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In 1979 R. Apkry introduced the numbers a, = C;(;)2(“~k) and U, = C;(;)2(“:k)2 
in his irrationality proof for 4(2) and C(3). We prove some congruences for these 
numbers which generalize congruences previously published in this journal. :c 1985 

Academic Press. Inc. 

1. AN ACCOUNT OF THE CONGRUENCES 

This paper deals with congruences for the numbers 

a,= j,(3'(":") n=O, 1,2 ,..., 

and 

un=jo(~)‘(n:k~ n=0,1,2 ,.... 

(1) 

(2) 

The first few values of a, are given by 1, 3, 19, 147, 1251,..., and for U, they 
read 1, 5, 73, 1445, 33001,.... As is well known these numbers occur in 
Aptry’s irrationality proof of c(2) and c(3), respectively (see [9]). 

The first to consider congruences for U, were Chowla, Cowles, and 
Cowles [4]. They found a number of congruences and conjectured a few 
others, which were proved subsequently by Radoux [lo] (partly), Gessel 
[6], and Mimura [S]. One of these congruences, which is of particular 
interest to us, reads 

up- 1 5 1 (mod p3) for all primes p > 3. 

For a, we have a similar one, namely 

a p- 1 = 1 (mod p2) p3 3. 
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Both congruences are quite easy to prove by using the explicit expressions 
(1) and (2). In this paper we shall prove 

THEOREM 1. Let m, r E N and p > 3 prime. Then 

u mp’-,=ump’-l-l (mod ~~7, a mp~--l=amp~-~-I (mod p3’). 

The proof of these congruences is quite involved and we defer its presen- 
tation to Sections 2 and 3. It would be very nice if a more natural proof of 
Theorem 1 were found instead of the “brute force method” we employed. 

It is possible however, to prove in a simple way a somewhat weaker 
statement, which unlike Theorem 1 holds for all primes. 

THEOREM 2. Let m, r E N and let p he any prime. Then 

u mp’L, =u,p’-IL~ (mod p’), ampl-,=ampl-I-l (mod p’). 

Proof. We require the congruences 

(i) (7’)~O(modp’) VmEZ, k,rEN, k $ 0 (modp) 

(ii) (7;‘) f (mpL-‘)( -1) k(p ~ “(mod p’) Vm E Z, k, r E N 
(iii) (mPLp I) = (mTi,Ll I )( - l)“- Ck’p1 (mod p’) Vm E Z, k, r E N. 

Congruence (i) is trivial since (7’) = (mp’/k)(m[I_-ll) = 0 (mod p’). By 
induction on r one proves (1 - X)mp’ E (1 - Xp)“p’-‘(mod p’), from which 
(ii) follows by comparison of the coefficients of XkP. The third congruence 
follows from comparison of the coefficients of Xk in 

~(l-Xp)~P’-‘-~(l +X+ ... +A+-i)(modp’). 

We now have, on noticing that (n : “) = ( -1 )k( -“p ’ ), 

Since, by (i) the summand ~0 (mod p’) if p /’ k, we have 

a mp’-l= mpzL1 (“L- ‘)i ( Ay’)(-l)‘p (mod p’). 
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Use (ii) and (iii) to obtain 

mpr-I- I 

a mp’.-l= 1 (~~‘~-l)i(-~~-l)(~l),((_I)“p” 
I=0 

-a mpr-~-l (modp’). 

The proof runs similarly for the u,s. Q.E.D. 

The congruences given in Theorem 2 have an elegant interpretation 
implied by the following. 

PROPOSITION. Let cl, cl, c3 ,..., E Z, cl = 1. Then 

C ,,+ E cmpr- t (mod p’) 

Thus, for example, the congruences in Theorem 2 imply that 

The proof of this Proposition can be derived from a lemma of Dwork [5, 
Lemma l] or from Hazewinkel’s functional equation lemma [7, 
Chap. 1.2.21. We give a separate proof however. 

Proof of the Proposition. Our assertion is proved if we show that for 
each prime p, 

C mpr = cmpr- 1 (mod p’) 

where Z, denotes the ring of p-adic integers. 
Let f(T)=C;” c,n-’ T”. Notice that the congruences in (3) are 

equivalent to the statement 

Let exp (f(T)) = 1+ h(T), where h(T) = T+ Cp /I, T”, /?, E Q,. Statement 
(4) now becomes 

log(l +h(T))+og(l +h(TP))d,[q 
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Cl+ h(T)Y 
1 +h(P) E 1 + Pqm. (5) 

We thus see that the congruences in (3) are equivalent to statement (5). In 
order to prove our proposition we must show that (5) is equivalent to 
h(T) E Z,[n for any prime p, which is precisely the contents of Dwork’s 
lemma. 

