
1 

Combo Project Seven 
 

 
 
 

Combinatorics (01:640:454) 
Project Write-Up 

 

Team 7 
Samuel Minkin 

Kenneth Chan 
 

Submission Date 
December 14th, 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 

Section Zero: Table of Contents 
Section Zero: Table of Contents 2 

Section One: Background and Approach 3 
Background 3 

1. Introduction 3 
B. Approach/Purpose 3 

Section Two: Trends and Analytics 5 
Modulo Division 5 

Diagrams for f:=1/(1-x-y-x*y) 5 
Analysis for f:=1/(1-x-y-x*y) 6 
Diagrams for f:=1/(1-x-y) 6 
Analysis for f:=1/(1-x-y) 7 
Diagrams for f:=1/(1-x-y-z) 7 
Analysis for f:=1/(1-x-y-z) 8 

Growth Constant Analysis 9 
Diagrams for Growth Constant of f:=1/(1-x-y-n*x*y) 9 
Analysis for Growth Constant of f:=1/(1-n*x-y) 9 
Diagrams for Growth Constant of f:=1/(1-x-y-n*x*y) 9 
Analysis for Growth Constant of f:=1/(1-x-y-n*x*y) 10 
Diagram for Growth Constant of f:=1/(1-x-y-n*z) 10 
Analysis for Growth Constant of f:=1/(1-x-y-n*z) 11 

Critical Exponent Analysis 12 
Diagram for Critical Exponent of f:=1/(1-n*x-y) 12 
Analysis for Critical Exponent of f:=1/(1-n*x-y) 12 
Diagram for Critical Exponent of f:=1/(1-x-y-n*x*y) 13 
Analysis for Critical Exponent of f:=1/(1-x-y-n*x*y) 13 
Diagram for Critical Exponent of f:=1/(1-x-y-n*z) 14 
Analysis for Critical Exponent of f:=1/(1-x-y-n*z) 14 

Asymptotics Analysis 15 
Asymptotic for f:=1/(1-n*x-y) 15 
Analysis of Asymptotes for f:=1/(1-n*x-y) 15 
Asymptotic for f:=1/(1-x-y-n*z) 15 
Analysis of Asymptotes for f:=1/(1-n*x-y) 15 

  



3 

Section One: Background and Approach 

A.Background 

1. Introduction 
Over the course of this semester, we have learned about many powerful combinatorial 

techniques used to analyze various problems such as the number of walks in a lattice, the 
number of words in an alphabet S which add up to n, the number of set partitions for a set of 
size n, and so on. First, we formulated these problems as recurrence equations that one can 
solve by writing a basic recurrence program in Maple with initial conditions. We quickly saw, 
however, that these programs, however cleverly written, are severely limited in computational 
power when it comes to large values of n.  

Fortunately, through the use of generating functions, one is able to calculate a particular 
value by extracting the coefficient in the taylor series expansion of the function - this greatly 
reduces the time complexity and allows us to find solutions for very large n in the thousands and 
higher. This enables us to see trends in sequences. For example, we can see if a sequence 
converges, slows down, speeds up, decreases or increases, and much more useful information 
which would enhance our understanding of the sequence of study. 

One of the main goals of this class has been to learn how to use programs in conjunction 
with theory. In particular, we have written programs to find the coefficients for complicated 
generating functions, we studied structures such as labelled trees by computing averages, 
standard deviation, and moments of the number of leaves in the tree over many iterations, and 
we often see the law of large numbers in action. 

As a result, the goal of this project will be to use various techniques learned in 
homeworks, lectures, and maple programs to learn about some interesting sequences 
generated from a generating function of the form: 1/(1-a*x-b*y-c*x*y-d*x*z-e*y*z-f*x*y*z), where 
a,b,c,d,e,f are nonnegative, small integers. We will divide functions of this form into two special 
cases - the two variable, x and y, case and the three variable, x,y, and z case. In two variables, 
we will be particularly interested in generating functions which fit the form 1/(1-a*x-b*y) or 
1/(1-a*x-b*y-c*x*y). In three variables, we will be particularly interested in generating functions 
which fit the form 1/(1-a*x-b*y-c*z). 

