:=matrix(3,5,[1,4,-10,3,-3,10,41,-102,
30,-31,-9,-19,66,-27,10] ) :
> rank(A);
2
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> rowspace(A);
{[1,0,-2,3,1],[0,1,-2,0,~1]}

> colspace(A); :

{[1,0,-179],[0,1,17]}

> nullspace(A);

{[-1,1,0,0,1],[-3,0,0,1,0],(2,2,1,0,0]}

% IF il d!m Mmoo uIH H M o p O '-

7.7 Eigenvectors and diagonalization
Let
177 7T 28
A= |-546 -236 84
—-364 -154 51

We use eigenvals to find the eigenvalues of A.

> with(linalg):

> A:=matrix(3,3,[177,77,-28,-546,-236,
84,-364,-154,51]):

> eigenvals(4);

We see that A has two eigenvalues A = 2 and A =
—5 (multiplicity 2). Now, let’s find a basis for each
eigenspace using eigenvects.

> eigenvects(A);

2,1, {[1, -3, 2]},
[-5,2,{[1,0,13/2], (0,1, 11/4]}]

We see that the eigenspace corresponding to A = 2
is one dimensional and that {[1, -3, —2]} is a basis.
For A = -5, the eigenspace is two dimensional

" and a basis is {[1,0,13/2], [0,1,11/4]}. Hence, we

have found three independent eigenvectors and A
is diagonalizable. So, we let

1 2 0
-3 0 4

-2 13 11

P=

Then P~ A P should be a diagonal matrix. Try

> P:=matrix(3,3,(1,2,0,-3,0,4,-2,13,11]);
> evalm(inverse(P)&*A&*P);

Did you get a diagonal matrix? Alternatively, we
can use jordan to diagonalize A. Try

> jordan(A, 'P’);
> print(P);
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This time you should get the same diagonal ma-
trix but the matrix P is different (since it is not
unique).

MAPLE V can also compute eigenvalues and
eigenvectors for complex matrices and matrices
with floating point entries! Try

A:=matrix(2,2,(1.0,2.0,3.0,4.0]);

eigenvals(A);

eigenvects(A);

B:=matrix(2,2, [1+10%I,-8+I,12*I,
1-10%I]);

eigenvals(B);

eigenvects(B);

jordan(B, 'P’);

print(P);

vV VVV

VVVV

7.8 Jordan form
We used the function jordan in the previ-

ous section. In general, jordan gives the Jordan
canonical form of a square matrix. Try

> C:=matrix(4,4,([10,10,-14,15,0,3,0,0,8,
i,-13,8,1,-8,-2,-4]);

> jordan(C,’Q’);

>  evalm(1/Q&*C&*Q) ;

7.9 Random matrices

The MAPLE V function randmatrix(m,n) pro-
duces a random integer m X n matrix with entries
between —99 and 99. Try
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with(linalg):
A:=randmatrix(3,3);
B:=randmatrix(3,3,unimodular);
C:=randmatrix(3,3,unimodular);
F:=evalm(transpose(C)&*B);
inverse(F);

Can you see why the matrix F~' must have integer

TR

entries?

7.10 More linalg functions

augment augmented matrix

backsub back substitution
blockmatrix block matrix

charmat characteristic matrix

cond standard condition number
copyinto copies a matrix into another
crossprod crossproduct of two vectors
curl curl of a vector field

diag block diagonal matrix
diverge divergence of a vector field
dotprod dot-product of two vectors
geneqns generate system of equations
genmatrix generate augmented matrix
grad gradient of a function
GramSchmidt Gram-Schmidt orthog. process
innerprod innerproduct u” Av
jacobian Jacobian matrix
JordanBlock Jordan block matrix
leastsqrs least squares problem
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linsclve solve a linear system

LUdecomp LU-decomposition

matadd computes a matrix sum
minpoly minimal polynomial of a matrix
pivot pivot a matrix

potential potential function

QRdecomp Q) R-decomposition of a matrix
rowdim number of rows

singularvals singular values of a matrix

stack stacks two matrices

submatrix extract a submatrix

vecpotent vector potential of a vector field
wronskian Wronskian matrix

8. MAPLE V PROGRAMMING

MAPLE V is a programming language as well
as an interactive symbolic calculator., It is possi-
ble to solely use MAPLE V interactively and not
bother with its programming features. However,
it is well worth the effort in developing some pro-

mming skills. The MAPLE V language is much
g:asier to learn than the traditional programming
anguages and you do not need to be an expert
programmer to master it. You will appreciate the
real power of MAPLE V when you learn some of
the basic MAPLE V language and use it in com-
bination with its interactive features. If you have
gotten this far into the book, you are already fa-
miliar with many MAPLE V commands and the
step to MAPLE V programming is not a big one.
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8.1 Conditional statements
A conditional statement has the form

if  condition  then
stalseq

else
statseq

£i:

Here statseq is a sequence of statements separatec
by semi-colons (or colons). For example,

> x:=1;

T=1
> if x>0 then
> y:=x+l
> else
> ye=x=1
> £z
=

2

This conditional statement means that if £ > 1
theny=z+1,butifz <Otheny=2z-1. I
thesessionz =1>0s0oy=2+1=2.

8.2 Loops
A loop statement has the form

for var from numl to numZ2 do

statseq
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od:

For instance, we can print out the numbers from
1 to 10.

= for i from 1 to 10 do
> print(i);
> od:

We can also sum the integers from 1 to 10 the
old-fashioned way.

> x:=0:

> for i from 1 to 10 do
> X:=x+i:

> od:

> x5

55
Hence the sum is 55. We can check our answer.
> 1+2+3+4+5+6+7+8+9+10;

a5
> sum(*i’,’i'=1..10);

55

We can change the step-size in a loop by using by.

> for i from 2 by 3 to 20 do
> print(i);
> od;
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8.3 Procedures
A MAPLE V procedure has the form

proc{nameseq)
local nameseq;
global nameseq;
statseq;
end:

The local and global statements are optional.
See the next section. Here is an example.

> f:=proc(x)

logal =)

if x>=0 and x<=1 then
z:=x"2:

else
z:=1-x:

i

RETURN(z) ;

end;

VY VNN NN

f := proc (x) local z; if 0 <= x and x <= 1
then z := x"2 else :z := 1-x fi; RETURN(z) end

The input of the procedure (or function) f is a
number z. Using a conditional statement, we were
able to define the function

g2 f0<z<l1,
)= {1—:3 otherwise.
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