By Fermat’s theorem (5) holds if h(T) E iz,[TJ. Now suppose conversely, 
that (5) holds. We shall prove, by induction on k, that ME Z,[TJ 
(mod Tk) for any k, and thus h(T) E Z,[TJ. Suppose that h(T)e Z,[n 
(mod Tk) for some k>2. Then (h(T))“~z~[q (mod Tk+‘) for all n>2 
and h( TP) E Z,[n (mod Tk’ ‘). Using these facts it follows from (5) that 

l+ph(T)~l+pZ[7’J (modTk+‘), 

hence ~(T)EZ~[TJ (mod Tkhl). By noticing that h(T)= T (mod T*) our 
induction proces is completed. Q.E.D. 

The condition exp ( CT c,n ~ IT”) E Z [TJ has a well-known interpretation 
in formal group theory. A commutative formal group law over Z is a for- 
mal power series in two variables F(X, Y) E Z[X, YJ of the form 

F(X, Y)=X+ Y+ c CiixlYj 
I.12 I 

such that 

(i) F(X, Y)=F(Y, X) 

(ii) F(X, F( Y, Z)) = F(F(X, Y), Z). 

Well-known examples are given by 

G&f, Y)=X+ Y (additive group) 

G,(X, Y) = X+ Y+ XY (multiplicative group). 

Given a formal group law over Z, there exists a series f(X) = 
C1” c,n -‘I”‘, c, = 1, C,E Z such that F(X, Y)=,fP1(f(X) +.f( Y)). This 
series f is called the logarithm of the group law. For the multiplicative 
group G, the logarithm is given by log( 1 + X). Let F(X, Y) and G(X, Y) be 
two formal group laws over Z and f and g their corresponding logarithms. 
Then F and G are called isomorphic over Z if there exists a power series 
LX(T) E Z[7’J, a(T) = T (mod T2) such that 

G(a(X), 4 Y)) = W(X Y)) 
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or, equivalently, 

.fV) = g(a(W). 

These definitions can be found in Hazewinkel’s book on formal group 
theory [7]. 

Now, let ci, c2, cj ,..., EZ, c,=l. Let h(T) be defined by Cc,n-‘Z”‘= 
log( 1 + h( T)). It is now easy to see that the statement h(t) E Z[Q is 
equivalent to saying that 1 C,W ‘T” is the logarithm of a formal group law 
over Z, which is isomorphic over Z to G,. 

Let d(t)=C,” unfn, “Z(t) = C; U, t”. Then Theorem 2 and the above 
remarks on formal groups imply that 1: J&‘(I) dt and 107 &(t) dr are 
logarithms of formal groups over Z which are isomorphic over Z to G,. 
Further investigations shows that d(t) and a(t) can be considered as 
periods of certain holomorphic differential forms on families of elliptic cur- 
ves and algebraic K3-surfaces respectively (see [ 1,2]). From such an 
algebraic-geometric approach one may hope to obtain some more insight 
into the numbers a, and u,. As a result of this viewpoint it turned out that 
there exist more congruences for the numbers a,. In a joint paper with 
Stienstra [3] we study the formal Brauer group of some elliptic K3-sur- 
faces and one of the consequences of that paper is the following 

THEOREM 3. Let p be an odd prime and let m, r E N, m odd. Define 

cixp = 0 ifp = 3 (mod 4) 

= 4a2 - 2p ifp = a2 + b2 with a, b E Z, a E 1 (mod 2) 

Then, 

~,1/2,,~,~~l,--a,~(l/,,,,~~~~,, +(--I) ~"2~'p~'~p2~,llZ,~mp~-~~,,-0 (mod p’), 

(6) 

where a ,,,2,(mpA _ , , is taken zero ifs < 0. 

These congruences are similar to the Atkin-Swinnerton-Dyer congruen- 
ces for the coefficients of the holomorphic l-form on an elliptic curve [7, 
Chap. VI.33.21. 

The congruences in Theorem 1 are stronger than the ones suggested by 
formal group theory. For that reason we named them supercongruences. 
Also in the case of Theorem 3 we seem to have such supercongruences. 
Some numerical experimenting suggests that congruence (6) holds mod p*’ 
instead of mod pr if p Z 5. However, we have no idea to prove this. 

Finally we would like to draw attention to another point which also 
came up through some numerical computations. It seems that if we take 
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(m,p)=(l, 5), (3, 5), (4,5), (5,7), or (2, 11) we have u,,,~~-u,,,~~~I 
(mod P 3r+‘) Vr E N. If (m, p) = (2,5) or (7,5) one may even have a,, _= 
a mpr-~ (mod p3r+2 ) V,r E N. It would be very interesting to know whether 
these congruences are true and for which other pairs (m, p) they hold. 