    B. Approach/Purpose 
In mathematics, one can often learn a lot about an object of study by performing actions 

on it. For example, in group theory, one can analyze the action of a group G on a subgroup H, 
and this can illuminate many interesting properties of H. Following this reasoning, we will 
perform many different operations on a function of interest and see what kind of interesting 
integer sequences we may get out of it. 

Therefore, many of the modules in this project will perform mathematical operations on 
one or more generating functions. One of the popular techniques that we have seen throughout 
this semester is taking the modulus of elements in a sequence, and in some cases there exists 
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an integer m>1 such that a(n) mod m is equal to 0 for all n. So, we will have a function which 
computes the modulus of elements in a sequence. Also, when we were studying graphs we saw 
that computing f^k/k!, where k > 1 is an integer, gives us exactly k components in the graph. We 
will figure out whether this operation reveals any interesting properties for some of the 
fundamental functions. On top of that, we will have modules which look at the element-wise 
ratios of sequences corresponding to similar generating functions from the three main classes: 
1/(1-a*x-b*y), 1/(1-a*x-b*y-c*x*y), or 1/(1-a*x-b*y-c*z). This may expose some kind of interesting 
relationship between functions. Furthermore, we will have modules which multiply, add, and 
subtract sequences corresponding to generating functions. Ultimately, we will compile the 
interesting integer sequences found in our output file database. 

Furthermore, the existing Maple package has come with a few modules we can use for 
analytics. For example, we have modules to find the growth constant, critical exponent, and 
estimated asymptotics based off of the operator ope. We will utilize these modules to find any 
patterns in functions in the three main classes of interest: 1/(1-a*x-b*y), 1/(1-a*x-b*y-c*x*y), or 
1/(1-a*x-b*y-c*z).  
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Section Two: Trends and Analytics 

1. Modulo Division 
A. Diagrams for f:=1/(1-x-y-x*y) 

a(n,n) mod 2; f:=1/(1-x-y-x*y); n=1..30 a(n,n) mod 5; f:=1/(1-x-y-x*y); n=1..30 

 
 

a(n,n) mod 6; f:=1/(1-x-y-x*y); n=1..30 a(n,n) mod 7; f:=1/(1-x-y-x*y); n=1..30 
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B. Analysis for f:=1/(1-x-y-x*y) 
Conjecture One: All elements in the diagonal sequence a(n,n) are odd. We see that in the top 
left diagram, when we take an element modulus 2 we get 1, which implies that the value is odd 
for n=0..30. 
Furthermore, for many values of m, the elements modulus m are divided into two groups as 
seen for m=5,6. However, this is not always the case, as for m=7, the values for each element 
are varying. 

C. Diagrams for f:=1/(1-x-y) 

a(n,n) mod 2; f:=1/(1-x-y); n=1..30 a(n,n) mod 3; f:=1/(1-x-y); n=1..30 

 
 

a(n,n) mod 5; f:=1/(1-x-y); n=1..30 a(n,n) mod 9; f:=1/(1-x-y); n=1..30 
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D. Analysis for f:=1/(1-x-y) 
Conjecture Two: All elements in the diagonal sequence a(n,n) are even. We see that in the top 
left diagram, when we take an element modulus 2 we get 0, which implies that the values are 
even for n=0..30. 
Also, for many values of m, if m is even then a(n,n) mod m is nicely divided into specific groups 
for all n. However, when m is odd, a(n,n) mod m is sporadic and takes on all values for all n. 
This likely has to do with a(n,n) being even for all n. 
 

