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Introduction

Tic-Tac-Toe, the classic paper-and-pencil game of X’s and O’s on a 3 × 3
grid, among many other board games, has extensive potential for combina-
torial analysis. Due to Tic-Tac-Toe’s composition of X’s and O’s, it has a
natural representation as a k × n binary matrix.

This project investigated enumeration of final positions of k × n games of
Tic-Tac-Toe, that specifically resulted in a tie. In particular, this definition
of tie means that there are no horizontal, vertical, nor diagonal streaks of
k 1’s or 0’s in the final matrix. This ensures that all of the binary/(0,1)-
matrices have no empty indices, and it makes the ideas behind counting
(seemingly) straightforward.

The main approach consisted of constructing initial rows of the final matrix
via permutations of 1’s and 0’s, then building upon those initial rows such
that no k-streak is created. This was accomplished by computing a Carte-
sian product of all possible elements of the initial row k− 2 times. Doing so
would not cause any violation, since there cannot be a vertical nor diagonal
k-streak in k − 1 rows, and it was ensured beforehand that no row would
consist of all 0’s or 1’s. For matrices with an even number of squares, there
will be an equal number of 1’s and 0’s. For those with an odd number of
squares, there will be one more 1 than there are 0’s.

Example:
Good and bad 3× 3 matrices:

Good =

1 1 0
0 1 1
1 0 0

 ;

1 1 0
0 0 1
1 0 1

 Bad =

1 0 1
0 1 0
0 1 1

 (violates diagonal)

(1)
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The Manageable Case: k = 3

The 3 × 3 matrix is the classic Tic-Tac-Toe board, and the investigation
of 3 × n proved to be successful, thanks to Dr. Z’s Maple package [1].
The Maple procedure Alph3() successfully generated the 36-element set of
“letters”, which are just all possible values of the matrix consisting of row 1
and row 2. Using this, Followers3() takes any such letter in Alph3() and
finds all possible arrangements allowed to be the third row. (See (2).)

Sample step:
Building a final position by taking one “letter” in Alph3(), and finding its
follower(s) and third row(s) (this only has one, [0 1 0]):

M =

1 0 1
1 1 0
? ? ?

 −→
1 0 1

1 1 0
0 1 0

 (2)

Using TicB(3, n, 3) for values of n starting at 1, it was possible to gen-
erate the matrix representations of final 3 × n Tic-Tac-Toe positions (of
games that resulted in a tie) for up to a relatively small value of n. Taking
the number of elements of these results, the first enumerated sequence was
found. For any n beyond, however, the time to compute gets extremely long.

This led to the importance of using generating functions. By using GF3tx(t, x),
which uses weight-enumeration techniques, a generating function for 3 × n
Tic-Tac-Toe was found. This computed the same results as nops(TicB(3, n, 3)),
but, much FASTER, after using taylor expansions for even n, for odd n, and
merging the two sequences to get one for all n, namely in AllTTT3(N).
This allowed very convenient recurrences to be found; however, extending
onward to larger values of k, the task would prove to be extremely challeng-
ing, and essentially not possible.

The Problems of Larger k

For k = 4, Alph4() and Followers4() take some time to compute, but still
work similarly, by initializing all possible “letters”, and finding what follow-
ers (final rows) would be allowed. Yet, now, there are 14 initial permutations
versus 6 for k = 3, since there are 14 numbers expressed with 4 bits, from
0 to 24, after removing 0 and 16. Doing a Cartesian product k − 1 = 3
times means that there are 143 = 2744 elements in Alph4(). While this
is relatively manageable, it is significantly greater than the 36 elements for
k = 3. Expanding onward, k = 5 would involve 304 = 810000 elements.
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Conceptualizing growth in difficulty:
Seeing how fast |Alphk(k)| grows: (3)

• |initial set S| = 2k − 2;

Take the Cartesian product k − 1 times:

• |Alphk(k)| = (2k − 2)k−1;

For k = 3, 4, 5, 6, 7:
[3→ 36; 4→ 2744; 5→ 810000; 6→ 916132832; 7→ 4001504141376];

There were attempts to create GF4tx(t, x), and even GFktx(k, t, x), al-
though computation proved to be essentially impossible. Since these proce-
dures were based on GF3tx(t, x), they involved solving a system of equa-
tions with |Alphk(k)| equations with |Alphk(k)| variables. Maple can han-
dle 36, but 2744? What about 81000? It became increasingly more clear
that finding generating functions of such complicated cases would not be
possible due to physical of computation. Instead, some smaller sequences
were generated via TicB (direct computation and violation-checking), even
though many of them took quite a long time for relatively short sequences.

Conclusion & Potential Future Projects

Overall, it was possible to successfully enumerate the sequence of final tie
positions for 3 × n Tic-Tac-Toe games, but there was extreme computa-
tional difficulty for arbitrary k > 3. Generating the initial three rows for
k = 4 was manageable, but due to the significant increase in the number
of final rows, computing a generating function would take far too long, and
be nearly impossible, as would be the case for k > 4. Enumeration of some
small sequences and boards without generating functions was still interest-
ing. As a whole, these methods certainly led to a clearer understanding of
how immense the complexity of the topic truly is.

Upon generalizing k, some noticeable relationships did arise despite the tech-
nical limitations. Basing off of Dr. Z’s advice and methodology behind the
efficient procedure GF3tx(t, x), creating a concept of one for a general k led
to some observations. One was that when k is an even number, the number
of 1’s in k × n Tic-Tac-Toe has only even number cases for 1’s. This led to
the procedure AllTTTkEven. When k is odd, the number of 1’s in the
final Tic-Tac-Toe has both even and odd cases, and so the ideas of Odd-
TTTkOdd and EvenTTTkOdd led to conjecture AllTTTkOdd. From
these observations, an integrated procedure/formula (TTT) was created,
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and successfully matches what is expected from nops(TicB(3, i, 3)), just at
a much faster rate. For other k’s, the main methods would be relatively sim-
ilar, but physical computation is the number one barrier. For more details
on this theoretical insight, see PaperTTTk() from the final Maple package.

Looking forward, there are limitless possibilities for different approaches
and related experiments. For example, in order to reduce the amount of
computation for larger k values, one might restrict the center square(s) and
count along the remaining positions, or alter win/lose/draw conditions that
ease the growth of complexity as k increases. In fact, for practical 4 × 4
Tic-Tac-Toe games, most rules state that a player could win via a 4-streak
vertically, horizontally, or diagonally, as well as 4 in a 2 × 2 square, and
control of the 4 corners.

The possibilities are endless, and depending on what limits or conditions
are chosen, future studies could perform extensive analyses while creating
manageable databases, computing workable generating functions, and so
much more, whether it be for specific values, or for all cases onward, too.
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