2. SOME LEMMAS 

In the lemmas and proofs of this section we will use the following 
notations throughout 

P fixed prime > 5 

LX; 

fixed natural number 

largest integer not exceeding x 

b> x- [xl 

take the product or sum over those values k E V for which p j k 

up(n) number of prime factors p in n. 

LEMMA 1. For any I E Z we have 

1’ 
[np-‘I=/ 

k E 0 (mod p”). 

Proof: We have 

s- ~,,p~~_,~-~(l+(2”~)pr+ . ..)(modp2’) 

E -$ (2f+ 1) “i’ -$ = 0 (mod p”). 
A=1 

Q.E.D. 

LEMMA 2. For any m E Z, k E N we have 
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Ifplk, then 

(ii) (m~‘)=(m~~‘) $:v. 

ProoJ Notice that by splitting the product into a product with p j A 
and one with 2 = pp, we find 

The last product equals (m<$y ‘), which proves (i). Now write 

and assertion (ii) follows from n’:r t = n’f= I and [k - l/p] = (k/p) - 1. 
Q.E.D. 

LEMMA 3. Let ak E Z, (k = 0, 1,2, 3 ,...) be such that 

1 ak = 0 (mod p”) for any s, IEZ.,. 
[kpF] = / 

Let e E N. Then 

(0 1 

[kp-‘1 = I 

ak(mp;-‘)‘( -T- l)‘(-1)k-j 

(mod p’) Vl, m E Z,,. (7) 

If; in addition ak = 0 for all k = 0 (mod p), then 

(ii) c ak(mp;; ‘)‘( -z, l)b~ke=~v~~~,p’,~ 
Ckp-‘1 = / 7 

(8) 

ProoJ (i) We proceed by induction on r. For r = 0 our assertion is 
trivial. Suppose we have shown it for 0, l,..., r - 1. We now show that the 
left-hand side of (7), which we denote by A, is zero mod p’. To this end we 
apply the congruence 
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which is a consequence of the congruence (iii) in the proof of Theorem 2. 
We obtain, 

Note that k + {k/p} p = [k/p] (mod 2). Collect all terms having the same 
[k/p]. Then 

A= ,,ex,_,(rkp;= uk)(mp’;-‘)‘( -mp;‘-l)e(-l)en (modp’). 

n 

We now apply the induction hypothesis for r - 1 with the new coefficients 

a,=- 
:,,?,= ak’ n 

The ti, satisfy the hypothesis of our lemma, since 

c a,=- 
:, Ikp-& =, 

ak = 0 (mod /I”) ‘ds, 1E z,,, 
[HP-‘]= I 

and we obtain 

A-p 1 
[“p-‘+‘I=/ 

a,(mp’n’-1)2(-~p~‘-1)‘(-l)e”~0 (modp’) 

which proves (i). 
Assertion (ii) can be proved in the same way as above. Apply the first 

induction step to the left-hand side of (8) and notice that we may put 
[k - l/p] = [k/p] since we sum essentially over (k, p) = 1. After this step 
we are back again in the situation of Lemma 3(i). Q.E.D. 

LEMMA 4. Let s, t E Z aO. Then 

(i) ,~p~,=.(,,;-~~)(~~~)-o(modp”.‘) ViEZ. (9) 

(ii) rk,F,!=, $ 3 = 0 (mod p”“) 
L= 1 

ViEZ. 

Proof. We first prove (i) for s>, 1. The case s = 0 is contained in (ii). 
Write 

C’ 
[kpms] = n 
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Hence the left-hand side of (9) becomes 

Since C’l/x = 0 (mod p2’), C’ 1/x2 = 0 (mod p”), etc., we see that it suffices 
to show 

p’- 1 

,,To nk j,$:=O (mod P’) VIE&, 

or, equivalently, 

(10) 

We can write the left-hand side as 

Since u,((k + 1)2) < u,(k!) if p 2 5, we see that the left-hand side of (10) is 
indeed zero mod p’. 

To prove (ii) notice that 

as desired. 



150 F. BEUKERS 

LEMMA 5. For any IEE,,, rneN we have 

1’ $(“;-‘)‘( -z;‘)(-l)*=O (modp”). (11) 
[kp-‘1 = I 

Proof First we show by induction, that for s = 0, l,..., r - 1 we have 

A, = 0 (mod p2r), 
where 

For s= 0 this is clear by Lemma 1. Suppose we have proved A, r0 
(mod p”) for some s. We now proceed to show that A,, 1 E 0 (mod p”). 
Notice that by Lemma 2(i), 

E (~,~~~( -ziy l)(-l)[nlpl p: (1 -$)(mod p2s+2) 

qy-J( -;;~yl)‘“.p’ 

( 

n, mp s+l 
x l-17 

/I=1 > 
(mod p2’+ *). 