E. Diagrams for f:=1/(1-x-y-z) 

a(n,n) mod 2; f:=1/(1-x-y-z); n=1..30 a(n,n) mod 3; f:=1/(1-x-y-z); n=1..30 

  

a(n,n) mod 4; f:=1/(1-x-y-z); n=1..50 a(n,n) mod 8; f:=1/(1-x-y-z); n=1..50 
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F. Analysis for f:=1/(1-x-y-z) 
Conjecture Three: All elements in the diagonal sequence a(n,n) are even. We see that in the 
top left diagram, when we take an element modulus 2 we get 0, which implies that the values 
are even for n=0..30. 
Conjecture Four: As n increases, a(n,n) modulus becomes more sparse. This means that as n 
grows the number of 0s before the next nonzero term becomes greater. 
Conjecture Five: As m increases, a(n,n) mod m becomes less sparse. This means that as m 
grows, the number of zeros between nonzeros becomes smaller. As evidenced by the 
differences for m=4 and m=8. 
Also, for many values of m, if m is even then a(n,n) mod m is nicely divided into specific groups 
for all n. However, when m is odd, a(n,n) mod m is sporadic and takes on all values for all n. 
This likely has to do with a(n,n) being even for all n.  
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2. Growth Constant Analysis 
A. Diagrams for Growth Constant of f:=1/(1-x-y-n*x*y) 

B. Analysis for Growth Constant of f:=1/(1-n*x-y) 
Conjecture Six: The growth constant of the generating function f:=1/(1-n*x-y) follows a linear 
function, g(n)=4*n for all n. 

C. Diagrams for Growth Constant of f:=1/(1-x-y-n*x*y) 

GrowthConstant(f): f:=1/(1-n*x-y); n=0..24 

 

GrowthConstant(f): f:=1/(1-x-y-n*x*y); n=0..59 
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D. Analysis for Growth Constant of f:=1/(1-x-y-n*x*y) 
Data: L:=[3 + 2*sqrt(2), 4 + 2*sqrt(3), 9, 6 + 2*sqrt(5), 7 + 2*sqrt(6), 8 + 2*sqrt(7), 9 + 4*sqrt(2), 
16, 11 + 2*sqrt(10), 12 + 2*sqrt(11), 13 + 4*sqrt(3), 14 + 2*sqrt(13), 15 + 2*sqrt(14), 16 + 
2*sqrt(15), 25, 18 + 2*sqrt(17), 19 + 6*sqrt(2), 20 + 2*sqrt(19), 21 + 4*sqrt(5), 22 + 2*sqrt(21), 
23 + 2*sqrt(22), 24 + 2*sqrt(23), 25 + 4*sqrt(6), 36, 27 + 2*sqrt(26), 28 + 6*sqrt(3), 29 + 
4*sqrt(7), 30 + 2*sqrt(29), 31 + 2*sqrt(30), ...] 
 
Conjecture Seven: The growth constant of the generating function f:=1/(1-x-y-n*x*y) follows a 
concave down shape for all n. The rate of increase of the growth constant is decreasing as n 
gets larger. 

E. Diagram for Growth Constant of f:=1/(1-x-y-n*z) 

 

GrowthConstant(f): f:=1/(1-x-y-n*z); n=0..59 
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F. Analysis for Growth Constant of f:=1/(1-x-y-n*z) 
Data: L:=[27, 54, 81, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 
513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 
...] 
 
Conjecture Eight: The growth constant of the generating function f:=1/(1-x-y-n*z) follows a 
linear function g(n)=27*n for all n. The rate of increase of the growth constant is constant.  
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3. Critical Exponent Analysis 
A. Diagram for Critical Exponent of f:=1/(1-n*x-y) 

B. Analysis for Critical Exponent of f:=1/(1-n*x-y) 
Data: L:=[-1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 
-1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 
-1/2, -1/2, -1/2, -1/2, ...] 
 
