> #Attendence Q1: > #What is the explicit expression for the sequence? > #a(0)=a(1)=a(2)=0, a(n)=1 for n=3,4, ... > #f(x):= x^3+x^4+x^5+... > sum(x^n, n=3..infinity); -x^3/(x-1) > #Use maple to find an explicit expression for this generating function of 0,8,27,64,125,... a(n)=n^3 > sum(x^(3*n), n=0..infinity); -1/(x^3-1) > #1, n, binomial(n,2), ..., binomial(n,n) > #Fix n, Let a(k)= binomial(n,k)=(n+k)!/(n!*k) > #The OGF(ordinary generating function) 1+n+binomial(n,2)*x^2+...+binomial(n,n)*x^n = (1+x)^n > > #Attendence Q3: > #Find the EGF of a(n)=n, for 0<=n<=5, a(n)=0 if n>=6 > #f(x)= x+x^2/4+x^3/6+x^4/24+x^5/120 > > #Attendence Q4: > #What is the EFG of a(n)=0 for n=0,1,2,3,4,5, and a(n)=1 for n>=6 > #f(x)=x^6/6!+x^7/7!+... > sum(x^n/n!, n=6..infinity); exp(x)-(1/120)*x^5-(1/24)*x^4-(1/6)*x^3-(1/2)*x^2-x-1 > > #Attendence Q5: > #Find the EGF of a(0)=0, a(1)=0, a(n)=(n-2)for n>=2 > sum((n-2)*x^n/n!, n=2..infinity); (x-2)*exp(x)+x+2 > > #Attendence Q6: > #What is A number of this sequence in OEIS? > #A-1187, Number of connected labeled graphs with n nodes. > #How many digit does the number of labeled connected graphs with 150 vertices? > [seq(i!*coeff(taylor(log(add(2^(n*(n-1)/2)*x^n/n!, n=0..150)), x=0,150),x,i), i=150)]; [57133839564458545904789328652610540031895535786011264182548375833179829124845398393126574488675311145377107878746854204162666250198684504466355949195922066574942592095735778929325357290444962472405416790722118445437122269675520000000000000000000000000000000000000*O(1)] > > #Attendence Q7: > #Use the technique of weight enumeration to find the exact number of sequences a[1],a[2],...,a[r], (r can be any length) > #where each of the a[i] is a member of {3,4,7} that add-up to 1001 > f:=1/(1-x^3-x^4-x^7); f := 1/(-x^7-x^4-x^3+1) > coeff(taylor(f,x=0, 1002), x, 1001); 37327228629056835260060479719213438237141848693395064396004356099234232222305300761357555310103620202925186169 > > #Attendence Q8: > #Is [{{1,3,4},{6,7}}, 52] a member of X(7)? > #No > #why yet? > #The first part should be length of permutation which is not a SP > #How big is X(100)? > #edf(X) = egf(PERMUTATION)*egf(SETPARTITIONS) > f:=1/(1-x)*exp(exp(x)-1); f := exp(exp(x)-1)/(1-x) > coeff(taylor(f,x=0, 101), x,100)*100!; 520288193827224460161665693343439067946826765691270139531070491212113377307944087322830833805396364699434666974424650987403343482352896062075174445266247411051 > > #Attendence Q9: > #later on we will prove that the egf of labelled trees is > #Sum(n^(n-2)*x^n/n!, n=1..infinity) > # > #How many triples of the form [Labeled Tree, Permutation, SetPartion] > #of size 150 (meaning that the number of vertices of the tree + the length of the permuttaion + the size of the set that set partitions is exactly 150) > # > coeff(taylor(sum(n^(n-2)*x^n/n!, n=1..infinity)+1/(1-x)+exp(exp(x)-1), x=0, 151), x, 150); 11521428797724199759754908747468811327256490048728103905960023234706648015084044740821532520269056707733020791253437837258812876479375734650856218219059122703948737669867959080915946719728024356376766778599247259089817422525283274851147747866305132222433091707072845267088845997860081807698260131483895128968898878663077403/57133839564458545904789328652610540031895535786011264182548375833179829124845398393126574488675311145377107878746854204162666250198684504466355949195922066574942592095735778929325357290444962472405416790722118445437122269675520000000000000000000000000000000000000 >