Substitute this in A,, , , and collect all terms having the same value of 

b/PI, 

A Sfl% 
,,?,=, rn,&, (,,,%,yn’)(l - ;; T, 

x (” ‘)‘( -mz- ‘)(-l)q (mod p”) 

3 A, - mps+’ c p2(r-s)-1ay 

cw-sl = 1 

x(mp~~1)‘(~m~~1)(-l)4 (modp”), 
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where 

Notice that by Lemma 4(i) for any j E Z, t E N, 

c ay= c p-2+S)+I C’ 
CYF’I = j [np-‘-‘I=, [kp-‘+.T+i]zn 

i)( 2’ i) = 0 (mod p’), 
1. = I 

and thus we can apply Lemma 3 with a4, s instead of aq, r to obtain 

A s+, - A,y = 0 (mod p2’). 

Thus our induction procedure is concluded. In particular we have A,-, e 0 
(mod p”). To conclude the proof of our lemma, we reduce the left-hand 
side of (11) in the same way as in our induction step, where in addition we 
replace Ck- ~/PI by CWpl since we sum over (k, p) = 1. By this step the 
left-hand side of (11) reduces to A, ~, (mod Pan), which we know to be zero 
mod p2’. Q.E.D. 

3. PROOF OF THEOREM 1. 

Proof of u,+ I z u,~~-I _ I (mod p”) Vm, r E N. Write 

24 mfl-I = mP~$;‘(mp;- ‘)‘( -T’)‘+ y$l (mpi- l)‘( -yr)*, 

The second summation on the right-hand side equals 

m3’rr+$(mp;- ‘)‘( -z, 1)‘. 

k=O 
(12) 

Since 

1’ &GO (modp”) VnEZ, SEN, 
[kp-I] = n 

we can apply Lemma 3(ii) with ak = ke2 if p j k, ak = 0 otherwise, and con- 
clude that expression (12) is zero mod p3’. Hence 

mp’-1 ’ -mp’ 2 

lp )( > 1P 
(mod p3’). 
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Application of Lemma 2 yields 

U mpr-, = 
“z-‘(mKj’-l)‘( -m~pl~~;(l 

I=0 

Notice that 

A=1 

$ (mod p”) 

and 

=l (modp min (3r, 2r + uP(lp) 
1 

=m 
2P2r-2 

12 ~0 (mod p 2 max (I 
- 

up(Cp), 0) 1. 

Hence 

mp’-‘- 1 

U mp’-, = 1 (mpr~-1)2(-m~~1)‘-~~p,-,~~ (modp3’). Q.E.D. 
i=O 

Proof of a,pr-l 3 amp,- I ~ 1 (mod p3’). Write 

w-‘--l 

a q-1 = 
c ( 

mp’-l 2 -mp’ 

I=0 )( ) 

+ Ti,’ (mp!- l)‘(( ~y.:rlr:,k. 

Writing (-;p’) = - (mp’/k)( -rC; ‘) we see the second summation is zero 
mod p3’ according to Lemma 5. Hence 

and application of Lemma 2 yields 

a mp’-, = 
mpyp’ (mpry - ‘)‘( -myel)(-l), 

I=0 

x~~(l-~)(mp~~i)(modp3r). 
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Just as in the previous proof we know that 

min(3r, 2r+ q(2p)) 
)9 

max(r- Us, 0) 
1. 

Hence 
try-‘-l 

a mp'-I- 1 (mp’~~l~(-m~~‘)(-l)~~,‘(l-~) (modp3’). 
I=0 

Observe, 

1P 

mp’ 1’ i (mod pz’+%(‘P)). 
A=1 

And thus 

a mp~-,=aamp~-~--l-mp' m;$g' ( 5' {) 

I=1 

x (mp’~-l)z( emre’)(-l)’ (mod p3'). 

It s&ices to show that the summation on the right-hand side is zero 
mod p2' and then we are done. Split this summation into summations over 
1 such that u,(lp) = s for s = 1, 2,..., r - 1 and finally o,(lp) 2 r. If u,(fp) b r 

we know that C’p l/L= 0 (mod p2') and thus the summation over I with 
v,(lp) 3 r yields naught mod p3' to a,+ i. We must show that each of the 
terms 

is zero mod p2'. Notice that p'-"I( -,#Y’) and C’f@ l/1 ~0 (mod p'"). 

Furthermore, 
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Hence ( 13) equals 

We now apply Lemma 3(ii) with 

ifp1k ak =0 ifplk, 

to show that the latter summation is zero mod pr, as required. To this end 
it suffices to show that CCkp-,l=n ak = 0 (mod p’) for all t E N. Since 

c 
[kp-‘1 = n 

ak = Ikp$t=n i Ag t 

this is true according to Lemma 4(ii). Thus we have completed the proof. 
Q.E.D. 
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