Conjecture Eight: The critical exponent of the generating function f:=1/(1-n*x-y) is -½ for all n. 
The rate of increase of the growth constant is constant. 
 
 
 
 

CriticalExponent(f): f:=1/(1-n*x-y); n=0..59 
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C. Diagram for Critical Exponent of f:=1/(1-x-y-n*x*y) 

D. Analysis for Critical Exponent of f:=1/(1-x-y-n*x*y) 
Data: L:=[-1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 
-1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 
-1/2, -1/2, -1/2, -1/2, ...] 
 
Conjecture Nine: The critical exponent of the generating function f:=1/(1-x-y-n*x*y) is -½ for all 
n. The rate of increase of the growth constant is constant. 
Conjecture Ten: The critical exponent of f:=1/(1-x-y-n*x*y) is equal to the critical exponent of 
f:=1/(1-n*x-y) for all n. 
 
 
 
 
 
 

CriticalExponent(f): f:=1/(1-x-y-n*x*y); n=0..59 
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E. Diagram for Critical Exponent of f:=1/(1-x-y-n*z) 

F. Analysis for Critical Exponent of f:=1/(1-x-y-n*z) 
Data: L:=-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ...] 
 
Conjecture Eleven: The critical exponent of f:=1/(1-x-y-n*z) is -1 for all n. The rate of change is 
0.  

CriticalExponent(f): f:=1/(1-x-y-n*z); n=0..59 
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4. Asymptotics Analysis 
A. Asymptotic for f:=1/(1-n*x-y) 

 

 

B. Analysis of Asymptotes for f:=1/(1-n*x-y) 
We see that as n increases by 1, the base of the leading term increases by 4. Note that the 
growth constant for this generating function also increased by 4 for every increase of 1 in n. This 
leads to following conjectures: 
Conjecture Twelve: The asymptote for f:=1/(1-i*x-y), for any n, is (4*i)^n*1 - 10/(9*n) + 
14/(9*n^2) - 8/(7*n^3) + 85/(189*n^4) - 142/(189*n^5))/sqrt(n) 
Conjecture Thirteen: The increase by 4 in the base of the leading term represents the increase 
by 4 in the growth constant for this generating function.  
 

C. Asymptotic for f:=1/(1-x-y-n*z) 
 

 

D. Analysis of Asymptotes for f:=1/(1-n*x-y) 
We see that as n increases by 1, the base of the leading term in the asymptote increases by 27. 
Note that the growth constant for this generating function also increased by 27 for every 
increase of 1 in n. This leads to the following conjectures: 

Function Asymptote 

1/(1-x-y) 4^n*(1 - 10/(9*n) + 14/(9*n^2) - 8/(7*n^3) + 85/(189*n^4) - 
142/(189*n^5))/sqrt(n) 

1/(1-2x-y) 8^n*(1 - 10/(9*n) + 14/(9*n^2) - 8/(7*n^3) + 85/(189*n^4) - 
142/(189*n^5))/sqrt(n) 

1/(1-3x-y) 12^n*(1 - 10/(9*n) + 14/(9*n^2) - 8/(7*n^3) + 85/(189*n^4) - 
142/(189*n^5))/sqrt(n) 

Function Asymptote 

1/(1-x-y-z) 27^n*(1 - 28/(17*n) + 40/(17*n^2) - 30/(17*n^3) + 12/(17*n^4) - 11/(17*n^5))/n 

1/(1-x-y-2z) 54^n*(1 - 28/(17*n) + 40/(17*n^2) - 30/(17*n^3) + 12/(17*n^4) - 11/(17*n^5))/n 

1/(1-x-y-3z) 81^n*(1 - 28/(17*n) + 40/(17*n^2) - 30/(17*n^3) + 12/(17*n^4) - 11/(17*n^5))/n 
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Conjecture Fourteen: The asymptote for f:=1/(1-x-y-i*z), for any n, is (27*i)^n*(1 - 28/(17*n) + 
40/(17*n^2) - 30/(17*n^3) + 12/(17*n^4) - 11/(17*n^5))/n 
Conjecture Fifteen: The increase in the base of the leading term in the asymptote represents 
the increase by 4 in the growth constant for this generating function. 
Possible Theorem:  If the growth constant of any generating function increases linearly, then 
the base of the leading term in the asymptote increases by that exact same linear rate. 

5. Ratios 
A. Diagrams for ratio of 1/(1-nx-y),1/(1-(n+1)x-y) 

Ratio of (1/(1-x-y), 1/(1-2x-y)) Ratio of (1/(1-2x-y), 1/(1-3x-y)) 

 
 

Ratio of (1/(1-3x-y), 1/(1-4x-y)) Ratio of (1/(1-4x-y), 1/(1-5x-y)) 
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B. Analysis for the ratio of 1/(1-nx-y),1/(1-(n+1)x-y) 
As n increases, the ratio starts to decrease more slowly. In the above diagrams, when n=1, the 
ratio decreases rapidly to 0. This implies that the sequence for 1/(1-2x-y) grows much more 
rapidly than that for 1/(1-x-y). This can be applied to all of our cases. 
 
Conjecture Sixteen: The ratio between 1/(1-nx-y) and 1/(1-(n+1)x-y) approaches zero for all n 
Conjecture Seventeen: As n increases, the ratio decreases more slowly. 
 

C. Diagrams for ratio of 1/(1-x-y-n*x*y),1/(1-x-y-(n+1)*x*y) 

Ratio of (1/(1-x-y-xy), 1/(1-x-y-2xy)) Ratio of (1/(1-x-y-2xy), 1/(1-x-y-3xy)) 

  

Ratio of (1/(1-x-y-3xy), 1/(1-x-y-4xy)) Ratio of (1/(1-x-y-4xy), 1/(1-x-y-5xy)) 
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D. Analysis for the ratio of 1/(1-x-y-n*x*y),1/(1-x-y-(n+1)*x*) 
As n increases, the ratio starts to decrease more slowly. In the above diagrams, when n=1, the 
ratio decreases rapidly to 0. This implies that the sequence for 1/(1-2x-y) grows much more 
rapidly than that for 1/(1-x-y). However, we see that this applies to all of our cases. Furthermore, 
for these functions we see that while the ratio does decrease more slowly as n increases, the 
rate of change is fairly small. 
 
Conjecture Eighteen: The ratio between 1/(1-x-y-nxy) and 1/(1-x-y-(n+1)xy) approaches zero 
for all n 
Conjecture Nineteen: As n increases, the ratio decreases more slowly. Although, the rate of 
change is smaller than that for 1/(1-nx-y), 1/(1-(n+1)x-y). 
 

E. Diagrams for ratio of 1/(1-x-y-nz),1/(1-x-y-(n+1)z) 

Ratio of (1/(1-x-y-z), 1/(1-x-y-2z)) Ratio of (1/(1-x-y-2z), 1/(1-x-y-3z)) 

  

Ratio of (1/(1-x-y-3z), 1/(1-x-y-4z)) Ratio of (1/(1-x-y-4z), 1/(1-x-y-5z)) 
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F. Analysis for the ratio of 1/(1-x-y-n*z),1/(1-x-y-(n+1)*z) 
As n increases, the ratio starts to decrease more slowly. These graphs are very similar to those 
for 1/(1-nx-y), 1/(1-(n+1)x-y), implying that the ratios when one coefficient is changing are close. 
 
Conjecture Twenty: The ratio between 1/(1-x-y-nz) and 1/(1-x-y-(n+1)z) approaches zero for all 
n 
Conjecture Nineteen: The difference between the ratios of these functions and that for 
1/(1-x-y-nz) and 1/(1-x-y-(n+1)z) gets increasingly small as n increases. 
 

  


